
Design Tools
for the Development of

Reliable Secure
Communication Software

Johann Schumann, RIACS / NASA Ames

Secure and Reliable Communication Software

PC-World, 4/2004:

Microsoft Posts Critical Patches Four security bulletins cover many

fixes in Windows, IE, Outlook.

. . . among the most critical holes Microsoft is warning

about is a buffer overrun vulnerability in the Local

Security Authority Subsystem Service (LSASS),. . .

The second critical vulnerability is a buffer overrun hole

in the Private Communications Transport (PCT)

protocol. . .

Introduction

Software for Secure Communications can become insecure due to
flaws during any phase of the software life cycle

• Design

– wrong algorithm
– wrong requirements

• Implementation

– buffer overrun, uninit’d variable, . . .
– sleeper codes

• Verification and Validation

– wrong tests
– insufficient test coverage

• Deployment

– wrong code (e.g., disabled crypto)
– code tampering

Our Goal

Cost-effective development for reliable, secure communications

software

• unified, tool-supported framework from specification to

deployment

• support iterative process

• automatic certification support

Overview

The Indivdiual Tools: Overview

Requirements:

• iterative process
• fast turnaround
• security analysis
• reliable, secure code
• certification

• High-level Specification

– UML for specification

• Automatic Protocol Analysis

– Simulation, MC, . . .

• Correct Protocol Optimization

• Automatic generation of code

– Design document gen.
– multi target platforms

• Automatic test case generation

• Automatic certification support

Protocol Specification

• specification of protocol as UML sequence diagrams and Use
Cases

• distributed representation

• OCL annotations regarding reliability and security properties

• UMLSec (?)

Explicit specification of protocol with safety/security properties

Generation of Design

• automatic Synthesis of UML-designs from sequence diagrams

• generation of readable, highly structured statecharts from

sequence diagrams and OCL constraints

• provably correct designs

• automatic detection of inconsistencies and loops

Automatic synthesis of Statecharts facilitate rapid, consistent

turn-around

Statechart Synthesis: The naive Approach

State Vector

• formed by OCL specifications on SD Messages and global

invariants

• we use a state vector (set of variables):

<coordWith, hasSessionKey, msgCounter>

• Constraints (domain theory + safety policy + security policy)

context A::getKey()

pre: self.hasSessionKey = false ; <?,F,?>

post: self.hasSessionKey = true ; <?,T,?>

• undetermined values are marked by a ’?’

• not all messages need to be annotated with

pre/postconditions

Automatic Synthesis of Statecharts

1. Annotation with constraints for justified merge of SDs

2. Conflict Detection

3. Generation of a flat statchart for each SD

4. Merge of the SCs

5. Introduction of Hierarchy

Conflict Detection

Set variable

assignment in SD

• Unification:

assign values to ’?’

• Frame axiom:

if variable not set by

a message, carry it

over to the next

message

• loop detection

State vector: <coordWith, hasSessionKey, msgCounter>

Conflict Detection

Extend variable

assignment in SD

• Unification:

assign values to ’?’

• Frame axiom:

if variable not set by

a message, carry it

over to the next

message

• loop detection

State vector: <coordWith, hasSessionKey, msgCounter>

Merging SDs

• Translate SD → flat SC

Merging SDs

• multiple flat SCs ⇒ single flat SC

two nodes are similar if they have identical state vectors
and have ≥ 1 incoming transition in common

Introduction of Structure/Hierarchy

Synthesized statecharts must be readable/understandable for

• manual refinement and modifications of the initial design

• system architecture (high-level states) often known

What is a “well-designed”, readable statechart?

• consolidation of related behavior

• separation of unrelated behavior

• introduction of meaningful abstractions

• heuristics: number of nested levels, nodes in one supernode,

and inter-level transitions should have reasonable values

Protocol Analysis

• integration of OTS analysis and verification tools

– theorem proving
– model checking
– simulation

• integration of results/feedback into our framework

Protocol Optimization

• specific communication requirements require specific protocol

variants

– low bandwidth
– low computational resources (memory, CPU)
– high latency (e.g., 20’ to Mars)

• avoid repeated “wrapping” of data

• avoid unnecessary messages and synchronisation

• without loosing correctness

logic-based protocol optimization (collaboration with Cornell) will

be integrated into our framework

Formal methods based protocol optimization enables the designer

to specifically tailor the communication protocol without

compromising reliability and security

Certification Support

We are developing a product-oriented approach to certification

• don’t verify the generator, but focus on produced artifacts

• common techniques:

– testing and simulation
– code review
– program analysis
– model checking
– program verification

• important requirements

– automatic processing
– tamper-proof certificates
– no annotations to be provided by the user

Our Approach: Synthesizing Certifiable Code

Our Approach: Synthesizing Certifiable Code

Demonstrate that the code generator cannot introduce errors for

each piece of generated code

Basic Idea I:

Combine automatic software construction (synthesis)

with automatic software inspection (certification)

Our Approach: Synthesizing Certifiable Code

Demonstrate that the code generator cannot introduce errors for

each piece of generated code

Basic Idea I:

Combine automatic software construction (synthesis)

with automatic software inspection (certification)

Basic Idea II:

Certify generated programs, not the generator

Our Approach: Synthesizing Certifiable Code

Demonstrate that the code generator cannot introduce errors for

each piece of generated code

Basic Idea I:

Combine automatic software construction (synthesis)

with automatic software inspection (certification)

Basic Idea II:

Certify generated programs, not the generator

Basic Idea III:

Introduce code certificates

Our Approach: Synthesizing Certifiable Code

Demonstrate that the code generator cannot introduce errors for
each piece of generated code

Basic Idea I:

Combine automatic software construction (synthesis)
with automatic software inspection (certification)

Basic Idea II:

Certify generated programs, not the generator

Basic Idea III:

Introduce code certificates

Basic Idea IV:

Use Floyd-Hoare program verification techniques

Certifiable Properties

Most software errors are violations of safety properties

⇒ see Introduction

⇒ on the Aerospace top-ten code review list

• language-specific properties

– array bounds (memory safety) (pack/unpack)
– variable initialization-before-use
– underflow/overflow (e.g., message counter)

• domain-specific properties

– module input-use
– volatile memory access limitations
– security properties

• effectiveness properties

– Worst Execution Time analysis
– Data rates

Generation and Processing of Safety Obligations

• annotation of program with pre-/post-conditions

• generation of logic formulas

• formal proof of these formulas

Example: (variable initialization)
for(i=0; i< 10; i++) {

x[i] = 5;

}

• post-condition: x(0 : 9) is initialized

• loop invariant: if x(0 : i− 1) is initialized, then x(i) is initialized

• proof obligation has to demonstrate that from code and invariants,
the post-condition can be infered.

Certifiable Program Generation: Architecture

• only few and small trusted components

• easy combination with Proof Carrying Code (PCC) to produce
tamper-proof code

Conclusions

tool-supported framework for the reliable development and
deployment of secure communication software

• supports entire life-cycle from specification and analysis to
tamperproof code

• basic technologies already developed

– Protocol analysis/verification
– Scenario to Statechart
– Automatic Code Certification

• areas for collaboration

– generation of testcases
– software process
– protocol optimization

• two project phases:

– Requirements analysis, inital architecture and case study
– tool maturation

