
Using Z 21–1

An Operating

System Scheduler

Using Z

Woodcock & Davies



Using Z 21–2

Scheduler

The scheduler is the component of an operating system that

determines which process should be run, and when.

We will specify:

• the service provided—the scheduler specification

• a system that provides this service—the scheduler

implementation



Using Z 21–3

Processes

• there is a single processor to be shared

• this is made available to one process at a time

• a process that is currently making use of the processor is

said to be running



Using Z 21–4

Process states

• Since there is a single processor, at any time, there will be

at most one process running. We will call this the current

process.

• There may be several processes that are waiting to use the

processor. These processes are said to be ready.

• There may be some processes that are waiting, not for the

processor, but for a different resource or event. These

processes are said to be blocked.



Using Z 21–5

Specification

Our system will deal with up to n processes, where n is a

natural number.

n : N

Each process will be associated with a process identifier, or pid .

PId == 1 . . n



Using Z 21–6

Zero is used to represent the ‘null process’: a marker that says

that there is no process where this value is found.

nullPId == 0

An ‘optional pid’ can be either a true pid or the null pid:

OptPId == PId ∪ {nullPId}



Using Z 21–7

Abstract state

AScheduler

current : OptPId

ready : PPId

blocked : PPId

free : PPId

〈{current} \ {nullPId},
ready ,

blocked,

free〉 partition PId



Using Z 21–8

Initialisation

ASchedulerInit

AScheduler ′

current ′ = nullPId

ready ′ = ∅
blocked′ = ∅
free′ = PId



Using Z 21–9

Operations

• create a process, adding it to the set of ready processes

• dispatch one of the ready processes to the processor

• timeout a process, removing it from the processor and

returning it to the set of ready processes

• block a process, removing it from the processor and

adding it to the set of blocked processes

• wake up a blocked process, moving it into the set of ready

processes

• destroy a process



Using Z 21–10

Create

ACreate

∆AScheduler

p! : PId

free ≠∅
current ′ = current

ready ′ = ready ∪ {p!}
blocked′ = blocked

free′ = free \ {p!}
p! ∈ free



Using Z 21–11

Dispatch

ADispatch

∆AScheduler

p! : PId

current = nullPId

ready ≠∅
current ′ ∈ ready

ready ′ = ready \ {current ′}
blocked′ = blocked

free′ = free

p! = current ′



Using Z 21–12

Exercises

• write schemas to describe the effects of timeout, block,

and wake up.

• write three partial operation schemas to describe the

effect of destroying:

– the current process

– a ready process

– a blocked process



Using Z 21–13

Design

• our program will use a simple data structure: an array and

a few counters

• our use of this data structure can be modelled using

chains: finite injections from PId to PId with a unique start

and a unique end.



Using Z 21–14

Chains

Chain

start , end : OptPId

links : PId 7 7) PId

set : FPId

set = dom links ∪ ran links ∪ ({start} \ {nullPId})
links = ∅ ⇒ start = end

links ≠∅⇒
{start} = (dom links) \ ran links

{end} = (ran links) \ dom links

∀ e : set | e ≠ start • start , e ∈ links+



Using Z 21–15

Exercises

• how do we know that the start and the end of a given

chain are uniquely defined?

• what must be true of the start and the end pids if set is

empty?



Using Z 21–16

Initialisation

ChainInit

Chain′

start ′ = nullPIdend′ = nullPId



Using Z 21–17

Operations

• push an element onto the end of a chain

• pop an element from the front of a chain

• delete an element from a chain



Using Z 21–18

Pop

PopSingleton

∆Chain

p! : PId

start ≠ nullPId

links = ∅
start ′ = nullPId

links′ = links

p! = start



Using Z 21–19

PopMultiple

∆Chain

p! : PId

links ≠∅
start ′ = links start

links′ = {start} −/ links

p! = start

Pop =̂ PopSingleton ∨ PopMultiple



Using Z 21–20

Delete

Delete =̂ DeleteStart ∨ DeleteMiddle ∨ DeleteEnd

DeleteStart

∆Chain

p? : PId

p? = start

∃p! : PId • Pop



Using Z 21–21

DeleteEnd

∆Chain

p? : PId

p? ≠ start

p? = end

links′ = links −. {end}



Using Z 21–22

Deleting a middle element



Using Z 21–23

DeleteMiddle

∆Chain

p? : PId

p? ≠ start

p? ≠ end

p? ∈ set

links′ = {p?} −/ links ⊕ {links∼ p? , links p?}



Using Z 21–24

Design

CScheduler

ReadyChain

BlockedChain

FreeChain

current : OptPId

chainstore : PId→OptPId

〈{current} \ {nullPId}, rset ,bset , fset〉 partition PId

rlinks = rset / chainstore. rset

blinks = bset / chainstore. bset

flinks = fset / chainstore. fset

current ≠ nullPId ⇒ chainstore current = nullPId



Using Z 21–25

ReadyChain =̂
Chain[rstart/start , rend/end, rlinks/links, rset/set]

BlockedChain =̂
Chain[bstart/start ,bend/end,blinks/links,bset/set]

FreeChain =̂
Chain[fstart/start , fend/end,flinks/links, fset/set]



Using Z 21–26

Initialisation

CSchedulerInit

CScheduler ′

ReadyChainInit

BlockedChainInit

FreeChainFull

current ′ = nullPId



Using Z 21–27

ReadyChainInit =̂
ChainInit[rstart ′/start ′, rend′/end′,

rlinks′/links′, rset ′/set ′]

BlockedChainInit =̂
ChainInit[bstart ′/start ′,bend′/end′,

blinks′/links′,bset ′/set ′]

FreeChainFull

FreeChain

fset ′ = PId



Using Z 21–28

Operations

PushReadyChain =̂
Push[rstart/start , rend/end, rlinks/links, rset/set ,

rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

PopReadyChain =̂
Pop[rstart/start , rend/end, rlinks/links, rset/set ,

rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

PopFreeChain =̂
Pop[fstart/start , fend/end,flinks/links, fset/set ,

fstart ′/start ′, fend′/end′,flinks′/links′, fset ′/set ′]



Using Z 21–29

CDispatch

∆CScheduler

p! : PId

ΞBlockedChain

ΞFreeChain

current = nullPId

rset ≠∅
PopReadyChain

current ′ = p!



Using Z 21–30

CCreate

∆CScheduler

p! : PId

ΞBlockedChain

fset ≠∅
current ′ = current

PopFreeChain

PushReadyChain[p!/p?]



Using Z 21–31

Abstract state

current = 3

ready = {2,4,6}
blocked = {5,7}
free = {1,8,9,10}



Using Z 21–32

Possible concrete state

current = 3

chainstore = {1 , 8,2 , 6,3 , 0,4 , 2,5 , 0,

6 , 0,7 , 5,8 , 9,9 , 10,10 , 0}

rstart = 4

rend = 6

rlinks = {4 , 2,2 , 6}
rset = {2,4,6}



Using Z 21–33

bstart = 7

bend = 7

blinks = {7, 5}
bset = {5,7}

fstart = 1

fend = 10

flinks = {1, 8,8 , 9,9 , 10}
fset = {1,8,9,10}



Using Z 21–34

A possible concrete state



Using Z 21–35

Retrieve function

RetrScheduler

AScheduler

CScheduler

ready = rset

blocked = bset

free = fset



Using Z 21–36

Correctness

CScheduler ` ∃1 AScheduler • RetrScheduler

CSchedulerInit ∧ Retr ′ ` ASchedulerInit

pre AOp ∧ Retr ∧ COp ∧ Retr ′ ` AOp


