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Scheduler

The scheduler is the component of an operating system that

determines which process should be run, and when.

We will specify:

• the service provided—the scheduler specification

• a system that provides this service—the scheduler

implementation
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Processes

• there is a single processor to be shared

• this is made available to one process at a time

• a process that is currently making use of the processor is

said to be running



Using Z 21–4

Process states

• Since there is a single processor, at any time, there will be

at most one process running. We will call this the current

process.

• There may be several processes that are waiting to use the

processor. These processes are said to be ready.

• There may be some processes that are waiting, not for the

processor, but for a different resource or event. These

processes are said to be blocked.
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Specification

Our system will deal with up to n processes, where n is a

natural number.

n : N

Each process will be associated with a process identifier, or pid .

PId == 1 . . n
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Zero is used to represent the ‘null process’: a marker that says

that there is no process where this value is found.

nullPId == 0

An ‘optional pid’ can be either a true pid or the null pid:

OptPId == PId ∪ {nullPId}
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Abstract state

AScheduler

current : OptPId

ready : PPId

blocked : PPId

free : PPId

〈{current} \ {nullPId},
ready ,

blocked,

free〉 partition PId
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Initialisation

ASchedulerInit

AScheduler ′

current ′ = nullPId

ready ′ = ∅
blocked′ = ∅
free′ = PId
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Operations

• create a process, adding it to the set of ready processes

• dispatch one of the ready processes to the processor

• timeout a process, removing it from the processor and

returning it to the set of ready processes

• block a process, removing it from the processor and

adding it to the set of blocked processes

• wake up a blocked process, moving it into the set of ready

processes

• destroy a process
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Create

ACreate

∆AScheduler

p! : PId

free ≠∅
current ′ = current

ready ′ = ready ∪ {p!}
blocked′ = blocked

free′ = free \ {p!}
p! ∈ free
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Dispatch

ADispatch

∆AScheduler

p! : PId

current = nullPId

ready ≠∅
current ′ ∈ ready

ready ′ = ready \ {current ′}
blocked′ = blocked

free′ = free

p! = current ′
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Exercises

• write schemas to describe the effects of timeout, block,

and wake up.

• write three partial operation schemas to describe the

effect of destroying:

– the current process

– a ready process

– a blocked process
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Design

• our program will use a simple data structure: an array and

a few counters

• our use of this data structure can be modelled using

chains: finite injections from PId to PId with a unique start

and a unique end.
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Chains

Chain

start , end : OptPId

links : PId 7 7) PId

set : FPId

set = dom links ∪ ran links ∪ ({start} \ {nullPId})
links = ∅ ⇒ start = end

links ≠∅⇒
{start} = (dom links) \ ran links

{end} = (ran links) \ dom links

∀ e : set | e ≠ start • start , e ∈ links+
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Exercises

• how do we know that the start and the end of a given

chain are uniquely defined?

• what must be true of the start and the end pids if set is

empty?
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Initialisation

ChainInit

Chain′

start ′ = nullPIdend′ = nullPId
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Operations

• push an element onto the end of a chain

• pop an element from the front of a chain

• delete an element from a chain
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Pop

PopSingleton

∆Chain

p! : PId

start ≠ nullPId

links = ∅
start ′ = nullPId

links′ = links

p! = start
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PopMultiple

∆Chain

p! : PId

links ≠∅
start ′ = links start

links′ = {start} −/ links

p! = start

Pop =̂ PopSingleton ∨ PopMultiple
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Delete

Delete =̂ DeleteStart ∨ DeleteMiddle ∨ DeleteEnd

DeleteStart

∆Chain

p? : PId

p? = start

∃p! : PId • Pop
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DeleteEnd

∆Chain

p? : PId

p? ≠ start

p? = end

links′ = links −. {end}
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Deleting a middle element
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DeleteMiddle

∆Chain

p? : PId

p? ≠ start

p? ≠ end

p? ∈ set

links′ = {p?} −/ links ⊕ {links∼ p? , links p?}
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Design

CScheduler

ReadyChain

BlockedChain

FreeChain

current : OptPId

chainstore : PId→OptPId

〈{current} \ {nullPId}, rset ,bset , fset〉 partition PId

rlinks = rset / chainstore. rset

blinks = bset / chainstore. bset

flinks = fset / chainstore. fset

current ≠ nullPId ⇒ chainstore current = nullPId
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ReadyChain =̂
Chain[rstart/start , rend/end, rlinks/links, rset/set]

BlockedChain =̂
Chain[bstart/start ,bend/end,blinks/links,bset/set]

FreeChain =̂
Chain[fstart/start , fend/end,flinks/links, fset/set]
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Initialisation

CSchedulerInit

CScheduler ′

ReadyChainInit

BlockedChainInit

FreeChainFull

current ′ = nullPId
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ReadyChainInit =̂
ChainInit[rstart ′/start ′, rend′/end′,

rlinks′/links′, rset ′/set ′]

BlockedChainInit =̂
ChainInit[bstart ′/start ′,bend′/end′,

blinks′/links′,bset ′/set ′]

FreeChainFull

FreeChain

fset ′ = PId
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Operations

PushReadyChain =̂
Push[rstart/start , rend/end, rlinks/links, rset/set ,

rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

PopReadyChain =̂
Pop[rstart/start , rend/end, rlinks/links, rset/set ,

rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

PopFreeChain =̂
Pop[fstart/start , fend/end,flinks/links, fset/set ,

fstart ′/start ′, fend′/end′,flinks′/links′, fset ′/set ′]
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CDispatch

∆CScheduler

p! : PId

ΞBlockedChain

ΞFreeChain

current = nullPId

rset ≠∅
PopReadyChain

current ′ = p!
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CCreate

∆CScheduler

p! : PId

ΞBlockedChain

fset ≠∅
current ′ = current

PopFreeChain

PushReadyChain[p!/p?]
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Abstract state

current = 3

ready = {2,4,6}
blocked = {5,7}
free = {1,8,9,10}
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Possible concrete state

current = 3

chainstore = {1 , 8,2 , 6,3 , 0,4 , 2,5 , 0,

6 , 0,7 , 5,8 , 9,9 , 10,10 , 0}

rstart = 4

rend = 6

rlinks = {4 , 2,2 , 6}
rset = {2,4,6}
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bstart = 7

bend = 7

blinks = {7, 5}
bset = {5,7}

fstart = 1

fend = 10

flinks = {1, 8,8 , 9,9 , 10}
fset = {1,8,9,10}
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A possible concrete state
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Retrieve function

RetrScheduler

AScheduler

CScheduler

ready = rset

blocked = bset

free = fset
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Correctness

CScheduler ` ∃1 AScheduler • RetrScheduler

CSchedulerInit ∧ Retr ′ ` ASchedulerInit

pre AOp ∧ Retr ∧ COp ∧ Retr ′ ` AOp


