Data Refinement

Using Z
Woodcock & Davies

refinement (-nm-) n. Refining or being refined;
fineness of feeling or taste, polished manners etc.;
subtle or ingenious manifestation of, piece of
elaborate arrangement, (all the refinements of
reasoning, torture; a countermine was a refinement
beyond their skill); instance of improvement
(up)on; piece of subtle reasoning, fine distinction.




Example

Refinement may involve the tightening of a contract, reducing
the range of allowable behaviours:

European directive

=

Act of Parliament

-

Regulations

Example

Part of the contract may be rewritten to describe the same
objective in different terms:

We would like to raise £1,000,000. We would like to do this in
the United States of America. At the time of writing, the
exchange rate is £1.00 = $1.50. How many dollars should we
attempt to raise?




Abstract data types

An abstract data type combines a description of state with
descriptions of operations upon that state.

== (AState, Alnit, (AOp1,AOp?2,...))

We may use abstract data types to specify the behaviour of
system components.

An abstract data type provides a view of system behaviour at
some level of abstraction.

Example

An abstract data type may be used to specify a class:

AState
Alnit

(AOpl, AOp?2)




Questions

» why might we want different views of the same system?
« what makes two different views consistent?

 what makes two consistent views different?

Refinement relation

Data type B is a refinement of A4,
ACcB

if and only if every interaction with B could have been an
interaction with A.

If this is the case, then B will be a worthy replacement for A,
whatever the context.




Proper refinement

It is quite possible that A = B, but B £ A.

This will be the case when description B has resolved some of
the uncertainty present in A: the effect of at least one of the
operations is now more precisely defined.

Refinement ordering
If B is a refinement of A, and C is a refinement of B, then C is
also a refinement of A.

AcEB BeC
Ac C

Iterative development of a system, from abstract specification
to concrete implementation, is a form of refinement.




Example

ResourceManagera
free: FN

Allocate
AResourceManager
rl: N

r! € free A free’ = free\ {r!}

ResourceManagersp
freeg : FN

Allocatep
AResourceManagers
r':N

r! = min freeg A freep = freeg \ {r!}




ResourceManager ¢
freec : seq N

Vi j:domfreec|i<je freeci< freecj

Allocatec
AResourceManagerc
rl: N

r! = head freec A free, = tail freec

If the initialisation and release operations are defined
consistently,

(ResourceManagera, Inits, (Allocates, Release,))
-

(ResourceManagersg, Initg, ( Allocateg, Releaseg))
C

(ResourceManagerc, Initc, (Allocatec, Releasec))




Refinement to code

The refinement of state components and operations can take
us to executable code.

« we replace the components of the state—sets, relations,
sequences—with data structures from our chosen
implementation language.

* we resolve any nondeterminism present in the description
of operations.

Example

ResourceManagerp
freep : array of Bit




Data refinement and relations

To derive a formal definition of refinement, and hence a set of
useful proof rules, we consider the semantics of operations.

An operation may be seen as a relation between states: one
state is related to another if the system could start in the first
and end up in the second.

Our definition of refinement for data types will depend upon a
similar definition of refinement for relations.

Total relations

Refinement of total relations is easily defined. If R and S are
total relations, then

RcS< ScR

Wherever R relates the same element x to two distinct
elements y; and y», S may omit either x — y; or x — y».




Totalisation

To define refinement for partial relations, we consider their
totalised forms:

p=pUi{x: X y: Y| x¢éddompex—y}

where
Xt =Xu{L}
Ytr=Yu{Ll}
Example

L:=alb|lc|d

P {a—- a,a~ b,b~ b,b~ c}

p {a—a,a—b,b—b,b~ c,
c— L,c—~a,c—b,c~c,c~—d,
d- 1,d~ a,d~ b,d~ c,d ~ d,

l—-1,1—»a,L~—~Db,1—c, L—d}




Jsing Z

16-21

Jsing Z

Why augment the source and target?

0o == {z:Zez~0}

X

16-22




Jsing Z 16-23

With
= (P U (dom@ X 7)) 3 (kouU (domky X ZV))
[dot]
= (@7 XZY) 3 (ko U (Z5 X7Y))
[properties of U and dom]
= (Z+ x7*4) § (ko U (D* x 74))
[properties of |
= ((Z+ X Z*) ko) U ((Z+x Z*+) § ({1} X Z+))
[property of X]
=Ko U (Z+ x 7Z*) [properties of X]
=7+ x 7+ [property of U]
Jsing Z 16-24
Without

= (@ U (dom xX7Z))3 (koU (domkg X Z))
[dot without L]
= (@ X Z)3(KoU (ZX1Z))

[properties of U and dom]

=(ZX1Z)S (ko (D X1Z)) [properties of |
=(Zx17Z)3(kgU D) [property of X]
= (Z X 7Z) 3 Ko [property of U]

= Ko [property of g]




Refinement

a- a,a- b,b~- b,b~ c}

{
{a- a,b~- b,b~ c,c~ c}

P
o
domo = {a,b,c} 2 {a,b} = domp

(domp < 0)
={a-~ab~- b,b-c,}

C

Using totalisation

%ngls_wlw.wln,mln_
d- 1,d~ a,d~ b,d~ c,d~ d,
l—~l1,1l~a,L~b,1L~c L+—d}

cp




Not a refinement

P a—a,a~ b,b— b,b— c}
-

{
{

a— a,c— c}

(domp) = {a,b} ¢ {a,c} = (domT)

Corruption

~ ! Bit — Bit




Never two in a row

corruptsto :seq Bit < seq Bit

Y bs, bs’ : seq Bit e
bs corruptsto bs’ <
#bs" < #bs A

Vi:l..#bs —1 e
bsi+bs'i=>bs(i+1)=>bs'(i+1)

(1,1,0,1,1,1,0,0) corruptsto (0,1,0,0, 1)

Odd ones

changesto : seq Bit < seq Bit

Y bs, bs’ : seq Bit e
bs changesto bs' <
#bs' < #bs A

Vi:l..(#bs —1)e
ie{n:Nye2xn}=>bsi=>bs"in
ie{n:Ne2xn+1}= bsi=+ bs'i

(1,1,0,1,1,1,0,0) changesto {(0,1,1,1,0)




Programs

A program is a sequence of operations upon a data type.

D = (D,di,df,{doy,doz})

di § do; §do> § df

Parameters

P(X) = xi$xo; $xoo xf




Totalisation

X = Qfﬁ_mﬁ:;.x.sc

Refinement

P(C) < P(A)

ci g cos, §Cos, § -

C

ai 3 aos, § aos, § -

..anwstn

..WQQM:WQ




Example

A seq Bit X Action X seq Bit
C

seq Bit X Action X seq Bit

Action = yes | no

Initialisation

ai :seqBit & A

ci :seqBit & C

V bs:seqBit; a:A; c:C e
bsaia < a = (bs, no,())
bscic < ¢ = (bs,no,())




Finalisation

af : A < seq Bit

cf :C < seqBit

V bs:seqBit; a:A; c:C e
aaf bs < bs = a.3
ccf bs < bs = c.3

ao A« A
VYaa :Ae
aaod <
a.l = taila.l
a.2 = yes =

a.3=a3 (heada.l) A a’'.2 = no
a.2 = no =

a.3=a3" (~heada.l) A a'.2 = yes

V

a.3=a3 (heada.l) A a’'.2 = no




co :C—C

Y, :C e
ccoc’ <
c'.1 = tail c.1
c.2 =yes =
c’.3=c3 (headc.l) A c".2 = no
c.2 =no =

c'.3=c3" (~headc.1) A c'.2 = yes

ciScf < ai§af
cicodcf < aidaosaf

ciScogcoScf < aigao§aosaf




Simulation?

e is ci a subset of ai § p?
e is p S cf a subset of af?

e is p § co; a subset of ao; § p, for each index i?

Lifting

pEXt o Y!
p=pU(L} xY")




Jsing Z 16-43
Example
Lx=alb|lcl|ld
p == {a~a,a~ b,b~ b,b~ c}
p == {a—a,a—b,b~b,b~c,
l—-1,l-a,L—-b,1L—c,1L—d}
Jsing Z 16-44
4 N\ 4




Forwards simulation

for each index i




Backwards simulation

o o

° C0;j$ S <SS ao; for each index i




Relaxing

cicaigr
== mm S r [ai and ci are both total]
@Q.mmommw ANf{L}xXCrcaigr
[property of subset]

ecicaidr AN {L}xCrtcaigr [L & dom ci]

scicaijr AN {L}xCtcaig(ru{lL}xCh)

[lifting]
sScicaidr :mwmsm:
Spot dot elimination
pCosT
< p < (0o U (dom o x Y4)) 3 T [totalisation]

spc(oeT)u((domo” x YY) gT) [distribution]
@bmAqmiCAaoEQFx%im.ﬂ.v [L ¢ rano]
spc(oT)u((domo” X YY) g (TuU{LxZbY)
[lifting]
spc(ocgT)U S_OHBQF X Z4) [property of g]

< (domo)<pcosT [property of relations]




Correctness

< domao < Qu\ S n.cv € aodr |[spotdotelimination]
< (domao < 3 S co < aoSr [property of < and g]
ﬁaogmoA_lmn.o S aoldr [L & dom ao]
< (domao<r)§ (cou dom co~ x Ct) € aolr
[totalisation]
< (domao<r)gco < aolr [property of <]

N

1
(domao<r)§(domco X C*) <€ ao§r

Relaxed rules for forwards simulation

(domao) <rgco<caolr

ran((domao) < r) < dom co




Relaxed rules for backwards simulation

cids c ai
cf € ssaf

dom(s & (domao)) <co$s c s$ao

dom co € dom(s & (dom ao))

Summary

refinement

abstract data types

refinement of total relations

refinement of partial relations

simulation




