
Using Z 14–1

Preconditions

Using Z

Woodcock & Davies



Using Z 14–2

Analysis

We may wish to show that

• the requirements are consistent: the constraint part of the

state schema is satisfiable

• each operation is applied within its domain: the effect of

the operation is properly defined whenever it is used

In each case, it is enough to consider preconditions.



Using Z 14–3

Preconditions

The precondition of an operation is that constraint which is

necessary and sufficient for the operation to be defined: that

is, for an after state to exist.

The nature of the after state does not concern us; neither do

the outputs of the operation. The precondition will take the

form of a constraint upon the combination of the before state

and the inputs.



Using Z 14–4

Precondition schemas

A precondition schema is a schema that characterises the

combinations of before states and inputs for which the effect

of an operation is defined.

State

inputs

. . .



Using Z 14–5

Notation

If the schema Operation describes an operation upon State,

with a list of outputs, then we write pre Operation to denote its

precondition.

pre Operation = ∃ State′ • Operation \ outputs



Using Z 14–6

Example

pre Purchase0

= ∃BoxOffice′ • Purchase0 [definition of pre ]

= [BoxOffice; s? : Seat ;

c? : Customer |
∃ seating′ : P Seat •

∃ sold′ : Seat 7→ Customer •
dom sold′ ⊆ seating′ ∧
s? ∈ seating \ dom sold ∧
sold′ = sold ∪ {s?, c?} ∧
seating′ = seating]

[definition of Purchase0]



Using Z 14–7

= [BoxOffice; s? : Seat ;

c? : Customer |
dom(sold ∪ {s? , c?}) ⊆ seating ∧
s? ∈ seating \ dom sold]

[one-point rule, twice]

= [BoxOffice; s? : Seat ;

c? : Customer |
s? ∈ seating \ dom sold]

[property of ‘dom’]



Using Z 14–8

Initialisation

The operation of initialisation is a special case; there is no

before state, although there may be inputs:

The statement that initialisation is possible is sometimes

called the initialisation theorem:

∃ State′ • StateInit \ outputs



Using Z 14–9

Example

BoxOfficeInit

BoxOffice′

allocation? : PSeat

seating′ = allocation?

sold′ = ∅



Using Z 14–10

∃BoxOffice′ • BoxOfficeInit

a ∃BoxOffice′ •
[BoxOffice′; allocation? : P Seat |

seating′ = allocation? ∧
sold′ = ∅]

[definition of BoxOfficeInit ]

a [allocation? : PSeat |
∃BoxOffice′ •

seating′ = allocation? ∧
sold′ = ∅]

[schema quantification]



Using Z 14–11

a [allocation? : PSeat |
∃ seating′ : PSeat •

∃ sold′ : Seat 7→ Customer •
dom sold′ ⊆ seating′ ∧
seating′ = allocation? ∧
sold′ = ∅]

[definition of BoxOffice′]



Using Z 14–12

a [allocation? : PSeat |
allocation? ∈ P Seat ∧
∅ ∈ Seat 7→ Customer ∧
∅ ⊆ allocation?]

[one-point rule, twice]

a [allocation? : PSeat] [properties of sets]



Using Z 14–13

Explicit vs implicit preconditions

There is a minor advantage to be gained by concentrating upon

what an operation is supposed to do, and calculating its

precondition later.

Even where an explicit precondition has been included, the

calculation provides for a degree of cross-checking.



Using Z 14–14

Example

capacity : N

capacity > 0

CarPark

count : N

count ≤ capacity



Using Z 14–15

Enter0

∆CarPark

count ′ = count + 1

Exit0

∆CarPark

count ′ = count − 1



Using Z 14–16

pre Exit0

= ∃CarPark′ • Exit0 [definition of Exit0]

= [CarPark |
∃ count ′ : N |

count ′ ≤ capacity •
count ′ = count − 1]

[definition of CarPark′]

= [CarPark | count − 1 ∈ N] [one-point rule]



Using Z 14–17

Informed design:

ExtraCar

ΞCarPark

r ! : Report

count = 0

r ! = extra car

Exit =̂ Exit0 ∨ ExtraCar



Using Z 14–18

A recipe for preconditions

Suppose that we wish to calculate the precondition of

Operation

Declaration

Predicate



Using Z 14–19

Step One

Take the various clauses of Declaration and assemble them to

make three new declarations:

• Before introducing only inputs and before components

(unprimed state components);

• After introducing only outputs and after components

(primed state components);

• Mixed consisting of the remaining clauses.



Using Z 14–20

Step Two

If Mixed is not an empty declaration, expand every schema

mentioned in Mixed ; add all input and before components to

Before; add all output and after components to After .

As there may be several levels of schema inclusion, repeat this

step until there are no clauses left in Mixed .



Using Z 14–21

Step Three

The precondition of Operation is then

Before

∃After •
Predicate



Using Z 14–22

Question

Given the following schema definitions,

S

a : N

b : N

a ≠ b

T

S

c : N

b ≠ c



Using Z 14–23

what is the precondition of the following operation?

Increment

∆T

in? : N

out ! : N

a′ = a + in?

b′ = b

c′ = c

out ! = c



Using Z 14–24

Simplification

Suppose that we wished to simplify the precondition schema

Before

∃After •
Predicate



Using Z 14–25

Step Four

Expand any schemas in After that contain equations

identifying outputs or after components.



Using Z 14–26

Step Five

Expand any schemas in After that refer to outputs or after

components for which we already have equations.



Using Z 14–27

Step Six

If Predicate contains an equation identifying a component

declared in After , then use the one-point rule to eliminate that

component.

Repeat this step as many times as possible.



Using Z 14–28

Step Seven

If After1 and Predicate1 are what remains of After and

Predicate, then the precondition is now

Before

∃After1 •
Predicate1



Using Z 14–29

Question

How may we simplify the predicate part of pre Increment?

∃out ! : N; T ′ •
a′ = a + in? ∧
b′ = b ∧
c′ = c ∧
out ! = c



Using Z 14–30

Disjunction

If

Op =̂ Op1 ∨ Op2

then

pre Op = pre Op1 ∨ pre Op2



Using Z 14–31

Conjunction

In general, if

Op =̂ Op1 ∧ Op2

then

pre Op ≠ pre Op1 ∧ pre Op2

However, it may be that the declarations introduce disjoint

sets of variables…



Using Z 14–32

Example

Success

r ! : Response

r ! = okay

pre (Purchase0 ∧ Success) = pre Purchase0



Using Z 14–33

Free promotion

∃Local′ •
∃Global′ • Promote

a ∀Local′ •
∃Global′ • Promote



Using Z 14–34

A useful result

pre GOp

a ∃Global′ •
GOp

[definition of ‘pre’]

a ∃Global′ •
∃∆Local • Promote ∧ LOp

[definition of GOp]

a ∃∆Local •
∃Global′ • Promote ∧ LOp

[property of ∃]



Using Z 14–35

a ∃Local •
∃Local′ • ∃Global′ • Promote ∧ LOp

[definition of ∆]

a ∃Local •
(∃Local′ • ∃Global′ • Promote) ∧ (∃Local′ • LOp)

[lemma]

a ∃Local •
pre Promote ∧ pre LOp

[definition of ‘pre’, twice]



Using Z 14–36

Lemma

The equivalence labelled ‘lemma’ is easily proved in the

forward direction. A proof in the other direction (⇐) requires

the free promotion property.

We abbreviate Local′, Global′, and Promote to L′, G′, and P ,

respectively.



Using Z 14–37

∃L′ • LOp

dθL′ ∈ Le[1]

dθL′ ∈ Le[1]

∃L′ • ∃G′ • P
∀ L′ • ∃G′ • P

[free promotion]

∃G′ • P
[∀−elim] dLOpe[1]

∃G′ • P ∧ LOp
[G′ not free in LOp]

∃L′ • ∃G′ • P ∧ LOp
[∃−intro]

∃L′ • ∃G′ • P ∧ LOp
[∃−elim[1]]



Using Z 14–38

Example

AssignIndex =̂ ∃∆Data • AssignData ∧ Promote

pre AssignIndex =
∃Data • pre AssignData ∧ pre Promote



Using Z 14–39

Question

What is the precondition of AssignData?

AssignData

∆Data

new? : Value

value′ = new?



Using Z 14–40

Question

What is the precondition of Promote?

Promote

∆Array

∆Data

index? : N

index? ∈ dom array

{index?} −/ array = {index?} −/ array ′

array index? = θData

array ′ index? = θData′



Using Z 14–41

Question

What is the precondition of

∃∆Data • Promote ∧ AssignData ?



Using Z 14–42

Results

It is often useful to tabulate the results of our analysis; against

each operation, we record the predicate that characterises its

precondition.

We should check that the predicates are a correct reflection of

our expectations: that each operation schema is exactly as

prescriptive as it should be.



Using Z 14–43

Example

InitBoxOffice true

Purchase0 s? ∈ seating \ dom sold

NotAvailable s? 6∈ seating \ dom sold

Purchase true

Return0 s?, c? ∈ sold

NotPossible s?, c? 6∈ sold

Return true



Using Z 14–44

Summary

• preconditions

• pre Schema

• initialisation

• calculation and simplification

• disjunction

• promotion


