
10–1

Free Types

10–2

Data structures

We can model any data structure using sets, relations, or

functions.

Where structure is important, and where different types are

combined, a general mechanism is needed.

10–3

Free types

The following definition introduces a new type T consisting of

elements c1, c2, . ., cn and elements obtained by applying functions

d1,d2, . .,dn to set expressions E1,E2, . .,En:

T ::= c1 | . . . | cm | d1 〈〈E1〉〉 | . . . | dn 〈〈En〉〉

10–4

Notes

• the elements c1, c2, . ., cn are called constants

• the functions d1,d2, . .,dn are called constructors

• the set expressions E1,E2, . .,En may include instances of the

type being defined

10–5

Example

The following free type definition introduces a new type

constructed using a single constant zero and a single constructor

function succ:

nat ::= zero | succ〈〈nat〉〉

This type has a structure which is exactly that of the natural

numbers (where zero corresponds to 0, and succ corresponds to

the function +1).

10–6

Question

What does this mean? What would we have to do if we wanted to

introduce the same set without a free type definition?

10–7

Attempt 1

zero : nat

succ : nat 7→ nat

∀n : nat • n = zero ∨ ∃m : nat • n = succ m

10–8

10–9

Attempt 2

zero : nat

succ : nat 7→ nat

∀n : nat • n = zero ∨ ∃m : nat • n = succ m

{zero} ∩ ran succ = ∅

10–10

10–11

Attempt 3

zero : nat

succ : nat→ nat

∀n : nat • n = zero ∨ ∃m : nat • n = succ m

{zero} ∩ ran succ = ∅

10–12

10–13

Attempt 4

zero : nat

succ : nat) nat

{zero} ∩ ran succ = ∅
{zero} ∪ ran succ = nat

10–14

10–15

Conclusion

A free type definition involves:

• constants and constructed elements

• constructor functions

• closure

10–16

Multiple constants

Colours ::= red | orange | yellow | green | blue |
indigo | violet

10–17

Question

Is the free type definition on the previous slide equivalent to the

following abbreviation?

Colours ==
{red,orange,yellow ,green,blue, indigo,violet}

If not, why not?

10–18

Multiple constructors

Tree ::= leaf 〈〈N〉〉 | branch 〈〈Tree× Tree〉〉

10–19

10–20

Question

What can we say about the functions leaf and branch?

10–21

Example

Degree ::= status 〈〈0 . . 3〉〉

10–22

Useful names for elements of Degree:

ba,msc,dphil,ma : Degree

ba = status 0

msc = status 1

dphil = status 2

ma = status 3

10–23

The structure is preserved:

≤status : Degree↔Degree

∀d1,d2 : Degree •
d1 ≤status d2 a status∼d1 ≤ status∼d2

10–24

Induction principle

A recursive free type definition gives rise to a corresponding

induction principle.

10–25

The free type definition

T ::= c1 | . . . | cm | d1 〈〈E1〉〉 | . . . | dn 〈〈En〉〉

has the same effect as a basic type definition

[T]

followed by…

10–26

c1 : T
...

cm : T

d1 : E1) T
...

dn : En) T

disjoint 〈{c1}, . . . , {cm}, ran d1, . . . ran dn〉
∀ S : PT •

{c1, . . . , cm} ⊆ S ∧
d1(| E1[S /T] |)∪ . . .∪ dn(| En[S /T] |) ⊆ S ⇒

S = T

10–27

Closure rule

S ⊆ T

{c1, . . . , cm} ⊆ S

(d1(| E1[S /T] |)∪ . . .∪ dn(| En[S /T] |)) ⊆ S

S = T

10–28

Inverse image

di (| Ei[S /T] |) ⊆ S

a Ei[S /T] ⊆ di
∼ (| S |)

a ∀ e : Ei[S /T] • e ∈ di
∼ (| S |)

a ∀ e : Ei[S /T] • di e ∈ S

10–29

Predicates

S may be the characteristic set of some property P :

S == {t : T | P t}

10–30

Induction principle

P c1

...

P cm

∀ e : E1[S /T] • P (d1 e)
...

∀ e : En[S /T] • P (dn e)

∀ t : T • P t

10–31

Example

S ⊆ nat ({zero} ∪ succ(| nat[S /nat] |)) ⊆ S
S = nat

10–32

Alternative form

S == {n : nat | P n}

P zero

∀m : nat • P m ⇒ P (succ m)

∀n : nat • P n

10–33

Question

Can you suggest a suitable induction principle for Tree?

10–34

Consistency

• not all constructions make sense; some result in a free type

with no elements

• Cartesian products, finite sequences, finite functions, and

finite power sets are guaranteed to work

10–35

Example

The following type definition is inconsistent:

P ::= power〈〈PP〉〉

10–36

Summary

• data structures

• free type definitions

• constants, constructors, and closure

• induction principle

• consistency

