Free Types

10-1

Data structures
We can model any data structure using sets, relations, or
functions.

Where structure is important, and where different types are
combined, a general mechanism is needed.

Free types

The following definition introduces a new type T consisting of
elements cy, ¢y, .., c, and elements obtained by applying functions
dj,do,..,d, to set expressions Ej, Ep, .., E;:

Tu=cil...lcmldi(E) | ... | dn (En))

Notes

o the elements cy,cy,.., c, are called constants
o the functions di, d,..,d, are called constructors

« the set expressions Ej, E», . ., E, may include instances of the
type being defined

Example

The following free type definition introduces a new type
constructed using a single constant zero and a single constructor
function succ:

nat ::= zero | succ{{nat))

This type has a structure which is exactly that of the natural
numbers (where zero corresponds to 0, and succ corresponds to
the function +1).

10-5

Question

What does this mean? What would we have to do if we wanted to
introduce the same set without a free type definition?

10-7 10-8

Attempt 1
zero : nat A ,
succ : nat - nat .] succ
zero —
Vn:naten=zeroVv Im: nat e n = succm
10-9 10-10
Attempt 2

succ
zero : nat —

succ : nat - nat b\
Vn:nat en=zeroVv dm: nat e n = succm . . \4‘ ‘

zero ¥ N NV N ¥ N ¥

{zero} Nnransucc = &

10-11 10-12
Attempt 3
succ

zero : nat o

succ : nat — nat \

Vn:nat en=zeroVv im: nat e n = succm ‘ .

{zero} N ransuce = @ Zero N ¥ N W N ¥ N ¥ N ¥ ¥

Attempt 4

zero : nat
succ : nat = nat

{zero} Nnransucc = &
{zero} U ransucc = nat

10-14

zero ¥ N ¥ N

Conclusion

A free type definition involves:
« constants and constructed elements
» constructor functions

e closure

Multiple constants

Colours ::= red | orange | | green | blue |

indigo | violet

10-17

Question

Is the free type definition on the previous slide equivalent to the
following abbreviation?

Colours ==

{red, orange, , green, blue, indigo, violet }

If not, why not?

10-18

Multiple constructors

Tree ::= leaf ((N)) | branch ((Tree x Tree))

branch (branch (leaf 3, leaf 5), leaf 9)

branch (leaf 3, leaf 5) leaf 9

leaf 3

10-19

10-20

Question

What can we say about the functions leaf and branch?

Example

Degree ::= status ((0 .. 3))

Useful names for elements of Degree:
ba, msc, dphil, ma : Degree

ba = status 0
status 1

dphil = status 2

3
]
I

status 3

3
Q
I

The structure is preserved:

Sstatus: Degree < Degree

Y dy, d> : Degree o
dy <giams d» < status™d; < status™d>

10-24

Induction principle

A recursive free type definition gives rise to a corresponding
induction principle.

The free type definition
Tu=cil...lomldiCED) | ... | dn (En))

has the same effect as a basic type definition
[T]

followed by...

c:T

cm: T
QHHMHI‘H

d,:E,— T
disjoint ({c;},..., {cm},randy,...randy)
VS:PTe
{c1,...,cm} S S A

di(Et[S/TIDU...udnl En[S/T]D = S =
§S=T

Closure rule

ScT
AOT...AO:L cs

(AiQE[S/TIDU...udn(EalS/TID) €S

S=T

Inverse image

di(E[S/T]D<S
S LIS/TIcdi™(S)
< Ve E[S/Tleecdi™ (S)
< Ve:E[S/T]edieesS

Predicates

S may be the characteristic set of some property P:

10-30

Induction principle

Pcy

Pcpy
Ve:E[S/T]eP(die)

Ve:E)S/T]eP(de)
Vit:TePt

Example

S ¢ nat ({zero} Usucc(nat[S/nat]))<cS
S = nat

Alternative form

S == {n:nat|Pn}

P zero

YV m: nat e Pm = P (succm)

Vn:natePn

Question

Can you suggest a suitable induction principle for Tree?

Consistency
« not all constructions make sense; some result in a free type
with no elements

« Cartesian products, finite sequences, finite functions, and
finite power sets are guaranteed to work

Example

The following type definition is inconsistent:

P ::= power({P P))

10-35

10-36

Summary

» data structures

o free type definitions

« constants, constructors, and closure
« induction principle

* consistency

