Equality

Equality

» we identify expressions using the symbol =

o equalities form the atomic propositions in our logical
language

» the only other way of obtaining an atomic proposition is
through set membership




Examples

e 1+1 =2
e Christmas Day = 25th December
o Sellafield = Windscale

Axiom of reflection

[eq-ref]




Symmetry

the man who stole my idea = the man on the right
the man on the right = the man who stole my idea

Transitivity

the man on the right = Professor Plum
the man who stole my idea = Professor Plum




Substitution of equals

s=t pl[t]/x]

pls/x] redsubl

25th December falls on a Sunday this year
Christmas Day falls on a Sunday this year

The one-point rule

If the identity of a bound variable is revealed within the
quantified expression, we may replace all instances of that
variable, and remove the existential quantifier.
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Question

What happens when we apply the one-point rule here?
e dn:Ned+n=6An=2
e dn:Neb6+n=4An=-2

e dn:Ne(Vm:Nen>m An=n+1

Uniqueness and quantity

» equality makes our predicate calculus more expressive

» we can formalise statements containing the phrases ‘at most’,
and ‘no more than’

 there is a special notation for ‘there is a unique x such that’.
We write

1, x:Ae.




At most

Vp,qr:Visitorsep=qVvqg=rVvr=p

At least

Ap,q: Applicants e p = g




Exactly one

b :Book e b € Desk A (V¥ c:Book | c € Desk e c = b)

3, b : Book ¢ b € Desk

Definite description

We may describe an object in terms of its properties without
giving it a name.

We write (ux:a| p) to denote the unique object x from a with
property p.




U expressions

d,x:aep teanplt]Xx]

[ introduction]
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provided that x does not
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dix:aep t=(ux:alp)

elimination
teanplt]x] Ly elimination]

provided that x does not

appear free in t

Examples

e (ux:Person | x shot John Lennon )
e (pny:Person| y discovered radium )

o (uz:Colleges | z is the oldest college in Oxford )




Question

Which of the following can you prove?
e 2=(un:N|44+n=06)
e 3+ (un:N|4+n=206)

e l=(un:N|n=n+0)

el=(un:N|n=n+1)

Generalised form

We write
(ux:alpee)

to denote the expression e such that there is a unique x from a
satisfying p.




Example

(uk: Colleges | k is the newest college in Oxford e
date of foundation(k))

Summary
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one-point rule

U expressions




