Predicate logic

3-1

Predicates

A predicate is that part of a sentence which states something
about the object of the sentence.

A predicate is a statement with a place for an object. When this

place is filled, the predicate becomes a statement about the object
that fills it.

A predicate is a proposition with a hole in it.

3-2

Variables

Instead of leaving a gap, as in
_>D
we insert a variable

X>5

3-3

Declarations

A statement such as x > 5 is not a proposition: its truth depends
upon the value of variable x.

Before we can reason about such statements, we will need to
declare, or introduce, the variables concerned.

The declaration x : a introduces a variable x and tells us that it is
an element of the set a.

3-4

Quantification

If pis a statement about x, then we may make it into a universal
or existential statement by preceding it with a quantifier and a
declaration.

OX:dep

3-5

Universal quantifier

Universal quantification:

VX:daep

‘for all x in a, p holds’

3-6

Examples

Everybody has to do the assignment:

V s : Student o s has to do the assignment

Jim doesn’t know anyone who can bail him out:

V p : Person ¢ Jim knows p = — p can bail Jim out

3-7

Existential quantifier
Existential quantification:
dx:aep

‘there exists an x in a such that p holds’

3-8

Examples

I heard it from one of your friends:

3 : Friends e I heard it from [

A mad dog has bitten Andy:

dd:Dog e dis mad A d has bitten Andy

3-9

3-10

Constraints

We may add a predicate to the declaration part of a quantified
expression to restrict the range of the variable.

9x:alrep

In this expression, x ranges over those elements of a for which r
is true.

3-11

Example

A constraint after ‘for all’ is an ‘only if’ clause:

(Vx:alrep) © (Vx:aer=p)

3-12

Example

A constraint after ‘there exists’ is an additional conjunct:

(Ax:alrep) © (Ix:aer A p)

3-13

Free variables

In the expression 9 x: a | r e p, we say that variable x is bound
by the quantifier.

The scope of x extends from the vertical bar—or the spot, if there
is no constraint—to the next enclosing bracket.

If variable x appears in a predicate g but is not bound by any
quantifier, we say that x is free in q.

3-14

Example

There are free, bound, and binding occurrences of x in the
predicate below:

X=3 A Vx:Ne(Q=<x

3-15

Substitution

We write

plt/x]

to denote the predicate that results from substituting t for each
free occurrence of x in predicate p; this new operator binds more
closely than any other.

3-16

Question

What happens here?
e (Xx=<y+2)I0/Xx] & ...
e (AX:Nex=<y+2)0/x] & ...

e (Ax:Nex=<y+2)[5/y] & ...

3-17

Renaming bound variables

We may change the name of a bound variable without changing
the meaning of an quantified statement, provided that the
statement says nothing about the new name:

(Vx:aep) & (Vy:aeply/x])

provided that y is not free in p

3-18

Example

There is no-one else who looks like alan:

V p : Person ¢ p looks like alan = p = alan

Rename bound variable p to g:

VY g : Person e g looks like alan = g = alan

3-19

Variable capture

The substitute expression t need not be another variable; it can
be any expression whose possible values match those of x.

It may be necessary to rename bound and binding occurrences of
other variables to avoid variable capture.

Example

There is no-one else who looks like alan:

V p : Person ¢ p looks like alan = p = alan

Substitute mike for alan:

V p : Person ¢ p looks like mike = p = mike

Substitute p for alan:

V p: Person e plookslikep=>p=p

Conjunction

The universal quantifier is a generalised form of A:

O>5)A1>5)A2>5)AB3>5)A...
=

VxX:Nex>5

3-22

Generalisation

[x € a]ll

p 'V —introll] provided that x is not free
—intro
VX:aep in the assumptions of p

Specialisation

tea VXx:aep

plt/ x]

[V —elim]

3-24

Example
The statement
(Vx:aepAg) = (Vx:aep) AN(VXx:aeqg)

is a theorem of our natural deduction system.

3-25

(Vx:aepnAng)=>(Vx:aep) AN(VXx:aeq)

[Vx:aep A gl

(Vx:aep)A(VXx:aeq)

(Vx:aepAg)=>(Vx:aep) AN(Vx:aeqg)

[=—introt]

3-27

[Vx:aepn gt

VXx:aeq

Vx:aep

(Vx:aep) A (VXx:aeq) [A—intro]

(Vx:aepArg)=>(Vx:aep) A(Vx:aeqg)

[= —introl!!]

[Vx:aep A gl [x € a]?!

VX:aeqg

p
VX:aep

[V —introl?!]

(Vx:aep) A(VXx:aeq)

(Vx:aepnAng)=>(Vx:aep) AN(VXx:aeq)

| A—Intro]

[=—intro!]

[Vx:aep A gl [x € a]?!

VX:aeqg

p A
PAY eliml]

[V —intro!?]]

VX:aep

(Vx:aep)A(VX:aeq)

(Vx:aepArg)=>(Vx:aep) A(Vx:aeq)

| A—Intro]

[=—introt]

3-30

[VX:aop/\q][l] x € q]l2]

VXx:aeq

[x€al®! [Vx:aepn gl

A [V —elim]
rPrd [A—eliml]

[V —intro!?]

Vx:aep

(Vx:aep) A(VX:aeq) [A—intro]

(Vx:aepArg)=>(Vx:aep) A(Vx:aeq)

[= —introl!!]

[VX:aop/\q][l] x € q]l2] 'x € a]l3]

q
—1i [3]
VXx:deq [V —intro!3!]
[xcall?l [Vx:aepnAg]ll
—— [A—eliml1]
—1i [2]
VXx:dep [V —intro!?!]

(Vx:aep) A(VX:aeq) [A—intro]

(Vx:aepArg)=>(Vx:aep) A(Vx:aeq)

[= —introl!!]

3-31

[VX:aop/\q][l] x € q]l2] 'x € a]l3]

AN
Prd [A—elim2]
—1i [3]
VXx:deq [V —intro!3!]
[xcall?l [Vx:aepnAg]ll
—— [A—eliml1]
—1i [2]
VXx:dep [V —intro!?!]

(Vx:aep) A(VX:aeq) [A—intro]

(Vx:aepArg)=>(Vx:aep) A(Vx:aeq)

[= —introl!!]

3-32

3-33

[VX:aop/\q][l] x € q]l2] 'x € a]l3]

[x€al®l [Vx:aepnqgll

A [V—ehm]
pod [A—elim2]
—j [3]
VXx:deq [V —intro!3!]
2] . 0
c VX:depA
e [f aepnd [V —elim]
rPrd [A—eliml]
—1i [2]
VXx:dep [V —intro!?!]

(Vx:aep) A(VX:aeq) [A—intro]

(Vx:aepArg)=>(Vx:aep) A(Vx:aeq)

[= —introl!!]

3-34

Disjunction
The existential quantifier is a generalised form of V:

O0O>5Vv(1l>5VvE2>5Vv(3>5)Vv...
=

Ix:Nex>75

3-35

Introduction

tea plt]x]
dx:aep

|d—intro]

3-36

Elimination

[x € a]li!
[p]“]

dx:aep v

[3—elim!i]

provided that x is not free in the

assumptions, and x is not free in r

3-37

Example

The statement
(dx:aedy:bep)=(dy:bedx:aep)

is a theorem of our natural deduction system, provided x is not
free in b, and y is not free in a.

3-38

(dx:aedy:bep)=>(dy:bedx:aep)

3-39

[Ax:aeIy:bep]lt

dy:bedx:aep

—j [1]
(Ax:aedy:bep) = (IAy:bedx:aep) [=—introl!]

[Ax:ae3dy:bepllll [xeall? [3y:b e p]l2]

dy:bedx:aep

[Ax:ae3Jy:bep]lt]
dy:bedx:aep

[3—elim!?1]

—j [1]
(Ax:aedy:bep) = (IAy:bedx:aep) [=—introl!]

3-41

[Ax:ae3dy:bepllll [xeall? [3y:b e p]l2]
[y € b]l3! [p]03]

dy:bedx:aep

[El)/b ° p][2]
dy:bedx:aep

[F—elim!3!]

[Ax:ae3Jy:bep]lt]
dy:bedx:aep

[3—elim!?1]

_introl!]
(Ax:aedy:bep)=>(Iy:bedx:asep) [=—intro!!!]

3-42

[Ax:ae3dy:bepllll [xeall? [3y:b e p]l2]
[y € b]l3! [p]03]

[y € b1/ Ix:aep
dy:bedx:aep

| 3—Intro]

[El)/b ° p][2]
dy:bedx:aep

[F—elim!3!]

[Ax:ae3Jy:bep]lt]
dy:bedx:aep

[3—elim!?1]

_introl!]
(Ax:aedy:bep)=>(Iy:bedx:asep) [=—intro!!!]

[Ax:ae3dy:bepllll [xeall? [3y:b e p]l2]
[y € b]l3! [p]03]

[x € all?l [p]l3!
[y € b]l3] Ix:aep
dy:bedXx:aep

| d—intro]

| d—intro]

[El)/b Y p][2]
dy:bedx:aep

[F—elim!31]

[Ax:ae3Jy:bep]lt]
dy:bedx:aep

[3—elim!?1]

—j [1]
(Ax:aedy:bep) = (IAy:bedx:aep) [=—introl!]

3-44

Summary

o predicates

quantifiers

bound variables

substitution

Y-introduction and elimination

J-introduction and elimination

