Exercises for Chapter 2

Propositional Logic

Exercise 2.1 (Truth tables) Construct a truth table for each of the following
propositions:

(@ pnrg=p

(b) (=p=>pnrag <p

@ palp=q) =>q
|
Exercise 2.2 (Tautologies) Decide whether each of the following statements is
a tautology:

@pvg e (7pv g Ag

by pvag e (mpr-q) Vg

() pA-p=>p

(dpv-p=-p

(€ p=(qg=p)

) (p=a)=>p
|
Exercise 2.3 (Exclusive or) Suppose that we define a new operator for our lan-
guage of propositional logic, ‘exclusive or’, with the symbol v. We want p v g

to be true if exactly one of p and g is true. That is, this new operator differs
from inclusive or only in the case that both components are true.
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(a) Draw up a truth-table for v

(b) Devise suitable introduction and elimination rules for this operator.

O

Exercise 2.4 (Conjunction and disjunction) By exhibiting a proof tree in each
case, show that each of the following is a theorem of our natural deduction
system:

@ Ppa@vr)e (prg) vVipAar)
b) (pvigan)=s(pvag A(pvVvr))

These equivalences tell us that conjunction and disjunction distribute through
each other. O

Exercise 2.5 (Implication and negation) By exhibiting a proof tree in each case,
show that each of the following is a theorem of our natural deduction system:

@ (p=>qg) = (pvyg
b (peag) o ((parg Vv (opAg)

O

Exercise 2.6 (Using equivalences) If we have established that an equivalence is
a theorem of our deductive system, then we may use it in proofs. For example,
we may use the equivalences

pviprg) e (pVvp)AlpVvag (2.1)
pVvpep (2.2)

to show thatp v (p A g) < p is a theorem:

[pVv(pAglt
(pvp)A(pVa)
pA(pvVQq) [
p
pv(iprqg) =p

pv(prg <p

[ 2.1]

[ 2.2] [p.l[z]

A—eliml ——  [v—introl
: PV A ! ]

popvipra "
[ < —intro]

= —introl?1]

[=>—introl!!]

(a) The basic proof rules of our natural deduction system can be applied
only to complete expressions; they cannot be used to rewrite components.
Explain why rules based upon equivalences allow us to do exactly this, as
in the proof above.
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(b) By constructing a suitable counter-example, show that it is safe to re-
place one component expression with another only when the two expres-
sions are equivalent. In particular, show that the implication p = g is not
enough to justify the replacement of component p with qg.

O
Exercise 2.7 (Using transitivity) Implication and equivalence are transitive,

p=q9g q=7t p=qg q<=r
T [mx] T [eek]
p=>r per

We may use this fact in the presentation of proofs of implication and equival-
ence. Suppose that we have the following equivalences as theorems:

pvageqvp (2.3)
Topep (2.4)
p=>q< ("pVq) (2.5)

We may prove that
(p=aq < (7g=—p)

is also a theorem by exhibiting the following proof tree:

2.5
(=g Vv -p) & (ng=> —p) [2.5]

[2.4]

—|—|qc>q

[2.3]
“pvqgeqyvop

2.5
(p=>gs (-pvag [2.5]

(p=q) < (Vv p)
(p=q) < (-~gV p)
(p=q) < (—g=>—p)

[e-%x]

[e-%]

[-%]



We may simplify the presentation of this argument:

(p=2q
< (2pVvq)
< (qVv p)
< (2mg Vv p)
< (7g=p)
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[ 2.5]
[ 2.3]
[ 2.4]
[ 2.5]

Following this example, present simplified proofs of each of the following equi-
valences:

()
(b)
(0
(d)
(e)
()
(g)
(h)
(i)
\)]
(k)
M

“peqg e (pvag A-(parag)
“(p=>q) = (pAr-q
(p=4q) = (—g= p)
(p=—p)ep

(—p=p)ep
(r=(pnarqg) < (r=pAr=7q)
(pva =>re((p=>r)Ar(g=r))
(prhg=>r)e((p=>r)vig=r))
(prng ep) =9
(pva ep <@=>p
(p=@=r)=prg) =>T)
(g=(p=r)<=((p=>@=>r))



