
Software Specification and Analysis

F.T. Sheldon, Ph.D. EME 121 - sheldon@wsu.edu Page 1 of 7 Electrical Engineering and Computer Science
http://www.eecs.wsu.edu/~cs422 Washington State University

General Documentation Style Guidelines and Standards1

This standard is generic and can be considered sufficient for most questions concerning the
mechanical and organizational matters involved in completing your project assignment(s). The
following list provides the format. Each item under a bullet "•" should be considered to be required
as a major element or section in your final report(s) (and/or artifacts that are deliverables)2. You can
use this document in place of the IEEE standard if you don’t have one available to you. However,
for the purpose of understanding the particulars of a given section the standard is recommended.

First, do not turn in a double sided artifact (use only one page per sheet of paper). In general use
the following rules of style as a guide. Use Times Roman or Times New Roman (use Courier
when proportional spacing is necessary or preferred (e.g., listing of algorithms and or code
segments) to indicate nesting.). Use 10 - 12 point font 1.5 spaced. Use indents on all paragraphs
except the paragraphs immediately following a section heading (e.g. 1.2.3. Requirements). Try not
to leave large blocks of white space. Number the figures consecutively like “Figure 1. This is a
caption.” (the next figure would be 2 and so on). Place figure captions under the figure (centered)
and table captions in exactly the same way except place them on the top of the table. All section
headings should not be indented (i.e., they should be flush to the left margin). Margins should be
one inch (top, bottom, left and right). Use page numbers on the bottom (footer) and centered. Do not
use a page number on the first (title) page. The front matter (title page, abstract and front-matter) is
to be page numbered in roman numerals (e.g., i, ii, iii, iv, ...). Then, the main body uses Arabic
numbers and picks up where the roman numbers left off (e.g., I, ii, iii, 4, 5, …). Use justified text (as
is done in this paragraph).

• Title page which includes course name and number, assignment/deliverable name, date, and
team name (and/or team member names). The title should be at least 28 point font and center
every thing.

• Abstract page which is necessarily brief, includes a description of problem, procedures used
for your solution and a brief discussion of your results. You man wish to put important
points in bullets. Use the word Abstract at the top of the page (bold and centered).

• Front matter which includes the following (be sure to use leaders and center the title):

√ Table of Contents (show at most 3 levels of indenture and at least two levels)

√ List of Figures and page numbers

√ List of Tables and page numbers

• Introduction which includes the following:

1 Note that the originating standard from which this general guidelines is based is the IEEE Standard for Software
Requirements Specifications and is most suited for use as such.
2 All deliverables should be walked through by team members to find errors and make suggestions for improvement (see
the project artifact evaluation criteria). The final governing document is the tailoring guidelines specific to the artifact in
question.

F.T. Sheldon, Ph.D. EME 121 - sheldon@wsu.edu Page 2 of 7 Electrical Engineering and Computer Science
http://www.eecs.wsu.edu/~cs422 Washington State University

√ Goal or problem statement: This tells the reader what the project is about, purpose
(including environmental or operational scenarios) and assumptions. For example (taken
from IEEE SRS Standard), these guidelines identify how to prepare a requirements
specification, design and testing package as a deliverable (i.e., auditable, configurable,
traceable and maintainable) document. This part will be derived within the framework of
the target application (i.e., based on the purpose of the particular artifact [e.g., SRS,
Design Notebook, Test Report, User Manual]).

√ Scope: covers methods, assumptions (or constraints) and procedures. If a team decides to
take exception to any of the stated requirements (or standards) then it is mandatory to
obtain authorization from the instructor (signed waiver to be included in your artifact)
who should be viewed as your customer. It is required to use a context diagram here for
the SRS (Software Requirements Specification) and the Design Notebook.

√ Objectives and milestones: Objectives are the tasks which must be completed to obtain a
goal. Milestones are objectives except that they are correlated with time. A preliminary
review is advisable for each artifact (i.e., show your template or the actual artifact to the
customer [instructor] before it is actually due to make sure it meets his expectations).
Include a list of the artifacts and a schedule showing their time span (begin/end dates)
and due date. It is suggested that all artifacts be inserted into one schedule that can be
reused with all deliverables..

√ Organization of the document: This section must be included in each artifact. The
introduction gives high level and administrative information. The second section is an
optional background section that describes terminology and notation. The third section is
your design representation. The fourth section is results (i.e., scenario traces and
engineering tradeoff tables). Conclusions follow the results, where you subjectively
discuss what you observed, and learned . Finish with the references and appendix.

√ Other: [optional] information you want the reader to know before starting such as (1)
exceptions to this format and justification (see "Results" below), (2) glossary and
location, (3) acronyms and location, (4) references and location, and (5) Appendices
(e.g., figures are all found in Appendix A). Label this subparagraph as is appropriate to
its content.

• Background which is optional and includes terminology (e.g., buzzwords or terms not
covered in the text) and non-standard notation (i.e., not covered in the text). Here is the place
to describe any exceptions (or waivers) to the standard.

• System Representation and Results which includes (either or both) the following items:3

√ Part I Reverse Engineering [optional]

1. Functional English Description

3 Each item will be a subsection of the "System Representation" section (with the exception of source code which fits
more appropriately in the appendix). If your document requires the delivery of source code then it should be included in
an Appendix (unless a waiver from the instructor is obtained for say just providing an electronic version).

F.T. Sheldon, Ph.D. EME 121 - sheldon@wsu.edu Page 3 of 7 Electrical Engineering and Computer Science
http://www.eecs.wsu.edu/~cs422 Washington State University

2. Formal Statement of Requirements

3. Design (e.g., DFDs, P-specs, Structure charts, DDs)

4. Source code of critical algorithms may be listed by module (ensure adequate
comments [including preambles] for easily relating legacy code to the design and
subsequent new code). However it is not advisable to turn in a huge document that
contains mostly source code listings.

√ Part II Forward Engineering

1. Software Requirements Specification

2. Design Notebook

3. Abbreviated Test Report4 and User Manual.

4. PDR/CDR and Demonstration and Source code (deliverable in electronic form).

√ Results can include the following items and will vary according to the target application
and/or artifact (i.e., Part I versus Part II). Results should be handled as a separate
subsection. What was achieved with respect to the goals of this artifact or phase in the
life cycle. What was not achieved and why. How might the results be improved.

• Requirements Traceability which includes a mapping of the requirements in this document
to the requirements applicable within the design [notebook] specification and the
implementation (i.e., code). The traceability matrix should show a mapping from the formal
requirements, to the design (i.e., use the DFD numbers and names here) and finally to the
code (use module names [all that apply]) to designate what actually implements a given
requirement. Finally, make sure you define how the requirement should be verified (i.e.,
1=demonstration, 2=inspection, 3=analysis, or 4=analogy).

• Conclusions which are your subjective observations (e.g., tables, graphs, file summaries,
output file summaries). This is a very important contribution to the document. You should
have some discussion of why certain decisions were made (e.g., partitioning of modules,
what data structures were used and why, and reporting format [program output]).

• References should be consistent from one to the next. Include all applicable guidelines and
standards (including customer provided materials), development environments (include the
manufacturer), user manuals, text book and web pages (state the title of the page and/or its
purpose for inclusion and url). Use the following example as a guide.

[1] Gopinath, P., and Gupta, R., "Applying Compiler Techniques to Scheduling in Real-Time
Systems", IEEE Proc. of Real-Time Systems Symposium, pp. 247-256, 1990.

[2] Haban, D., and Shin, K.G., "Application of Real-Time Monitoring to Scheduling Tasks
with Random Execution Times", IEEE Trans on SE, pp. 1374-1389, December 1990.

[3] Jensen, E.D., and Locke, C.D., and Tokuda, H., "A Time Driven Scheduling Model for
Real-Time Operating Systems", IEEE Real-Time Systems Symposium, pp. 112-122, 1985.

4 Must describe the plan, issues and results of integration.

F.T. Sheldon, Ph.D. EME 121 - sheldon@wsu.edu Page 4 of 7 Electrical Engineering and Computer Science
http://www.eecs.wsu.edu/~cs422 Washington State University

[4] Chung, J.Y., Liu, J.W.S., and Lin, K.J., "Scheduling Periodic Jobs that Allow Imprecise
Results", IEEE Trans. on Computers, Vol.19, No.9, pp. 1156-1173, Sept. 1990.

• Appendix (ies) Are lettered A -Z and may contain (1) expanded examples or notes, and (2)
diagrams may go here (e.g., key view graphs showing changes made from PDR to CDR), and
(3) source code. You may not use a number in front of the word APPENDIX and do not
forget to title each appendix as shown below (note that the whole title is centered).

APPENDIX A: Definitions, Acronyms and Abbreviations

Special Note: If you have a section “X.0 Definitions, Acronyms, and Abbreviations,” then you
may want to number each entry as follows:

X.1 CSP Communicating Sequential Processes

This is OK, but do not put those numbers into the table of contents (TOC). The problem with
doing that is that it tends not be consistent with the idea that those paragraph numbers are meant
to be used with section headings. That is why I object. If you use them like in the example
above you are not really identifying a subsection that will then be put into the TOC. A large
number of definitions would have a significant impact on the TOC and would tend to defeat the
clarity and usefulness of the TOC.

F.T. Sheldon, Ph.D. EME 121 - sheldon@wsu.edu Page 5 of 7 Electrical Engineering and Computer Science
http://www.eecs.wsu.edu/~cs422 Washington State University

APPENDIX B:

Software Requirements Specification (SRS) Tailoring guidelines

The following description provides the basic document organization, and required information
(see the Document Style Guidelines and Standards for information about format). The main thing
(for CptS 422) to remember is that the SRS must contain a Requirements Traceability Matrix
(RTM). Each requirement is uniquely identified (using a number) in the body of the document and
must be called out in the RTM. Each requirement will use the verb “shall.” Otherwise the statement
shall not be considered a requirement. Each item below should be considered required as a major
element or section in the SRS. The standard referred to here is IEEE Std. 830-1993.
Title Page
Abstract5

Front matter
1. Introduction (see section 5.1 of the standard for details)

1.1. Purpose
1.2. Scope
1.3. Definitions, acronyms, and abbreviations
1.4. References
1.5. Overview
2. Overall description (see section 5.2 of the standard for details)

2.1. Product perspective
2.2. Product functions
2.3. User characteristics
2.4. Constraints
2.5. Assumptions and dependencies
3. Specific Requirements (see section 5.3 and/or appendix A of the standard for details)
Use any of the following examples given in Appendix A of the standard (A.4, A.5, A.6 [only as a
last resort], A.7 [preferred])
4. References
Appendixes (all are optional except the first three [RTM is only required for CptS 422])

Definitions, Acronyms and Abbreviations
Requirements Traceability Matrix (RTM)
Schedule (with a description of milestones and deliverables)
Walk-through Check List
Coding Standards
Special Purpose Items: Description of the external items pictured in context diagram
Other Special Purpose Items (e.g. JAVA / C++ API; Screen Shots of a GUI)

5 Include in the abstract a complete overview of the product (purpose, goals, and design constraints) including your
chosen design methodology, any exceptions to the stated requirements. Enumerate all of the team members and their
individual responsibilities.

F.T. Sheldon, Ph.D. EME 121 - sheldon@wsu.edu Page 6 of 7 Electrical Engineering and Computer Science
http://www.eecs.wsu.edu/~cs422 Washington State University

Index (optional)

Software Requirements Specification (IEEE Std 830-1998): Review ¶ 4.1 about the nature of an
SRS and the following subparagraphs that define characteristics of a good SRS. In ¶ 5, the parts of
the SRS are described. This is the important part that gives what should be included content-wise.
See the appendix for templates on structure organization (A.7 is recommended but not required).

Here are some general rules of thumb. These rules should be strictly adhered to. Do not create
blank sections (i.e., see the General Documentation Style Guidelines and Standards [last sentence of
first paragraph]). The word shall must only be used in the wording of a requirement. All
requirements must be referenced in the RTM (Table 1) and therefore must have a requirement ID
associated with each. Number the appendices with Capital Letters (i.e., A, B, C,…). A subsection
in an appendix is A.1 or A.1.1. Do not write a series of one sentence paragraphs ! Those should be
bullets not paragraphs. Sentences should be written concretely (i.e., do not use structures like “It
shall be . . .” or “This shall include a . . . “).

Table 1 Example Requirements Traceability Matrix (filled in with DFD Identifiers).

Req. ID

System Level.

Req. ID

Sub-system

Level.

DFD

Identifier(s)

(fill during design)

Module Name(s)

(fill during implementation)

Verification

Method

Tested

A0001 1 ValidateAccess .. √

A01.10 1.1 Read, Details A, D √

A01.20 1.2 CheckDate, Report D √

A01.30 1.3 ValidatePIN I √

A0002 2

A02.10 2.1

2.2

A02.20

...

A0003 A03.10 3

... ...

A0004 4

A04.10 4.1

KEY: T/D = by Test/Demonstration, A = by Analysis, I = by Inspection, and An = by Analogy

Table 1 shows an example of how to construct the RTM (Requirements Traceability Matrix). Notice

the hierarchy of system level requirements and their corresponding component level requirements.

The component, labeled subsystem level requirements, are said to be traceable to the system level

which are their parent requirements. The subsystem level requirements are so-called derived

requirements. As an example, Figures 1 and 2 show the overall hierarchy of the physical system

design based on the SSA/SD design methodology.

F.T. Sheldon, Ph.D. EME 121 - sheldon@wsu.edu Page 7 of 7 Electrical Engineering and Computer Science
http://www.eecs.wsu.edu/~cs422 Washington State University

The RTM provides one place where

all requirements are listed, where

they are being satisfied by the

program (i.e., software product), and

how each is to be verified. A

column is provided to mark if a

requirements has been tested to

track your progress and for use in

the demonstration.

Finally, lets consider how you will

use the various verification methods

to show that a particular requirement

has been satisfied. A= Analysis -

used to show that nonfunctional

requirements have been met like

response time. I = Inspection - used to show that something like using specific coding standards has

been adhered to (I.e., lets look at all the code and verify that each module has the requisite

preamble). D= Demonstration - used to show that by say running the program that it computes the

correct output (in the required amount of time perhaps in the case of real-time systems). K= Analogy

- used when all else fails. This

method in some reasonably rigorous

fashion (up to the customer how

rigorous) shows or proves that a

particular requirement(s) is met

through some indirect means (e.g., if

the program displays the correct

symbology then we must know that

some other requirement that cannot

be reasonably isolated, has also been

satisfied).

Access
permissions

Network
directory

Customer's
card details

2
Return

transaction
and end
session

Rejection
message

Access
map

Selection
of options

Personal
identification
number (PIN)

Customer

Transaction
request

Rejection
message

3
Obtain

details of
transaction

1
Validate

customer
access

Level 1

Access
authorization 4

Validate
transaction

Figure 1. Top-level Data Flow Diagram (DFD).

Customer's
card details Cannot

read card

Card data

Invalid
card

Invalid PIN

Access
Authorization

Access
map

Card
validation

data

Personal
identification
number (PIN)

Encoded
PIN

Level 2

1.3
Request PIN

and check, max.
three

attempts

1.1
Read

details
from card

1.2
Check expiry

date and
bank group

Network
directory

Figure 2. Second-level Data Flow Diagram (DFD).

