L earning Objective,

. Techniques for the unambiglious
specification of software

Objectives

A Explain the place of formal software
specification in the softwar e process.

A Explain when formal specification is cost-
effective.

A Describe a process model based on the
transformation of formal specificationsto an
executable system.

A Introduce a smple approach to formal
specification based on preand post conditions

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 2

Topics covered

A Formal specification on trial
A Transformational development

A Specifying functional abstractions

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T_ Sheldon Slide 3

Specification in the software

[process
A Specification and design areinextricably
intermingled.

A Architectural design is essential to
structure a specification.

A Formal specifications are expressed in a
mathematical notation with precisely
defined vocabulary, syntax and
semantics.

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 4

Specification and design

Increasing contractor involvement

Decreasing client involvement

1
T
hitectural Software High-level
definition specification design specification design

1 1
f Specification 1
| HL
I r >
Design
©5580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Siide 5

Specification in the software
process

Requirements Formal
specification ' specification
System ‘ Architectural

modelling design

Requirements
definition

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T_ Sheldon Slide 6

Formal specification on trial

A Formal techniques arenot widely used
in industrial software development

A Given therelevance of mathematicsin
other engineering disciplines, why is
thisthe case?

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 7

Why aren't formal methods
used?

A Inherent management conservatism.

A Itishard to demonstrate the advantages of formal
specification in an objective way

A Many software engineerslack the trainingin
discrete math necessary for formal specification

A Customers may beunwilling to fund
specification activities

A Some classes of software (particularly
inter active systems and concurrent systems) are
difficult to specify using current techniques

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 8

Why aren't formal methods
used?

A Thereiswidespread ignorance of the
applicability of formal specifications

A Thereislittletool support available for
formal notations

A Some computer scientistswho are familiar with
formal methods lack knowledge of the real-
world problems to which these may be applied
and therefore oversell the technique

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 9

Advantages

of formal specification

A Provideinsightsinto the softwar e requirements
and the design

A Formal specifications may be analyzed
mathematically to demonstrate consistency and
completeness of the specification (in addition to
other things)

A It may be possible to prove that the
implementation corresponds to the specification

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 10

Advantages of formal

specifications

A Formal specifications may be used to guide
the tester of the component in identifying
appropriate test cases

A Formal specifications may be “ processed”
using softwaretools.

A It may be possibletoanimatethe

specification to provide a softwar e prototype
(e.g., SESWorkbench, Statemate)

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 11

Seven myths of formal methods

A Perfect software results from formal methods
A Nonsense—the formal specification isa model of
thereal-world and may incor porate
misunder standings, errorsand omissions.

A Formal methods means program proving

A Formally specifying a system is valuablewithout
formal program verification asit forcesa
detailed analysis early in the development
process.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 12

Seven myths of formal methods

A Formal methods can only be justified for
safety-critical systems.

A Industrial experience suggeststhat the
development costs for all classes of system
arereduced by using formal specification.

A Formal methods are for mathematicians

A Nonsense— only simple math is needed

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 13

Seven myths of formal methods

A Formal methodsincrease development costs

A Not proven however, formal methods
definitely push development costs towardsthe

front-end of thelife cycle
A Clients cannot understand for mal
specifications
A They can if paraphrased in natural language

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 14

Seven myths of formal methods

A Formal methods have only been used for
trivial systems
A Now many published examples of experience
with formal methods for non-trivial software
systems exist

CS 580.1/483.1 Software Specification and Analysis

Instructor: F.T. Sheldon Slide 15

The verdict!

A Thereasons put forward for not using
formal specifications and methods are weak

A However, there are good reasons why these
methods arenot used:

A The move to interactive systems. Formal specification
techniques cannot cope effectively with graphical user
interface specification

A Successful software engineering — Investing in other
softwar e engineering technigues may be mor e cost-
effective

CS580.1/483.1 Software Specification and Analysis
Ingtructor: F.T. Sheldon, Slide 16

Use of formal methods

A These methods areunlikely to be widely
used in the foreseeable future— Nor are
they likely to be cost-effective for most
classes of system

A They will become the normal approach
to the development of safety critical
systems and standards

A Thischangesthe expenditure profile
through the softwar e process ...

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 17

Development costs with formal

— Expenditure Profile Changes
[

Maintenance 4

|
Maintenance
Cost|
Validation
/==
Dég_n;nd Validation
Implementation . [|
Design and
| Implementation|
s e%aicn Specification
Without Formal With Formal

Specification — ~— Specification ™"

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T_ Sheldon Slide 18

Transformational development

Formal transformations

I

Proofs of transformation correctness

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 19

Specifying functional abstractions

A Thesimplest specification isfunction specification.

A Thereisno need to be concerned with global state
(assuming no side-effects)

A Theformal specification is expressed asinput and
output predicates (pre and post conditions)

A Predicates are logical expressionswhich are always
either true or false

A Predicate operatorsinclude the usual logical
operatorsand quantifiers such asfor-all (V) and
exists (3)

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 20

Examples of predicates
All variablesreferenced are of type INTEGER

1. Vaueof variable A is greater than the value of B and the value of
variable C is greater than D
A>BandC>D

2. This predicate illustrates the use of the exists quantifier. The
predicateistrueif there are values of i, j and k between M and N such
that i2=j2+ k2 Thus, if M is1 and N is5, the predicate is true as 32
+42=52 If M is6 and N is 9, the predicate isfalse. There are no
values of i, j and k between 6 and 9 which satisfy the condition:

existsi, j, kin M..N: i2= j2 + k2

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 21

Examples of predicates (continued)

3. This predicate illustrates the use of theuniversal
quantifier for_all. It concerns the values of an
array called Squares. Itistrueif the first ten
valuesin the array take avalue which isthe
sguare of an integer between 1 and 10

for_alliin 1..10, existsj in 1..10: Squares (i) = j2

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 22

Specification with pre & post
conditions

A Set out the pre-conditions
A A statement about the function parameters
stating what isinvariably true before the
function is executed

A Set out the post-conditions

A A statement about the function parameters
stating what isinvariably true after the
function has executed

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 23

Specification with pre & post
conditions (continued)

A Thedifference between the pre & post
conditionsis due to the application of
the function to its parameters

A Together the pre and post conditions are
a function specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 24

Specification development

A Establish the bounds of the input parameters.
A Specify thisasa predicate

A Specify a predicate defining the condition
which must hold on the result of the function
if it computes correctly

A Establish what changes are made to the input
parameter s by the function

A Specify thisasa predicate
A Combinethe predicatesintopre and post
conditions

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 25

The specification of a search

function Search (X: in INTEGER_ARRAY ; Key: INTEGER)
return INTEGER ;

Pre: existsiin X'FIRST..X'LAST: X(i) = Key
Post: X" (Search (X, Key)) = Key and X = X"

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 26

Sear ch pre-conditions

A Oneof thearray elements must match
the key

A Usetheexists quantifier to specify that an
element must exist which matchesthe key

A existsiin X’FIRST..X’LAST: X (i) = Key

A AssumeFIRST and LAST refer tothe
upper and lower bounds of the array

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 27

Sear ch post-conditions

A Theresult of Search should bethevalue of the
array index (i.e., the element containing the
key)

A X" (Search (X, Key)) =Key

A Thearray after the operation isreferenced by

'priming' the array name

A Thearray should not be changed by the Search
function:
A X=X

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 28

Specifying an error predicate

function Search (X: in INTEGER_ARRAY;
Key: INTEGER)
return INTEGER ;
Pre: existsi in X'FIRST.X'LAST: X (i) = Key
Post: X" (Search (X, Key)) = Key and X = X”

Error: Search (X, Key) = X'LAST +1

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 29

Formal specification approaches

A Algebraic approach
A Thesystem isdescribed in terms of interface
operations and their relationships
A Model-based approach

A A model of the system acts as a specification.
» Thismodel is constructed using well-under stood
mathematical entities such as sets and sequences
A Theseare covered in the following two
presentations (i.e., AlgMthds.pdf, Z-
Mthds.pdf)

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T_ Sheldon Slide 30

Formal specification languages

Sequential Concurrent

Algebraic Larch (Guttag et a., 1985), | Lotos (Bolognesi and

OBJ (Futatsugi et a., 1985) | Brinksma, 1987),
Model-based | Z (Spivey, 1989) CSP (Hoare, 1985)

VDM (Jones, 1980) Petri Nets (Peterson, 1981)

€S 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 31

Key points

A Formal system specification complements
informal specification techniques

A Formal specifications areprecise and
unambiguous
A They remove areas of doubt in a specification

A Formal specification forces an analysis of
the system requirements at an early stage.

A Correcting errorsat this stageis cheaper
than modifying a delivered system

CS580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 32

Key points

A Formal specification techniquesarenot
cost-effective for the devel opment of
interactive systems

A They are most applicablein the development
of safety-critical systemsand standards.

A Functions can be specified by setting out
pre and post conditionsfor the function.

A However, this approach does not scale up to
large or medium-sized systems.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 33

