Forrrnal Soeciflcaton)

L earning Objective

.. Techniques for the unambigudus
specification of software

Frederick T Sheldon
Assistant Professor of Computer Science
Washington State University

ODbjectives

A Explain the place of formal software
specification in the softwar e process.

A Explain when formal specification IS cost-
effective.

A Describe a process model based on the
transformation of formal specificationsto an
executable system.

A Introduce a ssmple approach to for mal
specification based on preand post conditions

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 2

Topics covered

A Formal specification on trial
A Transformational development

A Specifying functional abstractions

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 3

Specification in the software

DI OCESS

A Specification and design are inextricably
Intermingled.

A Architectural design isessential to
structur e a specification.

A Formal specifications are expressed in a
mathematical notation with precisely
defined vocabulary, syntax and
semantics.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Side 4

Specification and design

I ncreasing contractor involvement

Decreasing client involvement

High-level
design

Software
specification

Architecturd
design

Requirements
specification

Requirements
definition

Specification
| | >
Design

CS 580.1/483.1 Software Specification and Analysis

Instructor: F.T. Sheldon Slide 5

Specification in the software

DI OCESS

Requirements Formal

specification ' specificaion
Requirements
definition
System ‘ Architectural

modelling design

High-level
design

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 6

For mal specification on trial

A Formal techniques are not widely used
In industrial softwar e development

A Given therelevance of mathematicsin
other engineering disciplines, why is
thisthe case?

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 7

Why aren't formal methods
used?

A |nherent management conser vatism.

A Itishard to demonstrate the advantages of for mal
specification in an objective way

A Many software engineerslack thetraining in
discrete math necessary for formal specification

A System customers may be unwilling to fund
specification activities

A Some classes of software (particularly
Interactive systems and concurrent systems) are
difficult to specify using current techniques

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 8

Why aren't formal methods
used?

A Thereiswidespread ignorance of the
applicability of formal specifications

A Thereislittletool support available for
formal notations

A Some computer scientists who are familiar with
formal methods lack knowledge of the real-
wor ld problems to which these may be applied
and therefore oversell the technique

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 9

Advantages

of formal specification

A Provideinsightsinto the software reguirements
and the design

A Formal specifications may be analyzed
mathematically to demonstr ate consistency and
completeness of the specification (in addition to
other things)

A 1t may be possibleto provethat the
Implementation corresponds to the specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 10

Advantages of formal
specifications

A Formal specifications may be used to
guide the tester of the component in
Identifying appropriate test cases

A Formal specifications may be “ processed
using softwaretools.

A It may be possibleto animatethe
specification to provide a software
prototype

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 11

Seven myths of formal methods

A Perfect software results from formal methods

A Nonsense—theformal specification isa model of thereal-
wor ld and may incor por ate misunder standings, errors and
omissions.

A Formal methods means program proving

A Formally specifying a system is valuable without for mal
program verification as it forces a detailed analysisearly in
the development process.

A Formal methods can only bejustified for

safety-critical systems.

A Industrial experience suggeststhat the development costs for
all classes of system arereduced by using formal
specification.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 12

Seven myths of formal methods

A Formal methods are for mathematicians
A Nonsense—only smple math is needed

A Formal methods increase development costs

A Not proven —however, formal methods definitely push
development coststowardsthe front-end of thelife cycle

A Clients cannot understand formal specifications
A They can —if paraphrased in natural language

A Formal methods have only been used for trivial
systems

A Now — many published examples of experience with formal
methods for non-trivial software systems exist

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 13

The verdict!

A Thereasons put forward for not using

formal specifications and methodsare
weak

A However, there are good reasons why
these methods ar e not used.

A The move to interactive systems. Formal specification

techniques cannot cope effectively with graphical user
Interface specification

A Successful softwar e engineering — I nvesting in other
softwar e engineering techniques may be mor e cost-effective

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 14

Use of formal methods

A These methods are unlikely to be widely

used in the foreseeable future— Nor are
they likely to be cost-effective for most
classes of system

A They will become the nor mal approach
to the development of safety critical
systems and standards

A Thischangesthe expenditure profile
through the software process ...

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 15

Development costs with for mal

specification

Cost

A

Validation

Design and

| mplementation Validation

Design and
Implementation
Specification
Specification

Without formal With formal

specification specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 16

Transformational development

For mal transfor mations
T1 T3 T4

7 \ P E5F 8 % =
‘Spelt-_:(i)frirg:tlion I ‘ R1 I ‘ R2 I ‘ R3 I ‘ Egg%urt:r?:e I

Pr oofs of transformation correctness

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 17

Specifying functional abstractions

A Thesmplest specification isfunction
specification.

A Thereisno need to be concerned with global state (assuming
no side-effects)

A Theformal specification isexpressed as input
and output predicates (pre and post conditions)

A Predicates arelogical expressionswhich are
always either true or false

A Predicate operatorsinclude the usual logical
operators and quantifierssuch asfor-all (V)
and exists (3)

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 18

Examples of predicates

All variablesreferenced are of type INTEGER

1. Value of variable A is greater than the value of B and the value of variable
C isgreater than D
A>Band C>D

2. Thispredicate illustrates the use of the exists quantifier. The predicate istrueif there are
valuesof i,] and k between M and N such that i2=j2+ k2. Thus, if Mis1land N is5, the
predicateistrueas 32 + 42 =52. If M is6 and N is 9, the predicateisfalse. There are no
values of i,] and k between 6 and 9 which satisfy the condition:

existsi, j, kin M..N: 12=j2 + k2

3. This predicate illustrates the use of the universal quantifier for_all. It concerns the values
of an array called Squares. It istrueif the first ten valuesin the array take a value which
IS the square of an integer between 1 and 10:

for_alliin 1..10, existsj in 1..10: Squares (i) = j2

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 19

Specification with pre & post
conditions

A Set out the pre-conditions

A A statement about the function parameters stating what is
Invariably true befor e the function is executed

A Set out the post-conditions

A A statement about the function parameters stating what is
Invariably true after the function has executed

A Thedifference between the pre & post conditionsis
dueto the application of the function to its
parameters

A Together the pre and post conditions are a function
specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 20

Specification development

A Establish the bounds of the input parameters.

A Specify thisas a predicate

A Specify a predicate defining the condition
which must hold on the result of the function
If It computes correctly

A Establish what changes are madeto the input
parameters by the function

A Specify thisas a predicate

A Combinethe predicatesinto pre and post
conditions

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 21

The specification of a search

function Search (X: in INTEGER_ARRAY ; Key: INTEGER)
return INTEGER ;

Pre: exists iin X'FIRST..X'LAST: X(i) = Key
Post: X" (Search (X, Key)) = Key and X = X”

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Side 22

Sear ch pre-conditions

A Oneof thearray elements must match
the key

A Usethe exists quantifier to specify that an
element must exist which matchesthe key

A existsiin X’FIRST..X'LAST: X (i) = Key

A Assume FIRST and LAST refer tothe
upper and lower bounds of the array

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 23

Sear ch post-conditions

A Theresult of Search should bethe value of the
array index (i.e., the element containing the
key)

A X’ (Search (X, Key)) = Key

A Thearray after the operation isreferenced by
‘priming' thearray name

A Thearray should not be changed by the Sear ch
function:

A X=X"

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 24

Specifying an error predicate

function Search (X: In INTEGER_ARRAY,
Key: INTEGER)
return INTEGER ;
Pre: existsi in X'FIRST.X'LAST: X (i) =Key
Post: X" (Search (X, Key)) =Key and X = X”

Error: Search (X, Key) = X'LAST +1

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 25

Formal specification approaches

A Algebraic approach

A Thesystem isdescribed in termsof inter face oper ations
and their relationships

A Model-based approach

A A model of the system acts as a specification.

» Thismodel isconstructed using well-under stood
mathematical entities such as sets and sequences

A Thesearecovered in thefollowing two
chapters

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 26

For mal specification languages

VDM (Jones, 1980)

Sequential Concurrent
Algebraic Larch (Guttag et al., 1985), | Lotos (Bolognes and

OBJ (Futatsugi et al., 1985) | Brinksma, 1987),
Model-based | Z (Spivey, 1989) CSP (Hoare, 1985)

Petri Nets (Peterson, 1981)

CS 580.1/483.1 Software Specification and Analysis

Instructor: F.T. Sheldon

Slide 27

Key points

A Formal system specification complements
Informal specification techniques

A Formal specifications are precise and
unambiguous
A They remove areas of doubt in a specification
A Formal specification forces an analysis of
the system reguirements at an early stage.

A Correcting errorsat thisstageis cheaper
than modifying a delivered system

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 28

Key points

A Formal specification techniques ar e not
cost-effective for the development of
Interactive systems

A They aremost applicablein the development
of safety-critical systems and standards.

A Functions can be specified by setting out
pre and post conditions for the function.

A However, thisapproach does not scale up to
lar ge or medium-sized systems.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 29

