B '__,-
S e ""L"“‘L:'«r “‘*‘F

.e
'-i ‘. #,_ o

e

L eér ning Obj ective
.. Specifying abstract typesin terms of
reI atlonshl ps between type oper ations

. e R o
1' . it Rt : 't
= . o e i s " s

RS ! ﬁ._
g & am_
Frederlck-"l'*SheIc')‘bH

stant Professor of Computer S
Mash mton State Univel

ODbj ectives

A Toexplain therole of formal
specifications in sub-system interface
definition

A Tointroducethe algebraic approach to
formal specification

A To describethe systematic construction of
algebr aic specifications

A Tolllustrate a number of incremental
ways to write algebraic specifications

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 2

T opics cover ed

A Systematic algebraic specification
A Structured specification

A Error specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 3

Sub-system interfaces

Interface
objects

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 4

| nter face specification

A Formal specification is particularly
appropriate for defining sub-system interfaces.
It provides an unambiguous interface
description and allows for parallel sub-system
development

A Interfaces may be defined as a set of abstract
data types or object classes

A Algebraic specification is particularly
appropriatefor ADT specification as it focuses
on operations and their relationships

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 5

Specification structure

A Introduction

A Introducesthe sort (type) name and imported specifications

A Informal description

A Describesthe type or object class operations

A Signature

A Definesthe syntax of the type or class operations

A AXIOMS

A Defines axioms which characterize the behavior of the type

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 6

Specification for mat

(< SPECIFICATION NAME > (Generic Parameter) \

sort < name >
Imports < LIST OF SPECIFICATION NAMES >

Informal description of the sort and its operations

Operation signatures|setting out the names and the types of
the parameters to the operations defined over the sort

KAxioms defining the operations over the sort)

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 7

Specification

ARRAY (Elem: [Undefined ® Elem]) ~

of an arrayf o aw

Signature

AXioms

imports INTEGER

Individual elements are accessed via their numeric index.
Create takes the array bounds as parameters and creates the array,
initialising its values to Undefined. Assign creates a new array which

value. Eval reveals the value of a specified element. If an attempt is
made to access a value outside the bounds of the array, the value is
undefined.

Arrays are collections of elements of generic type Elem. They have a
lower and upper bound (discovered by the operations First and Last).

Is the same as its input with the specified element assigned the given

Create (Integer, Integer) ® Array
Assign (Array, Integer, Elem)® Array
First (Array) ® Integer

Last (Array) ® Integer

Eval (Array, Integer)® Elem

First (Create (X, y)) = x
First (Assign (a, n, v)) = First (a)
Last (Create (X,y)) =y
Last (Assign (a, n, v)) = Last (a)
Eval (Create (X, y), n) = Undefined
Eval (Assign (a, n, v), m) =
If m < First (a) or m > Last (a) then Undefined else

\ if m=nthen v else Eval (a,

CS 580.1/483.1 Software Specification and Analysis

Instructor: F.T. Sheldon

NQ) Y

Slide 8

Systematic algebraic specification

A Algebraic specifications of a system may
be developed in a systematic way
A Specification structuring

Specification naming

Operation selection

| nfor mal oper ation specification

Syntax definition

Axiom definition

o Io To Do Ix

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 9

Specification operations

A Constructor operations — Oper ations which
create entities of the type being specified

A I nspection operations — Operations which
evaluate entities of the type being specified

A Specify behavior — Define the inspector
operations for each constructor operation

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 10

Operationson alist ADT

~ A Consiructor operations— evaluate to sort
List
A Create, Consand Tail

A lnspection operations—take sort List asa
parameter and return some other sort
A Head and Length

A Tall can be defined using the ssmpler

constructors Create and Cons. No need
to define Head and L ength with Tail.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 11

L ist specification

LIST (Elem: [Undefined ® Elem]) ~

sort List
imports INTEGER

Defines a list where elements are added at the end and removed
from the front. The operations are Create, which brings an empty list
Into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the
head from its input list.

Create ® List

Cons (List, Elem) ® List
Tail (List) ® List

Head (List) ® Elem
Length (List) ® Integer

Head (Create) = Undefined -- Error to evaluate an empty list
Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0

Length (Cons (L, v)) = Length (L) + 1

Tail (Create) = Create

Qail (Cons (L, v)) =if L = Create then Create else Cons (Tail (L), v)
e

CS 580.1/483.1 Software Specification and Analysis

Instructor: F.T. Sheldon

Slide 12

Recursion in specifications

A Operations are often specified recursively

A Tall (Cons (L, v)) =if L = Createthen Create
else Cons(Tail (L), v)

Cons([5, 7], 9)|=[5, 7, 9]

Tail ([5,7,9]) = Tail (Cons([5,7],9)) =
Cons(Tail ([5, 7]), 9) = Cons(Tail (Cons([5], 7)), 9) =
Cons(Cons(Tail ([9]), 7),9) =

Cons (Cons (Tail (Cons([],5)),7),9) =
Cons (Cons([Creatg], 7), 9) = Cons([7],9) = [7, 9]

o Io Do I» Po I»

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 13

Primitive constructors

A It 1Issometimes necessary to introduce
additional constructorsto simplify the
specification

A Theother constructors can then be defined
using these more primitive constructors

A In the binary tree specification, a primitive
constructor “ Build” |is added

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 14

Operations on

abinary tree

Operation

Description

Create

Creates an empty tree.

Add (Binary_tree, Elem)

Adds a node to the binary tree using the
usual ordering principles i.e. if it is less
than the current node it is enteredin the left
subtree; if it is greater than or equal to the
current node, it is entered in the right sub-
tree.

Left (Binary_tree)

Returns the left sub-tree of the top of the
tree.

Data (Binary_tree)

Returns the value of the data element at the
top of the tree.

Right (Binary_tree)

Returns the right sub-tree of the top of the
tree.

Is_empty (Binary tree)

Returnstrue if the tree does not contain any
elements.

Contains (Binary_tree,
Elem)

Returns true if the tree contains the given
element.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 15

Binary tree specification

CS 580.1/483.1 Software Specification and

sort Binary_tree
imports BOOLEAN

S~ BINTREE (Elem: [Undefined ® Elem, .=.® Bool, .<. ® Bool] ﬁ

Defines a binary tree where the data is of generic type Elem.
See Figure 10.5 for interface operation description.

Build is an additional primitive constructor operation which is
introduced to simplify the specification. It builds a tree given the
value of a node and the left and right sub-trees.

Create ® Binary_tree

Add (Binary_tree, Elem) ® Binary_tree

Left (Binary_tree) ® Binary_tree

Data (Binary_tree) ® Elem

Right (Binary_tree) ® Binary_tree

Is_empty (Binary_tree) ® Boolean

Contains (Binary_tree, Elem) ® Boolean
| Build (Binary_tree, Elem,Binary_tree) ® Binary_tree |

Instructor: F.T. Sheldon

|Add (Create, E) = Build (Create, E, Create)|

Add (B, E) =if E < Data (B) then Add (Left (B), E)

else Add (Right (B), E)

Left (Create) = Create

Right (Create) = Create

Data (Create) = Undefined

Left (Build (L, D, R)) =L

Right (Build (L, D, R)) =R

Data (Build (L, D, R)) =D

Is_empty (Create) = true

Is_empty (Build (L, D, R)) = false

Contains (Create, E) = false

Contains (Build (L, D, R), E) =if E = D then true else if E < Dthen

Analysis Contains (L, D) else Contains (R,D)
—

_/ Slide 16

Structur ed specification

A Specifications should be constructed in a
structured way. Other specifications should be
reused whenever possible

A Specification instantiation — A generic
specification is instantiated with a given sort

A Incremental specification —Use ssmple
specifications in more complex specifications

A Specification enrichment — A specification is
constructed by inheritance from other
specifications

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 17

Specification instantiation

CHAR_ARRAY: ARRAY

sort Char_array instantiates Array (Elem:=Char)
imports INTEGER

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 18

| ncremental specification

A Develop a simple specification then use thisin
more complex specifications

A Trytoestablish alibrary of specification
building blocks that may be reused

A Inagraphical user interface, the specification
of a Cartesian coordinate can be reused in the
specification of a cursor

A Display operations are hard to specify
algebraically. May be informally specified

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 19

Coord specification

r COORD ~

sort Coord
imports INTEGER, BOOLEAN

Defines a sort representing a Cartesian coordinate. The
operations defined on Coord are X and Y which evaluate the
X and y attributes of an entity of this sort and Eq which
compares two entities of sort Coord for equality.

Create (Integer, Integer) ® Coord ;
X (Coord) ® Integer ;

Y (Coord) ® Integer ;

Eq (Coord, Coord) ® Boolean ;

X (Create (X, y)) = x
Y (Create (X, y)) =Yy
KEq (Create (x1, y1), Create (x2, y2)) = ((x1 = x2) and (y1 = y2))

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 20

Cursor specification

CS 580.1/483.1 Software Specifidation and Analysis

Instructor: F.T. Sheldon

CURSOR
r

sort Cursor
imports INTEGER, COORD, BITMAP

A cursor is a representation of a screen position. Defined
operations are Create which associates an icon with the cursor at a
screen position, Position which returns the current coordinate of the
cursor, Translate which moves the cursor a given amount in the x
and y directions and Change_lcon which causes the cursor icon to
be switched.

The Display operation is not defined formally. Informally, it causes
the icon associated with the cursor to be displayed so that the
top-left corner of the icon represents the cursor’s position. When
displayed, the ‘clear’ parts of the cursor bitmap should not obscure
the underlying objects.

Create (Coord, Bitmap) ® Cursor

Translate (Cursor, Integer, Integer) ® Cursor
Position (Cursor) ® Coord

Change_lIcon (Cursor, Bitmap) ® Cursor
Dispaly (Cursor) ® Cursor

Translate (Create (C, Icon), xd, yd) =
Create (COORD.Create (X(C)+xd, Y(C)+yd), Icon)
Position (Create (C, Icon)) = C

| Position (Translate (C, xd, yd)) = COORD.Create (X(C)+xd, Y(C)+yd) |

Change_Icon (Create (C, Icon), Icon 2) = Create (C, Icon2)

S/

Slide 21

Specification enrichment

A Starting with a reusable specification building
block, new operations are added to create a
mor e complex type

A Enrichment can be continued to any number of
levels. It Is comparable to inheritance....

A Not the same asimporting a specification

A Importing makes a specification available for use
A Enrichment creates a specification for a new sort

A Thenames of the generic parametersof the
base sort areinherited when a sort isenriched

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 22

Operationson New list

| Operation

Description

Create

Brings alist into existence.

Cons (New _list, Elem)

Adds an element to the end of thelist.

Add (New_list, Elem)

Adds an e ement to the front of the list.

Head (New_list)

Returns thefirst element in the list.

Tail (New _list)

Returns the list with the first eement
removed.

Member (New _list, Elem)

Returns true if an eement of the list
matches Elem

Length (New _list)

Returns the number of elementsin thelist

CS 580.1/483.1 Software Specification and Analysis

Instructor: F.T. Sheldon

Slide 23

New _list specification

(NEW_LIST (Elem: [Undefined ® Elem; .==.® Boolean]) -

sort New_Listenrich List
imports INTEGER, BOOLEAN

Defines an extended form of list which inherits the operations
and properties of the simpler specification of List and which adds
new operations (Add and Member) to these.

See Figure 10.10 for a description of the list operations.

Add (New_List, Elem) ® New_List
Member (New_List, Elem) ® Boolean

Add (Create, v) = Cons (Create, V)

Member (Create, v) = FALSE

Member (Add (L, v), v1) = ((v ==v1) or Member (L, v1))
Member (Cons (L, v), v1) = ((v == v1) or Member (L, v1))
Head (Add (L, v)) =v

Tail (Add (L, v)) =L

Length (Add (L, v)) = Length (L) + 1
\

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 24

Multi-value oper ations

A Some operations affect more than one entity
A Logically, afunction returns morethan one value

A Stack pop operation returns both the value
popped from the stack AND the modified stack

A May be modeled algebraically using multiple
operations (TOP and RETRACT for a stack) but
a more intuitive approach isto define operations
which return a tuplerather than a single value

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 25

Queue oper ations

Oper ation

Description

Create

Brings a queue into existence.

Cons (Queue, Elem)

Adds an element to the end of the queue.

Head (Queue)

Returns the element at the front of the
queue.

Tail (Queue)

Returns the queue minus its front e ement.

Length (Queue)

Returns the number of eements in the
queue.

Get (Queue)

Returns a tuple composed of the element at
the head of the queue and the queue with the
front element removed

CS 580.1/483.1 Software Specification and Analysis

Instructor: F.T. Sheldon

Slide 26

Queue specification

K QUEUE (Elem: [Undefined ® Elem]) ~

sort Queue enrich List
Imports INTEGER

This specification defines a queue which is a first-in, first-out data

structure. It can therefore be specified as a List where the insert
operation adds a member to the end of the queue.

See Figure 10.12 for a description of queue operations.

Get (Queue) ® (Elem, Queue)

Get (Create) = (Undefined, Create)
KGet (Cons (Q, v)) = (Head (Q), Tail (Cons (Q, V)))

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Side 27

Error specification

A Under normal conditionstheresult of an
operation may be sort X but under exceptional
conditions, an error should be indicated and the
returned sort Is different.

A Problem may betackled in three ways

A Usea special distinguished constant operation (Undefined)
which conformsto thetype of thereturned value.

» See Array specification

A Define operation evaluation to be a tuple, where an element
Indicates success of failure.

» See Queue specification
A Include a special failure section in the specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 28

List with exception part

LIST (Elem)

sort List
Imports INTEGER

See Figure 10.4

Create ® List

Cons (List, Elem) ® List
Tail (List) ® List

Head (List) ® Elem
Length (List) ® Integer

Head (Cons (L, v)) = if L = Createthen v else Head (L)
Length (Create) = 0

Length (Cons (L, v)) = Length (L) + 1

Tall (Create) = Create

exceptions
Length (L) = O fi failure (Head (L))

Talil (Cons (L, v)) =if L = Create then Create else Cons (Tail (L), v)

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon

Slide 29

Key points

A Algebraic specification is particularly appropriate
for sub-system inter face specification

A Algebraic specification involves specifying
operations on an abstract data typesor object in
termsof ther inter-relationships

A An algebraic specification has a signature part

defining syntax and an axioms part defining
semantics

A Formal specifications should have an associated
Informal description to make them mor e readable

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 30

Key points

A Algebraic specifications may be defined by
defining the semantics of each inspection operation
for each constructor operation

A Specification should be developed incrementally
from simpler specification building blocks

A Errorscan be specified either by defining
distinguished error values, by defining atuple
where one part indicates success or failureor by
Including an error section in a specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 31

