
CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  1

Algebraic Specification

... Specifying abstract types in terms of
relationships between type operations.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

Learning Objective



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  2

Objectives
⊗ To explain the role of formal

specifications in sub-system interface
definition

⊗ To introduce the algebraic approach to
formal specification

⊗ To describe the systematic construction of
algebraic specifications

⊗ To illustrate a number of incremental
ways to write algebraic specifications



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  3

Topics covered

⊗ Systematic algebraic specification

⊗ Structured specification

⊗ Error specification



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  4

Sub-system interfaces

Sub-system
A

Sub-system
B

Interface
objects



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  5

Interface specification
⊗ Formal specification is particularly

appropriate for defining sub-system interfaces.
It provides an unambiguous interface
description and allows for parallel sub-system
development

⊗ Interfaces may be defined as a set of abstract
data types or object classes

⊗ Algebraic specification is particularly
appropriate for ADT specification as it focuses
on operations and their relationships



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  6

Specification structure
⊗ Introduction

⊕ Introduces the sort (type) name and imported specifications

⊗ Informal description
⊕ Describes the type or object class operations

⊗ Signature
⊕ Defines the syntax of the type or class operations

⊗ Axioms
⊕ Defines axioms which characterize the behavior of the type



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  7

Specification format

sort < name >
imports < LIST OF SPECIFICATION NAMES >

Informal description of the sort and its operations

Operation signatures setting out the names and the types of
the parameters to the operations defined over the sort

Axioms defining the operations over the sort

< SPECIFICATION NAME > (Generic Parameter)



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  8

Specification
of an array sort Array

imports INTEGER

Arrays are collections of elements of generic type Elem. They have a
lower and upper bound (discovered by the operations First and Last).
Individual elements are accessed via their numeric index.
Create takes the array bounds as parameters and creates the array,
initialising its values to Undefined. Assign creates a new array which
is the same as its input with the specified element assigned the given
value. Eval reveals the value of a specified element. If an attempt is
made to access a value outside the bounds of the array, the value is
undefined.

Create (Integer, Integer) → Array
Assign (Array, Integer, Elem) → Array
First (Array) → Integer
Last (Array) → Integer
Eval (Array, Integer) → Elem

First (Create (x, y)) = x
First (Assign (a, n, v)) = First (a)
Last (Create (x, y)) = y
Last (Assign (a, n, v)) = Last (a)
Eval (Create (x, y), n) = Undefined
Eval (Assign (a, n, v), m) =
               if m < First (a) or m > Last (a) then Undefined else
                                                         if m = n then v else Eval (a,
m)

ARRAY ( Elem: [Undefined → Elem] )

Signature

Axioms



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  9

Systematic algebraic specification

⊗ Algebraic specifications of a system may
be developed in a systematic way
⊕ Specification structuring

⊕ Specification naming
⊕ Operation selection

⊕ Informal operation specification
⊕ Syntax definition

⊕ Axiom definition



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  10

Specification operations

⊗ Constructor operations – Operations which
create entities of the type being specified

⊗ Inspection operations – Operations which
evaluate entities of the type being specified

⊗ Specify behavior – Define the inspector
operations for each constructor operation



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  11

Operations on a list ADT
⊗ Constructor operations – evaluate to sort

List
⊕ Create, Cons and Tail

⊗ Inspection operations – take sort List as a
parameter and return some other sort
⊕ Head and Length

⊗ Tail can be defined using the simpler
constructors Create and Cons. No need
to define Head and Length with Tail.



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  12

List specification

sort List
imports INTEGER

Defines a list where elements are added at the end and removed
from the front. The operations are Create, which brings an empty list
into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the
head from its input list.

Create → List
Cons (List, Elem) → List
Tail (List) → List
Head (List) → Elem
Length (List) → Integer

Head (Create) = Undefined -- Error to evaluate an empty list
Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0
Length (Cons (L, v)) = Length (L) + 1
Tail (Create ) = Create
Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v)

LIST ( Elem: [Undefined → Elem] )



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  13

Recursion in specifications

⊗ Operations are often specified recursively

⊗ Tail (Cons (L, v)) = if L = Create then Create
else Cons (Tail (L), v)

⊕ Cons ([5, 7], 9) = [5, 7, 9]
⊕ Tail ([5, 7, 9])  =  Tail (Cons ( [5, 7], 9))  =
⊕ Cons (Tail ([5, 7]), 9) = Cons (Tail (Cons ([5], 7)), 9) =
⊕ Cons (Cons (Tail ([5]), 7), 9) =
⊕ Cons (Cons (Tail (Cons ([], 5)), 7), 9) =
⊕ Cons (Cons ([Create], 7), 9) = Cons ([7], 9) =  [7, 9]



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  14

Primitive constructors

⊗ It is sometimes necessary to introduce
additional constructors to simplify the
specification

⊗ The other constructors can then be defined
using these more primitive constructors

⊗ In the binary tree specification, a primitive
constructor “Build” is added



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  15

Operations on a binary tree
Operation Description
Create  Creates an empty tree.
Add (Binary_tree, Elem) Adds a node to the binary tree using the

usual ordering principles i.e. if it is less
than the current node it is entered in the left
subtree; if it is greater than or equal to the
current node, it is entered in the right sub-
tree.

Left (Binary_tree) Returns the left sub-tree of the top of the
tree.

Data (Binary_tree) Returns the value of the data element at the
top of the tree.

Right (Binary_tree) Returns the right sub-tree of the top of the
tree.

Is_empty (Binary_tree) Returns true if the tree does not contain any
elements.

Contains (Binary_tree,
Elem)

Returns true if the tree contains the given
element.



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  16

Binary tree specification

Create → Binary_tree
Add (Binary_tree, Elem) → Binary_tree
Left (Binary_tree) → Binary_tree
Data (Binary_tree) → Elem
Right (Binary_tree) → Binary_tree
Is_empty (Binary_tree) → Boolean
Contains (Binary_tree, Elem) → Boolean
Build (Binary_tree, Elem,Binary_tree) → Binary_tree

sort Binary_tree
imports BOOLEAN

Defines a binary tree where the data is of generic type Elem.
See Figure 10.5 for interface operation description.
Build is an additional primitive constructor operation which is
introduced to simplify the specification. It builds a tree given the
value of a node and the left and right sub-trees.

Add (Create, E) = Build (Create, E, Create)
Add (B, E) = if E < Data (B) then Add (Left (B), E)
                               else Add (Right (B), E)
Left (Create) = Create
Right (Create) = Create
Data (Create) = Undefined
Left (Build (L, D, R)) = L
Right (Build (L, D, R)) = R
Data (Build (L, D, R)) = D
Is_empty (Create) = true
Is_empty (Build (L, D, R)) = false
Contains (Create, E) = false
Contains (Build (L, D, R), E) = if E = D then true else if E < D then
                                                 Contains (L, D) else Contains (R,D)

BINTREE ( Elem: [Undefined → Elem, .=. → Bool, .<. → Bool]
)



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  17

Structured specification
⊗ Specifications should be constructed in a

structured way. Other specifications should be
reused whenever possible

⊗ Specification instantiation – A generic
specification is instantiated with a given sort

⊗ Incremental specification – Use simple
specifications in more complex specifications

⊗ Specification enrichment – A specification is
constructed by inheritance from other
specifications



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  18

Specification instantiation

sort Char_array instantiates Array (Elem:=Char)
imports INTEGER

CHAR_ARRAY: ARRAY



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  19

Incremental specification
⊗ Develop a simple specification then use this in

more complex specifications

⊗ Try to establish a library of specification
building blocks that may be reused

⊗ In a graphical user interface, the specification
of a Cartesian coordinate can be reused in the
specification of a cursor

⊗ Display operations are hard to specify
algebraically. May be informally specified



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  20

Coord specification

sort Coord
imports INTEGER, BOOLEAN

Defines a sort representing a Cartesian coordinate. The
operations defined on Coord are X and Y which evaluate the
x and y attributes of an entity of this sort and Eq which
compares two entities of sort Coord for equality.

Create (Integer, Integer) → Coord ;
X (Coord) → Integer ;
Y (Coord) → Integer ;
Eq (Coord, Coord) → Boolean ;

X (Create (x, y)) = x
Y (Create (x, y)) = y
Eq (Create (x1, y1), Create (x2, y2)) = ((x1 = x2) and (y1 = y2))

COORD



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  21

Cursor specification
sort Cursor
imports INTEGER, COORD, BITMAP

A cursor is a representation of a screen position. Defined
operations are Create which associates an icon with the cursor at a
screen position, Position which returns the current coordinate of the
cursor, Translate which moves the cursor a given amount in the x
and y directions and Change_Icon which causes the cursor icon to
be switched.

The Display operation is not defined formally. Informally, it causes
the icon associated with the cursor to be displayed so that the
top-left corner of the icon represents the cursor’s position. When
displayed, the ‘clear’ parts of the cursor bitmap should not obscure
the underlying objects.

Create (Coord, Bitmap) → Cursor
Translate (Cursor, Integer, Integer) → Cursor
Position (Cursor) → Coord
Change_Icon (Cursor, Bitmap) → Cursor
Dispaly (Cursor) → Cursor

Translate (Create (C, Icon), xd, yd) =
      Create (COORD.Create (X(C)+xd, Y(C)+yd), Icon)
Position (Create (C, Icon)) = C
Position (Translate (C, xd, yd)) = COORD.Create (X(C)+xd, Y(C)+yd)
Change_Icon (Create (C, Icon), Icon 2) = Create (C, Icon2)

CURSOR



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  22

Specification enrichment

⊗ Starting with a reusable specification building
block, new operations are added to create a
more complex type

⊗ Enrichment can be continued to any number of
levels. It is comparable to inheritance….

⊗ Not the same as importing a specification
⊕ Importing makes a specification available for use

⊕ Enrichment creates a specification for a new sort

⊗ The names of the generic parameters of the
base sort are inherited when a  sort is enriched



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  23

Operations on New_list

Operation Description
Create Brings a list into existence.
Cons (New_list, Elem) Adds an element to the end of the list.
Add (New_list, Elem) Adds an element to the front of the list.
Head (New_list) Returns the first element in the list.
Tail (New_list) Returns the list with the first element

removed.
Member (New_list, Elem) Returns true if an element of the list

matches Elem
Length (New_list) Returns the number of elements in the list



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  24

New_list specification

sort New_List enrich List
imports INTEGER, BOOLEAN

Defines an extended form of list which inherits the operations
and properties of the simpler specification of List and which adds
new operations (Add and Member) to these.
See Figure 10.10 for a description of the list operations.

Add (New_List, Elem) → New_List
Member (New_List, Elem) → Boolean

Add (Create, v) = Cons (Create, v)
Member (Create, v) = FALSE
Member (Add (L, v), v1) = ((v == v1) or Member (L, v1))
Member (Cons (L, v), v1) = ((v == v1) or Member (L, v1))
Head (Add (L, v)) = v
Tail (Add (L, v)) = L
Length (Add (L, v)) = Length (L) + 1

NEW_LIST ( Elem: [Undefined → Elem; .==. → Boolean] )



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  25

Multi-value operations

⊗ Some operations affect more than one entity
⊕ Logically, a function returns more than one value

⊗ Stack pop operation returns both the value
popped from the stack AND the modified stack

⊗ May be modeled algebraically using multiple
operations (TOP and RETRACT for a stack) but
a more intuitive approach is to define operations
which return a tuple rather than a single value



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  26

Queue operations

Operation Description
Create Brings a queue into existence.
Cons (Queue, Elem) Adds an element to the end of the queue.
Head (Queue) Returns the element at the front of the

queue.
Tail (Queue) Returns the queue minus its front element.
Length (Queue) Returns the number of elements in the

queue.
Get (Queue) Returns a tuple composed of the element at

the head of the queue and the queue with the
front element removed



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  27

Queue specification

sort Queue enrich List
imports INTEGER

This specification defines a queue which is a first-in, first-out data
structure. It can therefore be specified as a List where the insert
operation adds a member to the end of the queue.
See Figure 10.12 for a description of queue operations.

Get (Queue) → (Elem, Queue)

Get (Create) = (Undefined, Create)
Get (Cons (Q, v)) = (Head (Q), Tail (Cons (Q, v)))

QUEUE ( Elem: [Undefined → Elem] )



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  28

Error specification
⊗ Under normal conditions the result of an

operation may be sort X but under exceptional
conditions, an error should be indicated and the
returned sort is different.

⊗ Problem may be tackled in three ways
⊕ Use a special distinguished constant operation (Undefined)

which conforms to the type of the returned value.
» See Array specification

⊕ Define operation evaluation to be a tuple, where an element
indicates success of failure.
» See Queue specification

⊕ Include a special failure section in the specification



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  29

List with exception part

sort List
imports INTEGER

See Figure 10.4

Create → List
Cons (List, Elem) → List
Tail (List) → List
Head (List) → Elem
Length (List) → Integer

Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0
Length (Cons (L, v)) = Length (L) + 1
Tail (Create ) = Create
Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v)
exceptions
          Length (L) = 0 fi failure (Head (L))

LIST ( Elem )



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  30

Key points
⊗ Algebraic specification is particularly appropriate

for sub-system interface specification

⊗ Algebraic specification involves specifying
operations on an abstract data types or object in
terms of their inter-relationships

⊗ An algebraic specification has a signature part
defining syntax and an axioms part defining
semantics

⊗ Formal specifications should have an associated
informal description to make them more readable



CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon                                                                                                   Slide  31

Key points
⊗ Algebraic specifications may be defined by

defining the semantics of each inspection operation
for each constructor operation

⊗ Specification should be developed incrementally
from simpler specification building blocks

⊗ Errors can be specified either by defining
distinguished error values, by defining a tuple
where one part indicates success or failure or by
including an error section in a specification


