Jsing Z 21-1

An Operating
System Scheduler

Using Z
Woodcock & Davies

Jsing Z

21-2

Scheduler

The scheduler is the component of an operating system that
determines which process should be run, and when.

We will specify:
o the service provided—the scheduler specification

e a system that provides this service—the scheduler
implementation

Jsing Z 21-3

Processes

o there is a single processor to be shared
o this is made available to one process at a time

e a process that is currently making use of the processor is
said to be running

Jsing Z 21-4

Process states

o Since there is a single processor, at any time, there will be
at most one process running. We will call this the current
process.

o There may be several processes that are waiting to use the
processor. These processes are said to be ready.

o There may be some processes that are waiting, not for the
processor, but for a different resource or event. These
processes are said to be blocked.

Jsing Z

Specification

Our system will deal with up to n processes, where n is a
natural number.

n:N
Each process will be associated with a process identifier, or pid.

Pld == 1..n

21-5

Jsing 7 21-6

Zero is used to represent the ‘null process’: a marker that says
that there is no process where this value is found.

nullPld ==
An ‘optional pid’ can be either a true pid or the null pid:

OptPld == PId U {nullPId}

Jsing Z 21-7

Abstract state

__AScheduler
current : OptPld
ready : P Pld
blocked : P PId
free: P Pld

({current} \ {nullPId},
ready,

blocked,
free) partition PId

Jsing Z 1-8

Initialisation

___ASchedulerInit
AScheduler’

current’ = nullPId
ready’ = @
blocked’ = &
free’ = Pld

Jsing Z

21-9

Operations

create a process, adding it to the set of ready processes
dispatch one of the ready processes to the processor

timeout a process, removing it from the processor and
returning it to the set of ready processes

block a process, removing it from the processor and
adding it to the set of blocked processes

wake up a blocked process, moving it into the set of ready
processes

destroy a process

Jsing 7 21-10

Create

__ACreate
AAScheduler
p!: PId

free + &

current’ = current
ready’ = ready U {p!}
blocked’ = blocked
free’ = free\ {p!}

p! € free

Jsing Z 21-11

Dispatch

_ ADispatch
AAScheduler
p!: PId

current = nullPld

ready + &

current’ € ready

ready’ = ready \ {current’}
blocked’ = blocked

free’ = free

p! = current’

Jsing Z 21-12

Exercises

o write schemas to describe the effects of timeout, block,
and wake up.

o write three partial operation schemas to describe the
effect of destroying:
- the current process
- aready process

- a blocked process

Jsing Z 21-13

Design

o our program will use a simple data structure: an array and
a few counters

o our use of this data structure can be modelled using
chains: finite injections from PId to PId with a unique start
and a unique end.

Jsing 7 21-14

Chains

_ Chain
start, end : OptPId
links : Pld »» PId
set : F PId

set = dom links U ran links U ({start} \ {nullPId})
links = & = start = end
links + & =

{start} = (dom links) \ ran links

{end} = (ranlinks) \ dom links
Y e: set | e + start e start — e € links™

Jsing 7 21-15

Exercises
e how do we know that the start and the end of a given
chain are uniquely defined?

o what must be true of the start and the end pids if set is
empty?

Jsing 7 21-16

Initialisation

__ ChainlInit
Chain’

start’ = nullPldend’ = nullPId

Jsing Z 21-17

Operations

e push an element onto the end of a chain
e pop an element from the front of a chain

o delete an element from a chain

Jsing 7 21-18

Pop

__PopSingleton
AChain
p!: Pld

start + nullPld
links = @
start’ = nullPId
links” = links
p! = start

Jsing 7 21-19

__ PopMultiple
AChain
p!: PId

links + @

start’ = links start
links’ = {start} < links
p! = start

Pop = PopSingleton v PopMultiple

Jsing 7 21-20

Delete

Delete = DeleteStart v DeleteMiddle v DeleteEnd

__DeleteStart
AChain
p? : Pld

p? = start
d p!: Pld « Pop

Jsing Z 21-21

__DeleteEnd
AChain
p? : Pld

p? + start
p? = end
links" = links &> {end}

Jsing 7

links p?

—> p? R

links p?

Deleting a middle element

21-22

Jsing 7 21-23

__DeleteMiddle
AChain
p? . Pld

p? + start

p? + end

p? € set

links’ = {p?} < links & {links~ p? — links p?}

Jsing Z 21-24
Design

_CScheduler
ReadyChain
BlockedChain
FreeChain
current : OptPld
chainstore : PId — OptPId

({current} \ {nullPId}, rset, bset, fset) partition Pld
rlinks = rset < chainstore > rset

blinks = bset < chainstore > bset

flinks = fset < chainstore > fset

current + nullPld = chainstore current = nullPId

Jsing 7 21-25

ReadyChain =
Chain| rstart/ start, rend/end, rlinks/ links, rset/ set]

BlockedChain =
Chain| bstart/ start, bend | end, blinks/ links, bset] set |

FreeChain =
Chainl| fstart/start, fend/ end, flinks/ links, fset/ set]

Jsing 7 21-26

Initialisation

_(CSchedulerInit
CScheduler’
ReadyChainlnit
BlockedChainlnit
FreeChainFull

current’ = nullPIld

Jsing 7 21-27

ReadyChainlnit =
ChainlInit| rstart’ | start’, rend’ | end’,

rlinks’ / links', rset’ / set’ |

BlockedChainlInit =
Chainlnit[bstart’ / start’, bend’ | end’,

blinks’ | links’, bset’ | set’]

__FreeChainFull
FreeChain

fset’ = Pld

Jsing 7 21-28

Operations

PushReadyChain =
Push| rstart/start, rend/end, rlinks/links, rset/ set,

rstart’ /start’, rend’ |end’, rlinks’ | links’, rset’ / set’ |
PopReadyChain =
Pop| rstart/ start, rend/end, rlinks/ links, rset/ set,

rstart’ | start’, rend’ |end’, rlinks’ | links’, rset’ / set’]

PopFreeChain =
Pop| fstart/ start, fend | end, flinks/links, fset/ set,
fstart’ | start’, fend’ | end’, flinks’ /links’, fset’ | set’]

Jsing Z

_ CDispatch

ACScheduler
p!: Pld
EBlockedChain
EFreeChain

current = nullPld
rset + &
PopReadyChain
current’ = p!

21-29

Jsing 7 21-30

__CCreate
ACScheduler
p!: Pld
EBlockedChain

fset + O

current’ = current
PopFreeChain
PushReadyChain|p!/p?]

Jsing Z 21-31

Abstract state

current = 3
ready = {2,4,6}
blocked = {5,7}
free=1{1,8,9,10}

Jsing Z 21-32

Possible concrete state

current = 3
chainstore = {1 - 8,2 - 6,3 - 0,4~ 2,5 - 0,
6—-0,7~-58~-99-10,10 ~ 0}

rstart = 4

rend = 6

rlinks = {4 - 2,2 — 6}
rset = {2,4,06}

Jsing 7 21-33

bstart = 7

bend =7

blinks = {7 — 5}
bset = {5,7}

fstart = 1

fend = 10

flinks = {1 ~ 8,8 —~ 9,9 — 10}
fset = {1,8,9,10}

Jsing 7 21-34

current
3
\ 2 / Y Y v
8 6 0 2 0 0 5 9 10| O
A A
1 4 7
free ready blocked

A possible concrete state

Jsing 7 21-35

Retrieve function

___RetrScheduler
AScheduler
CScheduler

ready = rset
blocked = bset
free = fset

Jsing 7 21-36

Correctness

CScheduler — 3, AScheduler ¢ RetrScheduler

CSchedulerInit A Retr’ — ASchedulerInit

pre AOp A Retr A COp A Retr’ — AOp

