
9–1

Sequences



9–2

Sequences

A sequence is an ordered collection of objects.

We use sequences to model collections in which order or

multiplicity is important.

If we do not wish to impose an order, then we may choose to use

bags instead.



9–3

Examples

〈〉
〈u, s, i,n,g, z〉



9–4

Concatenation

If s and t are sequences, we write s _ t to denote the

concatenation of s and t .

〈a,b, c〉_ 〈d, e〉 = 〈a,b, c,d, e〉



9–5

Filter

If s is a sequence, then s uA is the largest subsequence of s

containing only those objects that are elements of A.

〈a,b, c,d, e,d, c,b,a〉 u {a,d} = 〈a,d,d,a〉



9–6

Head and tail

If s is a non-empty sequence, then ‘head s’ is the first element of

s, and ‘tail s’ is the remaining part.

head 〈a,b, c,d, e〉 = a

tail 〈a,b, c,d, e〉 = 〈b, c,d, e〉



9–7

Length

If s is a sequence, then we write ‘#s’ to denote the length of s.

#〈a,b, c,d, e, f 〉 = 6



9–8

Reverse

If s is a sequence, then we write ‘reverse s’ to denote the sequence

obtained by reversing s.

reverse〈a,b, c〉 = 〈c,b,a〉



9–9



9–10

Question

If trains is

〈(oxford, london), (london, edinburgh), (great , london),

(manchester ,poole), (oxford, reading), (london,manchester)〉

what are

trains u {p : Place • (p, london) } ?

tail (trains u {p : Place • (p, reading) }) ?

#(trains u {p : Place • (london,p) }) ?



9–11

A model for sequences

A sequence may be seen as a finite function whose domain is a

contiguous subset of the natural numbers.

The empty sequence may be seen as an empty function (which

has an empty domain).

Any non-empty sequence has a domain which starts at 1.



9–12

Sequences as functions

If X is a set, then the set of all finite sequences of objects from X

is defined by

seq X == {s : N 7 7→ X | ∃n : N • dom s = 1 . . n}



9–13

Concatenation

[X ]
_ : seq X × seq X → seq X

∀ s, t : seq X •
#(s_t) = #s + #t ∧
∀ i : 1 . . #s • (s_t) i = s i ∧
∀ j : 1 . . #t • (s_t) (j + #s) = t j



9–14

Question

How can we model head and tail?

[X ]
head :

tail :

∀ s : seq X | •
head s =
#tail s =
∀ i : 1 . . #s − 1 • (tail s) i =



9–15

Recursion principle

For any constant k and function g, there is a unique total function

f such that

f 〈〉 = k

f (〈x〉_ s) = g(x, f s)

We can use this principle to justify our definitions.



9–16

Note

The second equation is really a family of equations; there is an

implicit universal quantification:

∀ x : X ; s : seq X •
f (〈x〉_ s) = g(x, f s)



9–17

Filter

〈〉 uA = 〈〉 (filter.1)

(〈x〉_ s) uA = 〈x〉_ (s uA) if x ∈ A

s uA otherwise

(filter.2)



9–18

Reverse

reverse 〈〉 = 〈〉 (reverse.1)

reverse(〈x〉_ s) = (reverse s) _ 〈x〉 (reverse.2)



9–19

Useful laws

〈〉_ t = t (cat.1)

s _ (t _ u) = (s _ t) _ u (cat.2)



9–20

Equational reasoning

reverse(〈〉 uA)

= reverse 〈〉 [filter.1]

= 〈〉 [reverse.1]

= 〈〉 uA [filter.1]

= (reverse 〈〉) uA [reverse.1]



9–21

Structural induction

Some universal properties can be proved by showing that they

hold of the constant 〈〉, and that they are preserved by adding any

element to the front of the sequence.



9–22

Induction principle

P 〈〉
∀ x : X ; t : seq X • P t ⇒ P (〈x〉_ t)

∀ s : seq X • P s
[induction]



9–23

Example

Filter is distributive:

∀ s, t : seq X ; A : PX • (s _ t) u A = (s uA) _ (t uA)



9–24

Inductive hypothesis

P : P seq X

∀ s : seq X •
P s a ∀ t : seq X ; A : PX • (s _ t) uA = (s u A) _ (t uA)



9–25

Proof outline

P 〈〉 [Lemma 1]

dx ∈ X ∧ r ∈ seq X e[1] dP re[2]
P (〈x〉_ r)

[Lemma 2]

P r ⇒ P (〈x〉_ r) [⇒−intro[2]]

∀ x : X ; r : seq X • P r ⇒ P (〈x〉_ r) [∀−intro[1]]

∀ s : seq X • P s
[induction]

∀ s, t : seq X ; A : PX • (s _ t) u A = (s u A) _ (t u A)
[axdef]



9–26

Lemma 1

(〈〉_ t) uA

= t uA [cat.1]

= 〈〉_ (t uA) [cat.1]

= (〈〉 uA) _ (t u A) [filter.1]



9–27

Lemma 2

((〈x〉_ r) _ t) uA

= (〈x〉_ (r _ t)) uA [cat.2]

= 〈x〉_ ((r _ t) uA) if x ∈ A

(r _ t) u A otherwise

[filter.2]

= 〈x〉_ ((r uA) _ (t uA)) if x ∈ A

(r u A) _ (t uA) otherwise

[P r ]

= (〈x〉_ (r uA)) _ (t uA) if x ∈ A

(r u A) _ (t uA) otherwise

[cat.2]

= ((〈x〉_ r) uA) _ (t uA) [filter.2]



9–28

Presentation

• inductive property

• base case

• inductive step



9–29

Bags

A bag is an unordered collection of objects in which multiplicities

are important:

� �

�a,b, c,a,b, c�



9–30

A model for bags

If X is a set, then the set of all bags of elements from X is defined

by

bag X == X 7→N \ {0}



9–31

Summary

• ordered collections

• _, head , tail, u, and reverse

• sequences as functions

• algebraic laws

• structural induction

• bags


