Solutions for Chapter 10

Free Types

Solution 10.1 (Frame constructors) We introduce three basic types to repres-
ent the set of all sites or nodes, the set of all priority and reservation values,
and the set of all data values:

[Site, Value, Data]
We define a free type to represent the set of all frames:

Frame ::= token {(Site x Value x Value))
| data {(Site x Site x Value x Value x seq Data))

O

Solution 10.2 (Counting and flattening) The set of all binary trees with natural
number leaves is defined by

Tree ::= stalk | leaf ((N))
| branch{{Tree x Tree))

(a)

count : Tree — N

count stalk = 0
V n:N e count (leafn) =1
Y t1, & : Tree o count (branch (t;, t2)) = count t; + count t

Solutions

(b)

flatten : Tree — seq N

flattenstalk = ()
V n: N e flatten (leaf n) = (n)
VY t1, & : Tree o flatten (branch (t;, t)) = flattent; + flatten t,

(c) We exhibit the following induction principle for this free type:

Vn:Ne Vit,b:Treee
Pstalk P (leaf n) Pty APt = P(branch (t;, t))
Vit:Treee Pt

With the property

P_:PTree
Vit:Treee Pt < #(flattent) = countt

We address the three antecedents of the rule:

(flatten stalk)

=#() [flatten]
=0 [#]
= count stalk [count]

and, for any n € N,

#(flattenleaf n)

= #(n) [flatten]
=1 [#]
= count (leaf n) [count]

The inductive step is a generalisation of the following result:

#(flattenbranch (t;, t2))

= #(flattent, ~ flattent) [flatten]
= #flatten t; + #flattent, [# is distributive]
= count ty + count t; [Pt; A P

= count branch (t;, to) [count]

