
Solutions for Chapter 10

Free Types

Solution 10.1 (Frame constructors) We introduce three basic types to repres-
ent the set of all sites or nodes, the set of all priority and reservation values,
and the set of all data values:

[Site,Value,Data]

We define a free type to represent the set of all frames:

Frame ::= token 〈〈Site× Value× Value〉〉
| data 〈〈Site× Site× Value× Value× seq Data〉〉

�

Solution 10.2 (Counting and flattening) The set of all binary trees with natural
number leaves is defined by

Tree ::= stalk | leaf〈〈N〉〉
| branch〈〈Tree× Tree〉〉

(a)

count : Tree→N

count stalk = 0
∀n : N • count (leaf n) = 1
∀ t1, t2 : Tree • count (branch (t1, t2)) = count t1 + count t2



2 Solutions

(b)

flatten : Tree→ seqN

flatten stalk = 〈〉
∀n : N • flatten (leaf n) = 〈n〉
∀ t1, t2 : Tree • flatten (branch (t1, t2)) = flatten t1 + flatten t2

(c) We exhibit the following induction principle for this free type:

P stalk

∀n : N •
P (leaf n)

∀ t1, t2 : Tree •
P t1 ∧ P t2 ⇒ P (branch (t1, t2))

∀ t : Tree • P t

With the property

P : PTree

∀ t : Tree • P t a #(flatten t) = count t

We address the three antecedents of the rule:

#(flatten stalk)
= #〈〉 [flatten]

= 0 [#]

= count stalk [count]

and, for any n ∈ N,

#(flatten leaf n)
= #〈n〉 [flatten]

= 1 [#]

= count (leaf n) [count]

The inductive step is a generalisation of the following result:

#(flatten branch (t1, t2))
= #(flatten t1

_ flatten t2) [flatten]

= #flatten t1 + #flatten t2 [# is distributive]

= count t1 + count t2 [P t1 ∧ P t2]

= count branch (t1, t2) [count]

�


