
Solutions for Chapter 9

Sequences

Solution 9.1 (Supermarket) In a supermarket, there are m checkouts open.

(a) At any instant, the supermarket checkouts may be modelled as a num-
ber of queues. Using an axiomatic definition, and assuming the set P of
people, define the set of all possible configurations of the supermarket
checkouts.

SMQ : P(seq(seq P))

SMQ = {qq : seq(seq P) |
#qq =m ∧
∀ i , j : dom qq •

∀k : dom(qq i); l : dom(qq j) •
i ≠ j ∨ k ≠ l ⇒ qq i k ≠ qq j l }

(b) Define a function that models the arrival of someone at the supermarket
checkouts. The function should take a person as argument and put them
into the shortest queue.

arrive : P × SMQ 7→ SMQ

∀p : P ; smq, smq′ : SMQ •
arrive(p, smq) = smq′a

∃ i : dom smq •
#(smq i) =min{ j : dom smq • #(smq j) } ∧
smq′ = smq ⊕ {i , (smq i) _ 〈p〉}

(c) Define another function which models a person changing queues. The
function should take three arguments: the person, the queue being left,
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and the queue being joined.

change : P ×N×N× SMQ 7→ SMQ

∀p : P ; old ,new : N; smq, smq′ : SMQ •
change (p,old ,new, smq) = smq′a

smq′ = smq ⊕ {old , (smq old) u (P \ {p}),
new , (smq new) _ 〈p〉}

(d) Define another function which models the opening of an (m+1)th queue.
Customers may join the new queue, but they do not otherwise change
places. Modelling the opening using a relation allows us to capture the
variation arising from the decisions of individual customers.

customers : SMQ → PP

∀ smq : SMQ •
customers smq = ⋃{ i : dom smq • ran(smq i) }

open : SMQ → SMQ × seq P

∀ smq, smq′ : SMQ ; q : seq P •
open smq = (smq′,q)a

customers smq = (customers smq′)∪ (ran q) ∧
∀ i : dom smq • smq′ i ⊆ smq i

�

Solution 9.2 (Esrever) The induction principle for sequences:

P 〈〉 ∀ x : X ; t : seq X • P t ⇒ P (〈x〉_ t)
∀ s : seq X • P s

[induction]

We may use this to show that the reverse function is an involution: applying it
a second time returns us to the original sequence. However, if we have only the
defining equations

reverse 〈〉 = 〈〉 (reverse.1)

reverse(〈x〉_ s) = (reverse s) _ 〈x〉 (reverse.2)

then the obvious property will not suffice as an inductive hypothesis; to com-
plete the proof, we would need to know that

reverse (s _ t) = reverse t _ reverse s
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That is, that reverse is anti-distributive. This property is strong enough to be
proved by induction on the first argument; we define a property

[X ]
Q : P seq X

∀ s : seq X •
Q s a ∀ t : seq X • reverse (s _ t) = reverse t _ reverse s

and exhibit a suitable proof tree:

Q 〈〉 [lemma 1]

dx ∈ X e[1] du ∈ seq X e[2]

d∀ t : seq X • reverse (u _ t) = reverse t _ reverse ue[3]

dt ∈ seq X e[4]
reverse (u _ t) = reverse t _ reverse u

[∀−elim]

reverse ((〈x〉_ u) _ t) = (reverse t) _ (reverse 〈x〉_ u)
[lemma2]

∀ t : seq X •
reverse ((〈x〉_ u) _ t) = (reverse t) _ (reverse 〈x〉_ u)

[∀−intro[4]]

(∀ t : seq X • reverse (u _ t) = reverse t _ reverse u)⇒
∀ t : seq X •

reverse ((〈x〉_ u) _ t) = (reverse t) _ (reverse 〈x〉_ u)

[⇒−intro[3]]

Q u ⇒ Q (〈x〉_ u)
[gendef]

∀ x : X ; ∀u : seq X • Q u ⇒ Q (〈x〉_ u)
[∀−intro[1][2]]

∀ s : seq X • Q s
[induction]

∀ s, t : seq X • reverse (s _ t) = reverse t _ reverse s
[gendef]

The two lemmas are easily established by equational reasoning: the first by

reverse (〈〉_ t)
= reverse t [cat.1]

= (reverse t) _ 〈〉 [cat.1]

and the second by

reverse ((〈x〉_ u) _ t)
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= reverse (〈x〉_ (u _ t) [cat.2]

= reverse (u _ t) _ 〈x〉 [reverse.2]

= (reverse t _ reverse u) _ 〈x〉
[reverse (u _ t) = (reverse t _ reverse u)]

= reverse t _ (reverse u _ 〈x〉) [cat.2]

= reverse t _ reverse (〈x〉_ u) [reverse.2]

We are now ready to prove the universal property asked for in the question. We
begin by defining a suitable set:

[X ]
P : P seq X

∀ s : seq X •
P s a reverse (reverse s) = s

Now consider the following proof tree:

P 〈〉 [lemma 1]

dx ∈ X e[1] dt ∈ seq X e[2]
dreverse (reverse t) = te[3]

reverse (reverse (〈x〉_ t)) = 〈x〉_ t
[lemma 2]

reverse (reverse t) = t ⇒ reverse (reverse (〈x〉_ t)) = 〈x〉_ t
[⇒−intro[3]]

P t ⇒ P (〈x〉_ t)
[gendef]

∀ x : X ; ∀ t : seq X • P t ⇒ P (〈x〉_ t)
[∀−intro[1][2]]

∀ s : seq X • P s
[induction]

∀ s : seq X • reverse (reverse s) = s
[gendef]

The two lemmas may be proved by equational reasoning:

reverse (reverse 〈〉)
= reverse 〈〉 [reverse.1]

= 〈〉 [reverse.1]

and

reverse (reverse 〈x〉_ t)
= reverse ((reverse t) _ 〈x〉) [reverse.2]
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= reverse (〈x〉) _ reverse (reverse t) [previous result]

= reverse (〈x〉_ 〈〉) _ reverse (reverse t) [cat.1]

= ((reverse 〈〉) _ 〈x〉) _ reverse (reverse t) [reverse.2]

= (〈〉_ 〈x〉) _ reverse (reverse t) [reverse.1]

= 〈x〉_ reverse (reverse t) [cat.1]

= 〈x〉_ t [reverse (reverse t) = t ]

This completes the inductive proof: we may conclude that for any set X

∀ s : seq X • reverse (reverse s) = s

and hence that the reverse operator is an involution. �


