Solutions for Chapter 3

Predicate logic

Solution 3.1 (Defining predicates)

(a) We must define a predicate p that is false at least one value of x, and is
true for at least one other value. A suitable solution wouldbep < x> 1.

(b) With the above choice of p, we require only that g is sometimes false when
p is true (for else the universal quantification would hold). A suitable
solution would be g & x > 3.

O

Solution 3.2 (Predicates make propositions)

(a) This is a true proposition: whatever the value of x, the expression x> —x+1
denotes a natural number. If we choose y to be this natural number, we
will find that p is true.

(b) This is a false proposition. We cannot choose a large enough value for y
such that p will hold for any value of x.

(c) This is a false proposition. It is an implication whose antedecent part is
true and whose consequent part is false.

(d) This is a true proposition. It is an implication whose antecedent part is
false and whose consequent part is true.

(e) This is a false proposition. It is an equivalence between two propositions,
one of which we know to be false, the other of which we know to be true.

2 Solutions

Solution 3.3 (Distribution)

[(Vx:aep) A(Vx:aeqg)]l

ix e al VX dsd . [A—elim?2]
[V —elim]
a
[(Vx:aep) A(VXx:aeq)]l .
2] - [A—eliml]
[x € al Vx:aep .
v [V —elim]
G [A—intro]

At S _j [2]
Vx:aspArg [V —intro'<’]

(Vx:aep)AN(Vx:aeqg)=>(VXx:aepAq) [

= —introl1!]

Solution 3.4 (Theorems)

(a) In one direction,

[x € a][a] [_.p][4]
dx:aep

[3—intro]

[w3x:ae~p]2l

false [~ —elim]
—— [false—elim™!]
P rv_introl3
V’x:aop[v intro™ [-Vx:aep]l ,
false [~ ~elim]

-/ _elim(2]
Ix:as-p [false—elim!<']

(~Vx:aep)=>(Ix:ae—p) [

= —introl!]

3 / Predicate logic 3

and in the other

xean -plt7 xean -plt7
[A—eliml] # [A—elim2]
Xea -p
‘ [V x:aep]l6
[V —elim]
p .
false [=-elim]

[Ax:ae —p]l6l

[T—elim[71]

false
[——introt®!]

“VXx:aep

_i [5]
(Ax:ae—p)=>(—~VXx:aep) [=—intro™>]

O

Solution 3.5 (Problem) In the following proof, the use of the ‘J-elim’ rule may
be unjustified. The side condition to this rule requires that x is not free in p.
The statement at the root of the tree is guaranteed to be valid only if this is the

case.

[Vx:aedy:bepllll [xeall?

[V —elim]
dy:be (3]
y p . vl (3—elim®]
————— [V —introl?]
VX:aep .
[d—intro]
dy:beVx:aep]
= —introl!!]

(Vx:aedy:bep)=(Jy:beVx:aep) [

4 Solutions

Solution 3.6 (Another problem) In the following proof, both instances of the
V-intro rule may be unjustified. This rule may be used only when the variable
in question does not appear in any assumption that is currently in scope. Here,
p is assumed where the rule is used, and we have no guarantee that x is free in
p. The same is true of q. The statement at the root of the tree can be guaranteed
valid only when x is free in neither p nor g.

[q1!%]
(YXx:aeq)
(Vx:aep)Vv(Vx:aeq)

[V —intro]
[Vv—intro2]

[p]t2]
(Vx:aep)Vv(Vx:aeq)

[V —intro]
[v—introl]

[Vx:aepvV gl
pVvaq

[V —elim]

—elim(?
(Vx:aep) Vv (VXx:aeq) [v—elim[?]]

—introll]
(Vx:aepvg)=>(Vx:aep)Vv(Vx:aeq) [=—introl]

