Solutions for Chapter 3

Predicate logic

Solution 3.1 (Defining predicates)

(a) We must define a predicate p that is false at least one value of x, and is
true for at least one other value. A suitable solution wouldbep < x> 1.

(b) With the above choice of p, we require only that g is sometimes false when
p is true (for else the universal quantification would hold). A suitable
solution would be g & x > 3.

O

Solution 3.2 (Predicates make propositions)

(a) This is a true proposition: whatever the value of x, the expression x> —x+1
denotes a natural number. If we choose y to be this natural number, we
will find that p is true.

(b) This is a false proposition. We cannot choose a large enough value for y
such that p will hold for any value of x.

(c) This is a false proposition. It is an implication whose antedecent part is
true and whose consequent part is false.

(d) This is a true proposition. It is an implication whose antecedent part is
false and whose consequent part is true.

(e) This is a false proposition. It is an equivalence between two propositions,
one of which we know to be false, the other of which we know to be true.
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Solution 3.3 (Distribution)
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Solution 3.4 (Theorems)

(a) In one direction,
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and in the other
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Solution 3.5 (Problem) In the following proof, the use of the ‘J-elim’ rule may
be unjustified. The side condition to this rule requires that x is not free in p.
The statement at the root of the tree is guaranteed to be valid only if this is the

case.
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Solution 3.6 (Another problem) In the following proof, both instances of the
V-intro rule may be unjustified. This rule may be used only when the variable
in question does not appear in any assumption that is currently in scope. Here,
p is assumed where the rule is used, and we have no guarantee that x is free in
p. The same is true of q. The statement at the root of the tree can be guaranteed
valid only when x is free in neither p nor g.
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