
Solutions for Chapter 12

Schema Operators

Solution 12.1 (Normalisation)

(a) Suppose that a declaration with some constraint information appears in
one schema but not in the other. To include this declaration in the declar-
ation part of the expansion would be to insist that this constraint holds,
whereas it may be only one part of a disjunction.
As an extreme example, consider the following two schemas:

A
a : N

B
b : N

the disjunction A ∨ B should expand to

a,b : Z

a ∈ N ∨ b ∈ nat

To obtain the correct expansion in this case, we must normalise before
disjunction.

(b) Normalisation is not required in the expansion of a schema conjunction.
Merging the declaration parts of two schemas produces the conjunction
of any constraint information that is present.

�

2 Solutions

Solution 12.2 (Operators)

(a) The two schemas S and T have the same declaration part, so their con-
junction is easily calculated:

a,b : N

a = b

(b) Similarly, their disjunction may be obtained simply by disjoining the two
predicates. Our knowledge of arithmetic tells us that any pair of natural
numbers must satisfy one of the two disjuncts, and hence the resulting
predicate is true.

a,b : N

(c) The schema U has a different declaration from S ; it introduces an extra
component, c, but it makes no mention of b. We may merge the declara-
tions and conjoin the predicates:

a,b : N
c : PN

a ≤ b ∧ a ∈ c

(d) If we fail to normalise the schemas S and U , then we might obtain:

a,b : N
c : PN

a ≤ b ∨ a ∈ c

If we remember normalise before disjoining, then we get the correct result:

a,b : Z
c : PZ

(a ≤ b ∧ a ∈ N ∧ b ∈ N) ∨ (a ∈ c ∧ a ∈ N ∧ c ∈ PN)

These two attempts at expanding a disjunction may seem to be equivalent,
but the second has a stronger predicate part. As an example, consider the

12 / Schema Operators 3

following predicate:

∃a,b : Z; c : PZ | a 6∈ c • (S ∨ U)

The first attempt would make this logically equivalent to

∃a,b : N; c : PZ | a 6∈ c • a ≤ b ∧ c ∈ N

while the second would yield

∃a,b : N; c : PZ | a 6∈ c • a ≤ b

The statement that c is a set of natural numbers is part of the constraint
information of U .

(e) U ∧ V is an undefined expression; the types of component c do not match.

(f) Remembering to normalise S before negating the constraint information
that it contains, we are left with the following schema:

a,b : Z

(a > b) ∨ ¬({a,b} ⊆ N)

(g) If we are conjoining two schemas, then there is no need to normalise either
of them.

a,b : N
a′,b′ : N

a ≤ b ∧ a′ ≤ b′

(h) Schema inclusion is merely an alternative form of schema conjunction;
again, there is no need to normalise either of the schemas involved.

a,b : N
c : PN

a ≤ b ∧ {a,b} ⊆ c

The semicolon in the declaration part of this schema should not be con-
fused with schema composition.

�

4 Solutions

Solution 12.3 (Conventions)

(a) Assuming that ∆S has the conventional interpretation, we may expand W
to obtain

W
a,b : N
a′,b′ : N
x? : N

a ≤ b ∧ a′ ≤ b′

x? ≤ a
a′ = x? ∧ b′ = b

(b) Similarly, the expansion of Y yields

Y
a,b : N
a′,b′ : N
y ! : N

a ≤ b
a′ = a ∧ b′ = b
y ! = a

(c) The two schemas in this disjunction have the same declaration part, so
there is no need to normalise before combining them:

W ∨ X
a,b,a′,b′ : N
x? : N

a ≤ b ∧ a′ ≤ b′

((x? ≤ a ∧ a′ = x? ∧ b′ = b) ∨
(x? > b ∧ a′ = a ∧ b′ = x?))

(d) The conjunction of W and X represents an impossible combination:

W ∧ X
a,b,a′,b′ : N
x? : N

false

12 / Schema Operators 5

(e) Hiding the after components a′ and b′, we obtain a constraint upon x?, a,
and b which is enough to ensure that suitable values of a′ and b’ exist.

W \ (a′,b′)
a,b : N
x? : N

x? ≤ a ∧ a ≤ b

�

Solution 12.4 (Composition)

(a)

Op1 o
9 Op2

= [∆S | ∃ x0 : N • (x0 = x + 1 ∨ x0 = 0) ∧ x0 ≠ 0 ∧ x′ = x0 − 1]
= [∆S | ∃ x0 : N • x0 = x + 1 ∧ x0 ≠ 0 ∧ x′ = x0 − 1]
= [∆S | x + 1 ∈ N ∧ x + 1 ≠ 0 ∧ x′ = x + 1− 1]
= [∆S | x′ = x]

(b)

Op2 o
9 Op1 = [∆S | x ≠ 0 ∧ (x′ = x ∨ x′ = 0)]

(c)

Op1 o
9 Op1 = [∆S | x′ = 1 ∨ x′ = 0 ∨ x′ = x + 2]

(d)

Op2 o
9 Op2 = [∆S | x ≥ 2 ∧ x′ = x − 2]

�

Solution 12.5 (Implication) The schema operators ⇒ and a have the same
interpretation—in terms of disjunction, conjunction, and negation—as the cor-
responding logical operators:

(a) S ⇒ T = ¬ S ∨ T

(b) S a T = S ⇒ T ∧ T ⇒ S

�

6 Solutions

Solution 12.6 (Access control)

(a)

AccessControlInit
AccessControl′

status′ = off
hosts′ = {local}
local′ = local

(b)

On
∆AccessControl

status′ = on
hosts′ = {local}
local′ = local

Off
∆AccessControl

status′ = off
local′ = local

(c)

Add
∆AccessControl
names? : PNames

status′ = on
hosts′ = hosts ∪ lookup(| names |)
local′ = local

Remove
∆AccessControl
names? : PNames

status′ = on
hosts′ = hosts \ lookup(| names |)
local′ = local

12 / Schema Operators 7

�

Solution 12.7 (Supermarket)

(a)

JoinQueue
∆SuperMarket
p? : Person
c? : dom queue

p? 6∈ ⋃{c : dom queue • ran c}
{c?} −/ queue′ = {c?} −/ queue
queue c? = (queue c) _ 〈p?〉

(b)

AlreadyQueueing
ΞSuperMarket
p? : Person

p? ∈ ⋃{c : dom queue • ran c}

PositionClosed
ΞSuperMarket
c? : checkouts

c? 6∈ dom queue

NotOneOfOurCheckouts
ΞSuperMarket
c? : Checkout

c? 6∈ checkouts

(c)

8 Solutions

ChangeQueue
∆SuperMarket
p? : Person
c1?, c2? : dom queue

{c1?, c2?} −/ queue′ = {c1?, c2?} −/ queue
p? ∈ ran(tail queue c1?)
queue c1? = queue c1? u (Person \ {p?})
queue c2? = (queue c2?) _ 〈p?〉

(d)

NotInThisQueue
ΞSuperMarket
p? : Person
c1? : dom queue

p? 6∈ ⋃{c : dom queue • ran c}

(e)

JoinQueue =̂ JoinQueue0 ∨
AlreadyQueueing ∨
PositionClosed ∨
NotOneOfOurCheckouts

ChangeQueue =̂ ChangeQueue0 ∨
NotInThisQueue ∨
PositionClosed[c1?/c?] ∨
NotOneOfOurCheckouts[c1?/c] ∨
PositionClosed[c2?/c?] ∨
NotOneOfOurCheckouts[c2?/c]

�

