
Array specification

From: Sommerville, I. Software Engineering, 5th edition (Chap 10) Addison Wesley, 1995 Slide 8

sort Array
imports INTEGER

Arrays are collections of elements of generic type Elem. They have a
lower and upper bound (discovered by the operations First and Last).
Individual elements are accessed via their numeric index.
Create takes the array bounds as parameters and creates the array,
initialising its values to Undefined. Assign creates a new array which
is the same as its input with the specified element assigned the given
value. Eval reveals the value of a specified element. If an attempt is
made to access a value outside the bounds of the array, the value is
undefined.

Create (Integer, Integer) → Array
Assign (Array, Integer, Elem) → Array
First (Array) → Integer
Last (Array) → Integer
Eval (Array, Integer) → Elem

First (Create (x, y)) = x
First (Assign (a, n, v)) = First (a)
Last (Create (x, y)) = y
Last (Assign (a, n, v)) = Last (a)
Eval (Create (x, y), n) = Undefined
Eval (Assign (a, n, v), m) =
 if m < First (a) or m > Last (a) then Undefined else
 if m = n then v else Eval (a,
m)

ARRAY (Elem: [Undefined → Elem])

List specification

sort List
imports INTEGER

Defines a list where elements are added at the end and removed
from the front. The operations are Create, which brings an empty list
into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the
head from its input list.

Create → List
Cons (List, Elem) → List
Tail (List) → List
Head (List) → Elem
Length (List) → Integer

Head (Create) = Undefined -- Error to evaluate an empty list
Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0
Length (Cons (L, v)) = Length (L) + 1
Tail (Create) = Create
Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v)

LIST (Elem: [Undefined → Elem])

From: Sommerville, I. Software Engineering, 5th edition (Chap 10) Addison Wesley, 1995 Slide 12

Binary tree specification

Create → Binary_tree
Add (Binary_tree, Elem) → Binary_tree
Left (Binary_tree) → Binary_tree
Data (Binary_tree) → Elem
Right (Binary_tree) → Binary_tree
Is_empty (Binary_tree) → Boolean
Contains (Binary_tree, Elem) → Boolean
Build (Binary_tree, Elem,Binary_tree) → Binary_tree

sort Binary_tree
imports BOOLEAN

Defines a binary tree where the data is of generic type Elem.
See Figure 10.5 for interface operation description.
Build is an additional primitive constructor operation which is
introduced to simplify the specification. It builds a tree given the
value of a node and the left and right sub-trees.

Add (Create, E) = Build (Create, E, Create)
Add (B, E) = if E < Data (B) then Add (Left (B), E)
 else Add (Right (B), E)
Left (Create) = Create
Right (Create) = Create
Data (Create) = Undefined
Left (Build (L, D, R)) = L
Right (Build (L, D, R)) = R
Data (Build (L, D, R)) = D
Is_empty (Create) = true
Is_empty (Build (L, D, R)) = false
Contains (Create, E) = false
Contains (Build (L, D, R), E) = if E = D then true else if E < D then
 Contains (L, D) else Contains (R,D)

BINTREE (Elem: [Undefined → Elem, .=. → Bool, .<. → Bool]
)

From: Sommerville, I. Software Engineering, 5th edition (Chap 10) Addison Wesley, 1995 Slide 16

Cursor specification

sort Cursor
imports INTEGER, COORD, BITMAP

A cursor is a representation of a screen position. Defined
operations are Create which associates an icon with the cursor at a
screen position, Position which returns the current coordinate of the
cursor, Translate which moves the cursor a given amount in the x
and y directions and Change_Icon which causes the cursor icon to
be switched.

The Display operation is not defined formally. Informally, it causes
the icon associated with the cursor to be displayed so that the
top-left corner of the icon represents the cursor’s position. When
displayed, the ‘clear’ parts of the cursor bitmap should not obscure
the underlying objects.

Create (Coord, Bitmap) → Cursor
Translate (Cursor, Integer, Integer) → Cursor
Position (Cursor) → Coord
Change_Icon (Cursor, Bitmap) → Cursor
Dispaly (Cursor) → Cursor

Translate (Create (C, Icon), xd, yd) =
 Create (COORD.Create (X(C)+xd, Y(C)+yd), Icon)
Position (Create (C, Icon)) = C
Position (Translate (C, xd, yd)) = COORD.Create (X(C)+xd, Y(C)+yd)
Change_Icon (Create (C, Icon), Icon 2) = Create (C, Icon2)

CURSOR

From: Sommerville, I. Software Engineering, 5th edition (Chap 10) Addison Wesley, 1995 Slide 21

