
Software Architecture
Perspectives on an Emerging Discipline

CS 532 Software Design
Chapter Three

Learning Objective
...to validate the Software Architectural Styles given in the prior chapter.

Seven examples illustrate how we can use architectural principles.
Lets (1) consider how solutions to the same problems provide different

benefits; (2) get experience developing a domain specific style for a
family of industrial products; (3) find out how to apply a process-

control style to system design; and (4) see examples of heterogeneous
architectures to understand why they were architected in such a way.

 Frederick T Sheldon

 Assistant Professor of Computer Science
 University of Colorado at Colorado Springs

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

2

Chapter Three
Case Studies in Architectural Design
⊗ Criteria for decomposing a system into modules

(components or sub-units)
⊕ Functional with shared access to data (representations)

⊕ Hiding design decisions

⊗ PREMISE: Different problem decomposition strategies vary greatly in their
ability to withstand design changes É changes in the

⊕ Algorithm,
⊕ Data representation,
⊕ Enhancements to system functions,
⊕ Performance (time and space) and
⊕ Reuse

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

3

Four Architectural Designs for
the KWIC System

See page 33 for a description of KWIC

⊗ KWIC
⊕ Input / Shift / Alphabetize / Output

⊗ Lets consider the issues of algorithm, data
representation, enhancements to system
functions, performance (time/space) and
reuse... against several solution types.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

4

Sol-1: Main/Subprogram w/
Shared Data

⊗ Advantages:
⊕ Data is represented and used efficiently

⊕ Intuitive appeal

⊗ Disadvantages:
⊕ Change in data storage format affects all

modules

See Figure 3.1

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

5

Sol-2: Abstract Data Types

⊗ Same five modules but no data sharing:
⊕ Each module provides an interface that permits

other components to access data only by
invoking procedures in that interface

⊕ Same logical decomposition as
Main/Subprogram

⊗ Advantages:
⊕ Both algorithms and data can be changed

without affecting the other modules

See Figure 3.2

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

6

Sol-2: Abstract Data Types

⊗ Advantages (continued)
⊕ Reuse is supported:

¥ Modules make fewer assumptions about the others

⊗ Disadvantages
⊕ Not well suited for certain kinds of functional

enhancements
¥ Modifying existing modules may compromise their

simplicity or

¥ Adding new modules may lead to performance penalties

Continued

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

7

Sol-3: Implicit Invocation

⊗ Uses shared data except for two important
differences...
⊕ Interface to the data is more abstract (using list

or set but they do not expose storage formats)

⊕ Interactions are based on an active data model
¥ E.g., the act of adding a Ònew lineÓ to the line

storage causes an event → the shift module.

♦ (1) circular shifts (in a separate, abstract-data store) and,

♦ (2) the alphabetize is then implicitly invoked.

See Figure 3.3

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

8

Sol-3: Implicit Invocation

⊗ Advantages
⊕ Supports functional enhancement...

¥ Additional modules can be registered so that they will
be invoked by data changing events.

⊕ Insulates computations (data is accessed
abstractly) from changes in data representation

⊕ Supports reuse
¥ Implicitly invoked modules rely only on the existence

of certain externally triggered events → de-couples
modules from each other!

Continued

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

9

Sol-3: Implicit Invocation

⊗ Disadvantages
⊕ Invocations are data driven and therefore:

¥ Difficult to control the processing order

¥ Most natural implementations of this kind tend to
use more space!

Continued

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

10

Sol-4: Pipes and Filters

⊗ Uses four filters working in a sequence

⊗ Control is distributed
⊕ Filters run when input data is available

⊕ No data sharing except the piped data stream

⊗ Desirable properties (advantages)
⊕ Maintains the intuitive flow of processing

⊕ Supports reuse
¥ Each filter can function in isolation

¥ New functions easily added by inserting filters at the
appropriate points in the processing sequence

See Figure 3.4

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

11

Sol-4: Pipes and Filters

⊗ Disadvantages
⊕ Virtually impossible to modify the design to

support interactive system

⊕ Deleting a line would some persistent shared
storage
¥ Violates a basic tenet of this approach

⊕ Uses space inefficiently
¥ Filters copy all the to its input port

Continued

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

12

Comparisons
⊗ Shared data supports

⊕ Change in function and performance

⊗ ADTs supports
⊕ Change in data representation, performance and

reuse

⊗ Implicit invocation supports
⊕ Change in algorithm and function

⊗ Pipe and filter supports
⊕ Reuse and change in function + algorithm

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

13

Comparisons Must be Cognizant of
Certain Design Considerations

⊗ Intended use
⊕ Batch versus interactive

⊕ Update intensive versus query-intensive

⊕ For example: Pipes and filter solution
¥ Easily allows insertion of new filters (supports

changes in algorithm, function and reuse) but the data
representation is wired into assumptions about the
kind of data that is transmitted along the pipes!

¥ Additional overhead may also involve the parsing and
un-parsing of the data into pipes

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

14

Instrumentation Software
Case Study

⊗ Purpose: develop a reusable system
architecture for oscilloscopes
⊕ Functionality and features

¥ Performs dozens of measurements

¥ Megabytes of internal storage

¥ Interface to a network of workstations & instruments

¥ Sophisticated user interface:
♦ Touch panel screen

♦ Built-in help facilities

♦ Color displays

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

15

The Problems
⊗ Legacy of heterogeneous conventions and

programming languages across the company

⊗ Rapidly changing market demands

⊗ Need to meet the demands of specialized markets
⊕ General purpose → patient monitoring → automotive

diagnostics

⊗ Performance was suffering because
⊕ Different operational modes were satisfied by loading

different software which was getting larger and larger

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

16

The Goals and Results
⊗ Develop and architectural framework that

would address these problems

⊗ Results:
⊕ Domain specific SW architecture as a basis for

the next generation of oscilloscopes

⊕ The framework has been extended and adapted
to accommodate a broader class of systems

⊕ Also, refined to better suit the needs of the
instrumentation software!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

17

1st Attempt: Object-Oriented
Model

⊗ Clarified the data types
⊕ Waveform, signals, measurements, trigger

modes, É

⊕ However, this fell short of expectations due to:
¥ No overall model that explained how the types fit

together

¥ Not clear how to partition functionality
♦ Should the measurements be associated with the types of

data being measured,

♦ Which objects should the UI interface with

See Fig. 3.6

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

18

2nd Attempt: A Layered Model

⊗ Core layer - signal manipulation functions
⊕ Filter signals as they enter the oscilloscope

⊗ Subsequent layers
⊕ Waveform acquisition (2), manipulation (3)

¥ Measurement, addition of waveforms, Fourier
transformation . . .

⊕ Display functions (4)
¥ Mapping digitized waveforms and measurements to

visual representations

¥ Responsible for interacting with the user

See Fig. 3.7

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

19

2nd Attempt: A Layered Model
→Debacle!

⊗ Layered models was intuitively appealing

⊗ Unfortunately. . .
⊕ Wrong model for the application domain!

¥ The boundaries of abstraction enforced by layers conflicted
with the needs for interaction among various functions!

¥ Model suggested that all interactions with the user should
be with the visual representationÉbut,

¥ Real users need to directly affect the functions at all layers
♦ E.g., setting attenuation at the signal manipulation layer, choosing

acquisition mode and parameters at the acquisition layer, etc.)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

20

3rd Attempt:Pipe and Filter
Model

⊗ Functions viewed as incremental
transformers of data
⊕ Signal transformers used to condition external

signals

⊕ Acquisition transformers derive digitized
waveforms from these signals

⊕ Display transformers convert these waveforms
into visual data

See Fig. 3.8

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

21

Significant Improvement, Except...
⊗ Functions were not isolated in separate partitions

⊕ Nothing prevents signal data from feeding directly
into display filters

⊕ Model was intuitive wrt the engineers view of signal
processing
¥ Allowed clean intermingling and substitution of HW and

SW components within a system design!

⊕ However, one main problem was
¥ Unclear how the user would interact with it!!!
¥ User put simply at visual end → worse than layered model!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

22

4th Attempt:Modified Pipe and
Filter Model

⊗ Accounts for the user inputs by associating
with each filter a control interface
⊕ Setting the sample rate, configuration

parameters

⊕ The filters were modeled as higher order (HO)
functions

⊕ The HO functions determine what data
transformation the filter will perform

See Fig. 3.9

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

23

Solved the UI Problem

⊗ ððProvided a collection of settings to
dynamically modify aspects of the
oscilloscope characteristics
⊕ Decoupled certain functions from the UI (as

was needed for the signal processing functions)

⊕ UI can treat the signal processing functions
solely in terms of the control parameters
¥ Changes in the implementation SW/HW are possible

with out affecting the implementation of the UI

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

24

Further Specialization Yet
⊗ Still, performance was poor

⊕ Each time a filter needs to process a wave-form
it copies a significantly large chunk of internal
storage!

⊕ Further, different filters run at radically different
speeds! É A significant bottleneck

⊗ Solution was to introduce colors of pipes
⊕ Some allowed processing w/o copying

⊕ Some allowed incoming data to be ignored

⊕ In all, tailoring of pipe/filter computations

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

25

What Have We Learned

⊗ Seen some real issues

⊗ Emphasized the trade-offs

⊗ See that typical industrial SW must be
adapted to the specific domains

⊗ The final result depended greatly on the
properties of the pipe and filter architectures

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

26

Mobile Robotics System
Case Study

⊗ Controls manned/partially manned vehicles
⊕ Space exploration, hazardous waste disposal,

underwater exploration

⊗ The software must deal with:
⊕ External sensors and actuators

⊕ Real-time responsiveness

⊕ Acquire sensor I/P, control motion and plan
future paths

⊕ Many issues from imperfect inputs to
unexpected/unpredictable obstacles, and events

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

27

Design Considerations:
Mobile Robots

⊗ Four basic requirements:
⊕ Accommodate deliberate and reactive behavior

¥ Coordinate actions it must undertake to achieve its designated
objective (collect rock sample, avoid obstacle)

⊕ Allow for uncertainty
¥ Framework for actions even when faced with incomplete or

unreliable information (contradictory sensor readings)

⊕ Account for dangers
¥ Must be fault tolerant, safe and with high performance (e.g., cope

with reduced power, dangerous vapors, etc.)

⊕ Give design flexibility
¥ Development requires frequent experimentation and reconfiguration

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

28

Lets Examine Four Architectural
Designs

⊗ LozanoÕs Control Loops

⊗ ElfesÕs Layered Organization

⊗ SimmonsÕs Task Control Architecture

⊗ ShaferÕs Application of Blackboards

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

29

Solution 1: Control Loop
 Ñ Specifics Ñ

⊗ Industrial robots need only handle
minimally unpredictable events
⊕ Tasks are fully defined (no need for a

planer) and has no responsibility wrt its
environment
¥ Open loop paradigm applies

¥ Robot initiates actions without caring about
consequences

⊕ Lets add feedback for closed loop
¥ Robot adjusts the future plans based on monitored

information

See Fig. 3.9

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

30

Solution 1: Control Loop
Requirements Trade-Off Analysis

⊗ Req1Ð Advantage: simplicity
⊕ Simplicity is a drawback in more unpredictable environments

⊕ Robots mostly confronted with disparate discrete events that
require them to switch between very different behavior modes

⊕ For complex tasks, gives no leverage for decomposition into
cooperating components

⊗ Req2Ð Advantage: reducing unknowns through iteration
⊕ Is biased toward one method (only).

⊕ Trial and error process of action-reaction to eliminate possibilities
are each turn.

⊕ No framework for integrating these with the basic loop or for
delegating them to separate entities.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

31

Solution 1: Control Loop
Requirements Trade-Off Analysis Continued

⊗ Req3Ð Advantage: supports fault tolerance and safety
⊕ Simplicity makes duplication easy

⊕ Reduces the chance of errors creeping into the system

⊗ Req4 Ð Advantage: clearly partition-able into supervisor,
sensors and motors that are independent and replaceable
⊕ More refined tuning is however not really supported (inside the

modules)

⊗ Conclusion: Most appropriate for simple robotic systems

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

32

Solution 2: Layered Architecture
Ñ Specifics Ñ

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

33

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

34

Solution 2: Layered Architecture
Requirements Trade-Off Analysis

⊗ Req1
⊕

⊗ Req2

⊗ Req3

⊗ Req4

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

35

Solution 3: Implicit Invocation
Basis and Specifics

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

36

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

37

Solution 3: Implicit Invocation
Requirements Trade-Off Analysis

⊗ Req1
⊕

⊗ Req2

⊗ Req3

⊗ Req4

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

38

Solution 4: Blackboard Arch.
Basis and Specifics

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

39

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

40

Solution 4: Blackboard Arch.
Requirements Trade-Off Analysis

⊗ Req1
⊕

⊗ Req2

⊗ Req3

⊗ Req4

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

41

Comparisons The Score Card
⊗ Task coordination

⊕ Ctl loop 2 | Layers 0 | ImpInvoc 3 | Blkbrd 1

⊗ Dealing with uncertainty
⊕ Ctl loop 0 | Layers 2 | ImpInvoc 2 | Blkbrd 1

⊗ Fault-tolerance
⊕ Ctl loop 2 | Layers 2 | ImpInvoc 3 | Blkbrd 1

⊗ Safety
⊕ Ctl loop 2 | Layers 2 | ImpInvoc 3 | Blkbrd 1

⊗ Performance
⊕ Ctl loop 2 | Layers 2 | ImpInvoc 3 | Blkbrd 1

⊗ Flexibility
⊕ Ctl loop 2 | Layers 0 | ImpInvoc 1 | Blkbrd 1

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

42

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

43

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

44

Cruise Control Case
Study

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

45

Three Vignettes
in Mixed Style

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

46

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

47

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

48

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

49

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

50

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

51

