
 Software Architecture
Perspectives on an Emerging Discipline

CS 532 Software Design

Chapter Two Learning Objective

...to give an appreciation of Software Architectural Styles. Many patterns or
architectural styles that exist today were developed over many years. System

designers recognized the value of specific organizational principles and structures
for certain classes of software. Lets consider some and indulge in the rich space

of architectural choices and understand some of the trade-offs involved.

Frederick T Sheldon

Assistant Professor of Computer Science
University of Colorado at Colorado Springs

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
2

Chapter Two
Emerging Issues of Architectural Design

⊗ Architecture styles
⊕ SW has organizational styles

¥ Client-server, pipe-filter, layered

¥ Object-oriented and data-flow

⊕ See Fig. 2.1 for a list of common styles

⊗ A style defines a family of systems in terms of a pattern of organizational
style. Effectively a vocabulary of components and connector types and a set of
constraints on how to combine all of those. Also, there may exist semantic
models that specify how to determine a systemÕs overall properties from the
properties of its parts

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
3

Key Architectural Issues
⊗ What is the design vocabulary

⊕ Components and connectors

⊗ What are the allowable structural patterns

⊗ What is the underlying computational model

⊗ What are the:
⊕ Essential Invariants of the style

⊕ Common examples of its use

⊕ Advantages / disadvantages

⊕ Common Specializations

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
4

Pipes and Filters
See Fig. 2.2

⊗ Each component has a set of I/Ps and O/Ps
⊕ Streams of data in and out such that output

begins before the input is consumed

⊕ Connectors serve as conduits for the streams

⊗ Invariants
⊕ Filters must be independent entities

⊕ Filters do not share state with other filters

⊕ Filters do not know the identity of the other
up/down stream filters

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
5

Pipes and Filters II

⊗ Invariants also include:
⊕ Correctness should not depend on the order that

the filters perform their incremental processing

⊕ Fair scheduling may be assumed
⊕ Hugh? This means that filters may reside on a time shared system where a

particular filter may get a slice of time and then need to relinquish the CPU

⊕ When each filter processes all its input data as a
single entity → Batch Sequential (a separate
style)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
6

Pipe and Filter Examples
⊗ Unix shell scripts

⊕ E.g, the notation: more | page filename

⊕ Run time mechanisms are provided by Unix

⊗ Compilers are pipeline systems
⊕ Though phases are not usually incremental

⊕ Scanning, parsing, semantic analysis, and code
generation

⊗ Other domains include:
⊕ DSP, parallel processing, functional programming

and distributed systems

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
7

Pipe and Filter Properties

⊗ Overall system I/O behavior can be
understood as a composition of behaviors

⊗ Supports reuse (Lego style plug and play)

⊗ Updating and adding new filters is easy

⊗ Natural concurrency

⊗ Filters may be implemented incrementally
and separately (executed in parallel with
other tasks)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
8

Data Abstraction / O-O Organization
See Fig. 2.3

⊗ Primitive ops are encapsulated in an ADT
(which are effectively the objects)

⊗ Objects are managers responsible for
preserving the integrity of a resource

⊗ Interactions through function / procedure
invocation

⊗ Important facets:
⊕ Preserving the integrity of its representation

⊕ Representation is hidden form other objects

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
9

Object Oriented Properties
The Good NewsÉ.

⊗ Hiding its representation form its clients:
⊕ Implementation may change without affecting

the clients

⊗ Bundling a set of accessing routines with
the data they may implement:
⊕ Allows designers to decompose problems

⊕ Collections of interacting agents

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
10

Object Oriented Properties
The Bad NewsÉ.

⊗ Objects must know each other to interact with one
another
⊕ Pipe-Filters are not constrained in this way

⊗ Whenever the identity of an object changes:
⊕ Modify all other objects that explicitly invoke it

⊕ In module-oriented langs we change the import list of
every module that uses the changed module

⊕ Other problems include transitive side effects:
¥ A uses B and C uses B but CÕs affect on B looks like AÕs

(unexpected) effect on B

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
11

Event Based / Implicit Invocation

⊗ Typically, component I/Fs provide a
collection of procedures and functions
⊕ Interaction among components ⇔ Invocation

⊗ Alternative integration technique:
⊕ Implicit invocation

⊕ Reactive integration

⊕ Selective broadcast

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
12

Implicit Invocation Works
⊗ Components announce or broadcast one or

more events
⊕ Other components can register for the event

⊕ The event announcement implicitly causes the
invocation of procedures

⊗ Examples
⊕ Debuggers, programming environments,

DBMS(to ensure coherence/consistency)

⊕ Syntax directed editors to support incremental
semantic checking

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
13

Implicit Invocation
The Good NewsÉ

⊗ Strong support for reuse
⊕ Register a new component

⊗ Eases system evolution

⊗ Interfaces are stable
⊕ good for when you need to replace a

component

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
14

Implicit Invocation
The Bad NewsÉ.

⊗ Components relinquish control over the
computation performed by the system
⊕ When a component announces an event it

cannot assume that the other components will
respond

⊗ Sometimes data can be passed with an event
⊕ However other times data exchange must rely

on the use of a repository

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
15

Layered Systems
See Fig. 2.4

⊗ Hierarchical organization
⊕ Each layer provides service to the layer above

⊕ A layer serves as a client to the layer below it

⊕ Works well for security purposes: special write-down
program is used to breech layers.

⊗ Components implement a Virtual Machine at
some layer in the hierarchy

⊗ Some layers may be partially opaque
⊕ Connectors are defined by the protocols that determine

how the layers actually interact

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
16

Layered Systems Examples

⊗ Layered communication protocols
⊕ Each layer provides a substrate for

communication at some level of abstraction

⊕ Lower layers define lower levels of interaction
right on down to the hardware

⊗ OS and Database systems

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
17

Layered Systems
The Good NewsÉ

⊗ Support for design based on increasing levels of
abstraction (useful for partitioning complex design
problems into incremental steps)

⊗ Support enhancements where changes to one layer
only affect at most two other layers

⊗ Support Reuse through interchangeable layering

⊗ Standard layer interfaces may be defined
⊕ E.g., ISO model and X-Window system protocols

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
18

Layered Systems
The Bad NewsÉ

⊗ Not always the most natural way to
structure a system

⊗ Performance considerations
⊕ Closer coupling between high level functions

and their low level implementations

⊗ Difficulty in finding the right levels of
abstraction (e.g., mapping existing protocols
to into the ISO framework)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
19

Repositories
See Fig. 2.5

⊗ Two distinct types of components:
⊕ Central data structure (I.e., the state)

⊕ Collection of independent components that
operate on the central data store.

⊗ Interaction among these entities can vary
significantly. Two major subcategories:
⊕ Traditional database

⊕ Blackboard (works like a trigger)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
20

Repositories → Blackboard

⊗ Knowledge sources
⊕ Independent parcels of application-dependent

knowledge

⊗ Blackboard data structure
⊕ Problem solving state data (changes to the

blackboard incrementally lead to the solution of
the problem)

⊗ Control
⊕ Driven by the state of the blackboard

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
21

Repositories
There Is Only Good NewsÉ

⊗ Naturally they are not a panacea

⊗ Many examples abound
⊕ Speech and pattern recognition (shared access

to data with loosely coupled agents

⊕ Batch-sequential systems with global databases

⊕ Programming environments organized as a
collection of tools

⊕ Most compilers operate on a base of shared
information (symbol table, syntax trees, etc)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
22

Interpreters
See Fig. 2.6

⊗ Virtual machine is produced in the software
⊕ Includes the pseudo-program being interpreted

and the interpretation engine

⊗ Pseudo-program
⊕ Program itself and the interpreters analog of its

execution state (activation record)

⊗ Interpretation engine
⊕ Definition of the interpreter and currents state

of its execution

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
23

Interpreter → Four Components

⊗ Interpretation engine to do the work

⊗ A memory that contains the pseudo-code to
be interpreted

⊗ A representation of the control state of the
interpretation engine

⊗ Representation of the current state of the
program being simulated

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
24

Interpreter Domain
⊗ Used to build virtual machines that close the

gap between
⊕ Computing engine expected by the semantics of

the program

⊕ Computing engine available in hardware

⊗ Programming language are sometimes
referred to as providing:
⊕ A virtual Pascal machine

⊕ A virtual Java machine

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
25

Process Control
See Figs. 2.7 - 2.11

⊗ Based on process control loops
⊕ Characterized both by the kinds of components

involved and the special relations that must
hold among them.

⊕ See Figure 2.7 for definitions:
¥ Process variables and controlled variable

¥ Input variable and manipulated variable

¥ Set point

⊕ System types include:
¥ Open-loop / closed-loop / feed-back and feed-

forward control

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
26

Process Control Mechanisms

⊗ Converting input materials to products
⊕ Specific properties of the output require

operations being performed on the inputs and
intermediate products

⊕ Controlled variables of the process: variables
that measure properties of the output materials

⊕ Manipulated variables are associated with
things that can be changed by the control
system to regulate the process

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
27

Control System Purpose
(Hint → Process Control)

⊗ Maintain specified properties of the outputs at
(sufficiently near) the given reference values (set
points

⊗ Open-loop
⊕ Process runs without surveillance (materials are pure

and the operations are repeatable)

⊗ Closed-loop
⊕ Properties are monitored (e.g., flow rates, temp.,

pressure)

⊕ Control comes in by changing the settings of the
apparatus (valves, heaters, and chillers)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
28

Process Control Closed-loop
Two General Forms

⊗ Feedback control (figure 2.10)
⊕ As discussed

⊗ Feedforward control (figure 2.11)
⊕ Anticipates future effects on the controlled

variable by measuring variables whose values
may be more timely

⊕ Useful when lags in the process delay the effect
of control changes

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
29

Process Control ← Software Paradigm

⊗ The normal model corresponds to an open-loop
system

⊗ If external disturbances affect the software
system, control paradigm should be considered:
⊕ Computation elements

¥ Process definition and control algorithm(s)

⊕ Data elements
¥ Process variables, set points and sensors

⊕ Control loop paradigm

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
30

Other Familiar Architectures

⊗ Distributed processes characterized by:
⊕ Topological features such as ring or star

⊕ Others in terms of IPC protocols

⊕ Client-Server (who-knows-who / RPC)

⊗ Main-program / subroutine organizations
⊕ Systems mirror of the programming language

⊕ Main program is driver

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
31

Other Familiar Architectures II

⊗ Domain-specific software architectures
⊕ Reference architectures tailored to a family of

applications
¥ Avionics

¥ Command and control

¥ Vehicle management systems

⊕ Synthesis from the architectural discription
¥ In many cases the Architecture is sufficiently

constrained that an executable system can be
generated automatically (or semi-automatically)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
32

Other Familiar Architectures III

⊗ State transition systems
⊕ Common for many reactive systems

⊕ Defined in terms of named transitions that
move a system from state to state

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
33

Heterogeneous Architectures
⊗ Most systems are not pure

⊗ Combining styles is possible in several ways
⊕ Internal / external embedding of styles

⊕ Switchboard
¥ Permit a single component to use a mixture of

architectural connectors (e.g., Unix uses repository
and pipe-filter mixtures)

¥ Active database repository + implicit invocation
♦ External components register for interest in portions of the

database. The database automatically invokes the
appropriate tools on the basis of this association

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
34

Heterogeneous Architectures II

⊗ Combining styles
⊕ Completely elaborate one level of an

architectural description in a completely
different style

