
 Software Architecture
Perspectives on an Emerging Discipline

CS 532 Software Design

Learning Objective

. . . to give an appreciation of Software Architecture as an emerging and important
facet of the upstream portion of the Software Life Cycle. As a phase that comes
after requirement elicitation/specification and before Software Design, it’s an

important tool/discipline useful to the software engineering practitioner.

Frederick T Sheldon

Assistant Professor of Computer Science
University of Colorado at Colorado Springs

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
2

Emerging Issues of Architectural Design

⊗ What is Software Architecture?
⊕ Structural and organizational issues about systems

¥ Global control, communication protocols, synchronization and
data access

¥ Allocation of resources (e.g., function → design elements)

¥ Design element composition (info hiding, coupling, cohesion)

¥ Physical distribution

¥ Scaling and performance

¥ Dimensions of evolutions

¥ Selection among design alternatives

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
3

Example Architectures

⊗ Client - Server model

⊗ Remote Procedure Call (RPC) structuring

⊗ Abstraction layering

⊗ Distributed Object Oriented approach

⊗ Pipeline - Filter framework

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
4

Architecture Patterns

⊗ Collection of idioms, patterns, and styles of
software system organization that serves as
a shared, semantically rich vocabulary

⊗ Example Pipelined Architecture:
⊕ Streamed transformation

⊕ Function behavior can be derived
compositionally from the behavior of
constituent filters

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
5

Frameworks for Understanding

⊗ Software architecture structures sere as
frameworks for understanding the big
picture (broader issues):
⊕ System level concerns

⊕ Global flow rates, patterns of communication

⊕ Executive control structure, scalability

⊕ System evolution

⊗ Properties can be fleshed out

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
6

Architecture of Software Systems

⊗ Defines the system in terms of
computational components and interactions
among the components
⊕ Components areÉ

¥ Clients / Servers

¥ Databases

¥ Filters

¥ Layers in a hierarchy of elements/components

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
7

Software Design Levels
(See Fig. 1.1)

⊗ Architecture
⊕ Overall association of system capability with components

⊗ Code
⊕ Algorithms, data structures, language primitives, etc...

⊗ Executables
⊕ Memory maps, stacks, register allocations, ISAs

⊗ Problem is, SW is understood at the level of
⊕ Intuition

⊕ Anecdote

⊕ Folklore

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
8

One Possible Solution

⊗ Improve the precision of understanding at
the SW Architecture level

⊕ Programs, modules, systems

¥ Rich collection of interchange representations and
protocols to connect components and system
patterns to guide the compositions

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
9

An Engineering Discipline for
Software

⊗ What is engineering?

⊕ Creating cost effective solutions . . .

⊕ . . . to practical problems . . .

⊕ . . . by applying scientific knowledge . . .

⊕ . . . Building things . . .

⊕ . . . In the service of mankind.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
10

Engineering Is . . .

⊗ Relies on codifying scientific knowledge
about a technological problem domain

⊗ Provides answers for common questions
that occur in practice

⊗ Engineering shares prior solutions rather
than relying on virtuoso problem solving

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
11

Routine and Innovative Design

⊗ Routine design involves solving familiar problems
⊕ Reusing portions of prior solutions.

⊗ Innovative design involves finding novel solutions
to unfamiliar problems.

⊗ Software in most application domains is treated
more often as original than routine...
⊕ Certainly more so than would be necessary if we

captured and organized what we already know!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
12

Model for Evolution of Engineering
(Fig. 1.2)

⊗ Engineering emerges from the commercial
exploitation that supplants craft

⊗ Exploiting technology depends on . . .
⊕ Scientific engineering

⊕ Management

⊕ Marshaling of resources

⊗ Engineering must return workable solutions!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
13

Maturity of Supporting Science

⊗ Research on ADTs:
⊕ Specifications (abstract models and algebraic axioms)

⊕ Software Structure (bundling representations with
algorithms)

⊕ Language issues (protecting integrity of information not
in specifications)

⊕ Integrity constraints (invarients of data structures)

⊕ Rules for composition (declarations)

⊗ The whole field of computing is only 40yrs oldÉ many theories are emerging
in the research pipeline

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
14

Interaction Between Science and Engineering
(Figure 1.3)

⊗ Models and theories
⊕ Improved practice

⊕ New problems
¥ Ad hoc solutions

¥ Novel solutions

⊗ Folklore
⊕ Codification

⊕ Models and theories

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
15

Evolution of Software Engineering
(Figure 1.4)

⊗ Where does current SE practice lie o the
path to engineering?
⊕ In some cases itÕs a craft

⊕ Yet in others itÕs a commercial practice

⊕ And, in isolated examples, one could argue that
professional engineering is taking place!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
16

Codification Through Abstract Mechanisms

⊗ Conversion from an intuition (i.e., get the data structure
right [ADT]) to a theory involve understanding the
following:
⊕ The software structure (a representation packaged with its

primitive operators)

⊕ Specifications (mathematically expressed as abstract models or
algebraic axioms)

⊕ Language issues (modules, scope, user-defined types)

⊕ Integrity of the result (invarients of data structures and protection
from other manipulation)

⊕ Rules for combining types (declarations)

⊕ Information hiding (protection of properties not explicitly included
in specifications)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
17

Status of Software Architecture
The Bad News...

⊗ SW Architects have been unable to exploit
commonalties in system architectures

⊗ Make principled choices among design
alternatives

⊗ Specialize general paradigms to specific domains

⊗ Teach their craft to others

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
18

Status of Software Architecture
The Good News...

⊗ The issues and problems are being addressed in
such areas asÉ
⊕ Module interface languages (MIL)

⊕ Domain specific architectures

⊕ Software reuse

⊕ Codification of organizational patterns for SW

⊕ Architecture description languages

⊕ Formal underpinnings for architectural design

⊕ Architectural design environments

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
19

Some Open Problems

⊗ Choosing the appropriate architecture for a
given problem or domain
⊕ Rules of style - dictate how to package

components. But,É

⊕ Interfaces make incompatible assumptions
¥ E.g., in UNIX sort is available as a filter and a

procedure.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
20

Open Architectures

⊗ Some architectures are carefully
documented and widely disseminated
⊕ ISOÕs interconnection reference model

⊕ NIST/ECMA Reference model (PCTE)
¥ Generic SEE framework

⊕ X-Windows (distributed Window I/F
architecture)
¥ Based on event triggering and callbacks

