Viewpoint-oriented requirements methods

Objectives

- To explain the notion of viewpoints in RE
- To explain the notion of viewpoints in structured analysis
- To introduce emerging viewpoint approaches in RE

Viewpoints-oriented requirements engineering

- RE involves the capture, analysis and resolution of many ideas, perspectives and relationships at varying levels of detail
- Methods based on rigid global schemes do not adequately address the diversity of issues presented by RE problems
- Methods based on the notion of viewpoints evolved to address the problem
Example

- Consider the requirements for a system to be installed on a train which will automatically bring the train to a halt when it wrongly goes through a danger signal.
- Some examples of viewpoints for this system and the requirements they encapsulate might be:
 - **Driver** Requirements from the train driver on the system
 - **Trackside equipment** Requirements from trackside equipment which must interface with the system to be installed
 - **Safety engineer** Safety requirements for the system
 - **Existing on-board systems** Compatibility requirements
 - **Braking characteristics** Requirements which are derived from the braking characteristics of a train.

Advantages of viewpoint-oriented approaches

- They explicitly recognise the diversity of sources of requirements
- They provide a mechanism for organising and structuring this diverse information
- They impart a sense of thoroughness (completeness)
- They provide a means for requirements sources or stakeholders to identify and check their contribution to the requirements

SADT viewpoints

- Structured analysis and design technique (SADT) was developed in the late 1970s
- The notation consists of a rectangle representing some system activity and a set of four arrows
- SADT does not have an explicit notion of viewpoints
 - Instead viewpoints are an intuitive extension of its modelling technique
- SADT “viewpoints” are sources and sinks of data
- In example “viewpoints” are shown in square brackets
Library example

Controlled requirements expression (CORE)

- CORE was developed for the British Aerospace in the late 1970s by System Designers
- The CORE method is based on functional decomposition approach
- CORE is explicitly based on viewpoints
- Viewpoints defines two types of viewpoint:
 - Defining viewpoints: Sub-processes of the system, viewed in a top-down manner
 - Bounding viewpoints: Entities that interact indirectly with the intended system

CORE method steps

- The CORE method is made up of 7 iterative steps:
 - Viewpoint identification
 - Viewpoint structuring
 - Tabular collection
 - Data structuring
 - Single viewpoint modelling
 - Combined viewpoint modelling
 - Constraint analysis
Library example
Step 1-Identifying viewpoints

- The first step involves identifying possible viewpoints
- From this initial list, defining and bounding viewpoints are identified
- There are no hard and fast rules for identifying relevant viewpoints

Initial viewpoints

Step 1 - Pruning viewpoints

- The last stage in viewpoint identification involves pruning the identified viewpoints into a set of bounding and defining viewpoints as shown in
- Each bubble represents the most abstract form of the viewpoint
Bounding and defining viewpoints

Bounding Viewpoints
- Library user
- Issue clerk
- Book supplier
- User database

Defining Viewpoints
- Register user
- Issue item
- Catalogue item
- Validate
- User database
- Return item
- Order item
- Update item
- Item database

Step 2 - Viewpoint structuring
- Involves iteratively decomposing the ‘target system’ into a hierarchy of functional sub-systems
- Structurally bounding viewpoints are placed at the same level as the target system
- Each functional subsystem constitutes a viewpoint

Library system- viewpoint structuring

Library World
- Library user
- Book supplier
- Library system
- Item database
- User database
- Register function
- Issue function
- Update function
- Order function
Step 3 - Tabular collection

- A mechanism for gathering information about a viewpoint
- Each viewpoint is considered in turn with respect to the action it performs
 - Data used for these actions, the output data derived, the source of the data and the destination of the data
- Tabular collections serve the purpose of exposing omissions and conflicts in the information flow across viewpoints

Library system - tabular collection

<table>
<thead>
<tr>
<th>Source</th>
<th>Input</th>
<th>Action</th>
<th>Output</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library user</td>
<td>requested item</td>
<td>check item</td>
<td>issued item</td>
<td>Library user</td>
</tr>
<tr>
<td>Library user</td>
<td>library card</td>
<td>validate</td>
<td>error message</td>
<td>Issue clerk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user</td>
<td>lost default message</td>
<td>Issue clerk</td>
</tr>
</tbody>
</table>

Steps 4-7

- The data structuring step involves decomposing data items into constituent parts and creating a data dictionary
- Step 5 and 6 involve modelling viewpoint actions using action diagrams
- An action diagram is similar in notation to an SADT diagram
- The final step in CORE involves performing constraint analysis on the system as a whole
Problems with CORE

- Poorly defined notion of a viewpoint
 Difficult to say what is and what is not a valid viewpoint
- Analysis focuses on internal perspectives - defining viewpoints
 Bounding viewpoints not analysed beyond being seen as sinks and sources of data
- Difficult to integrate other requirements methods

Viewpoint-oriented system engineering

- Developed at Imperial College, London in the early 1990s
- Viewpoint-oriented system engineering is a framework for integrating development methods
- Viewpoints used viewpoints to partition and distribute the activities and knowledge of the participants in software development
- Viewpoints capture the role and responsibility of a participant at a particular time

Viewpoint template

- A Viewpoint can be thought of as a template describing:
 - Style or representative scheme what it sees
 - Domain
 - Specification
 - Work plan
 - Work record
Standard viewpoint template slots

- Style
 - Definition of representation
- Work Plan
 - Development actions and roles
- Domain
 - Problem domain described by ViewPoint
- Specification
 - Actual partial specification
- Work Record
 - Development entry

Viewpoint configurations

- Viewpoints can be organised into configurations
- A configuration may consist of
 - Templates with different styles, ‘viewing’ the same partition of the problem domain, or
 - Templates with the same style ‘viewing’ different partitions of the problem domain

Library example

- Consider a library item presented the user at the issue desk for borrowing, returning or reserving
- ‘Library world’ can be partitioned into the domains of the issue desk and the library user
- Data-flow and state transition schemes are used to model the library item from point of view each domain
Data-flow model - Issue desk domain

State transition model - Issue Desk Domain

State transition - Library user domain
Conflict resolution

- Important to ensure that consistency between different representations of the domains
- For similar styles conflicts are resolved by checking for the loss of continuity between the models
- For different styles the correspondences between representation schemes need to be identified to facilitate consistency checking

Consistency checking

Library user domain

Issue desk domain

State transition model

Data-flow model

Identify correspondences to resolve conflicts

Different templates same domain

Different domains same template

Correspondence between transition and function

State transition analysis

Data-flow analysis

Transition

Function
Correspondence between state and data

State transition analysis | Data-flow analysis

\[S_1 \rightarrow S_2 \quad \text{Data-flow} \]

Mapping on different styles same domain

<table>
<thead>
<tr>
<th>Issue desk DFD</th>
<th>Issue desk ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>check</td>
<td>check</td>
</tr>
<tr>
<td>issue</td>
<td>loan</td>
</tr>
<tr>
<td>release</td>
<td>release</td>
</tr>
</tbody>
</table>

Mapping on different domains same style

<table>
<thead>
<tr>
<th>Issue desk ST</th>
<th>Library user ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>presented</td>
<td>presented</td>
</tr>
<tr>
<td>on-loan</td>
<td>on-loan</td>
</tr>
</tbody>
</table>
Viewpoint-oriented requirements definition

- Developed at the University of Lancaster
- Mainly intended for specifying interactive systems
- Based viewpoints that focus on user issues and organisational concerns
- The uses a service oriented model for viewpoints
- VORD defines two main types of viewpoints; direct and indirect

Direct and indirect viewpoints

- Direct viewpoints
 - Interact directly with the intended system
 - Correspond directly to clients in that they receive services the system and provide control information
 - Include operators/users or other sub-systems interfaced to the system being analysed

- Indirect viewpoints
 - Do not interact directly with the intended system
 - Indirect viewpoints have an 'interest' in some or all of the services which are delivered by the system
 - Generate requirements which constrain the services delivered to direct viewpoints
 - Includes organisation, environment, engineering and regulatory viewpoints

Examples of direct and indirect viewpoints

- A systems planning viewpoint which is concerned with future delivery of library services (indirect)
- A library user viewpoint which is concerned with accessing the system services through the internet (direct)
- A trade-union viewpoint which is concerned with the effects of system introduction on staffing levels and library staff duties (indirect)
Viewpoint-oriented requirements validation

- Uses viewpoints to support early requirements validation
- Objective of the approach is identify and classify problems related to completeness and correctness

Viewpoints, perspectives and views

- Viewpoint is defined as a standing position used by an individual when examining a universe of discourse
- A perspective is defined as a set of facts observed and modelled according to a particular aspect of reality
- A view is defined as an integration of these perspectives
- A viewpoint language is used to represent the viewpoints

Method steps

- Involves at least two analysts (viewpoints) using VWPL
- A view is constructed by describing the problem using three perspectives; data, process and actor perspectives
 - Analysts use the is-a and part-of hierarchies to improve their own view
- Perspectives and hierarchies are analysed and a ‘list of discrepancies’ and ‘types of discrepancies’ produced
- Perspectives are integrated into a view
 - Expressed in the process perspective together with the hierarchies
- After two views are available compare the different viewpoints for correctness and completeness
Key points

- Requirements engineering is a distributed process involving many participants with different interests.
- A viewpoint is a collection of information about a system or related problem, environment or domain which is collective from a particular perspective.
- Structured analysis techniques do not have explicitly defined viewpoints.