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Learning Objective

...to validate the Software Architectural Styles given in the prior chapter.
Seven examples illustrate how we can use architectural principles.

Lets (1) consider how solutions to the same problems provide different
benefits; (2) get experience developing a domain specific style for a
family of industrial products;  (3) find out how to apply a process-

control style to system design; and (4) see examples of heterogeneous
architectures to understand why they were architected in such a way.
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Chapter Three
Case Studies in Architectural Design
⊗ Criteria for decomposing a system into modules

(components or sub-units)
⊕ Functional with shared access to data (representations)

⊕ Hiding design decisions

⊗ PREMISE: Different problem decomposition strategies vary greatly in their
ability to withstand design changes … changes in the 

⊕ Algorithm,
⊕ Data representation,
⊕ Enhancements to system functions,
⊕ Performance (time and space) and
⊕ Reuse
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Four Architectural Designs for
the KWIC System

See page 33 for a description of KWIC

⊗KWIC
⊕ Input / Shift / Alphabetize / Output

⊗Lets consider the issues of algorithm, data
representation, enhancements to system
functions, performance (time/space) and
reuse... against several solution types.
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Sol-1: Main/Subprogram w/
Shared Data

⊗Advantages:
⊕ Data is represented and used efficiently

⊕ Intuitive appeal

⊗Disadvantages:
⊕ Change in data storage format affects all

modules

See Figure 3.1
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Sol-2: Abstract Data Types

⊗Same five modules but no data sharing:
⊕ Each module provides an interface that permits

other components to access data only by
invoking procedures in that interface

⊕ Same logical decomposition as
Main/Subprogram

⊗Advantages:
⊕ Both algorithms and data can be changed

without affecting the other modules

See Figure 3.2
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Sol-2: Abstract Data Types

⊗Advantages (continued)
⊕ Reuse is supported:

• Modules make fewer assumptions about the others

⊗Disadvantages
⊕ Not well suited for certain kinds of functional

enhancements
• Modifying existing modules may compromise their

simplicity or

• Adding new modules may lead to performance penalties

Continued



© F.T. Sheldon

Univ. of Colorado at Colorado Springs

7

Sol-3: Implicit Invocation

⊗Uses shared data except for two important
differences...
⊕ Interface to the data is more abstract (using list

or set but they do not expose storage formats)

⊕  Interactions are based on an active data model
• E.g., the act of adding a “new line” to the line

storage causes an event → the shift module.

♦ (1) circular shifts (in a separate, abstract-data store) and,

♦ (2) the alphabetize is then implicitly invoked.

See Figure 3.3
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Sol-3: Implicit Invocation

⊗Advantages
⊕ Supports functional enhancement...

• Additional modules can be registered so that they will
be invoked by data changing events.

⊕ Insulates computations (data is accessed
abstractly) from changes in data representation

⊕ Supports reuse
• Implicitly invoked modules rely only on the existence

of certain externally triggered events → de-couples
modules from each other!

Continued
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Sol-3: Implicit Invocation

⊗Disadvantages
⊕ Invocations are data driven and therefore:

• Difficult to control the processing order

• Most natural implementations of this kind tend to
use more space!

Continued
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Sol-4: Pipes and Filters

⊗Uses four filters working in a sequence

⊗Control is distributed
⊕ Filters run when input data is available

⊕ No data sharing except the piped data stream

⊗Desirable properties (advantages)
⊕ Maintains the intuitive flow of processing

⊕ Supports reuse
• Each filter can function in isolation

• New functions easily added by inserting filters at the
appropriate points in the processing sequence

See Figure 3.4
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Sol-4: Pipes and Filters

⊗Disadvantages
⊕ Virtually impossible to modify the design to

support interactive system

⊕ Deleting a line would some persistent shared
storage
• Violates a basic tenet of this approach

⊕ Uses space inefficiently
• Filters copy all the to its input port

Continued
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Comparisons
⊗Shared data supports

⊕ Change in function and performance

⊗ADTs supports
⊕ Change in data representation, performance and

reuse

⊗Implicit invocation supports
⊕ Change in algorithm and function

⊗Pipe and filter supports
⊕ Reuse and change in function + algorithm
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Comparisons Must be Cognizant of
Certain Design Considerations

⊗Intended use
⊕ Batch versus interactive

⊕ Update intensive versus query-intensive

⊕ For example: Pipes and filter solution
• Easily allows insertion of new filters (supports

changes in algorithm, function and reuse) but the data
representation is wired into assumptions about the
kind of data that is transmitted along the pipes!

• Additional overhead may also involve the parsing and
un-parsing of the data into pipes
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Instrumentation Software
Case Study

⊗Purpose: develop a reusable system
architecture for oscilloscopes
⊕ Functionality and features

• Performs dozens of measurements

• Megabytes of internal storage

• Interface to a network of workstations & instruments

• Sophisticated user interface:
♦ Touch panel screen

♦ Built-in help facilities

♦ Color displays
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The Problems

⊗Legacy of heterogeneous conventions and
programming languages across the company

⊗Rapidly changing market demands

⊗Need to meet the demands of specialized markets
⊕ General purpose → patient monitoring → automotive

diagnostics

⊗Performance was suffering because
⊕ Different operational modes were satisfied by loading

different software which was getting larger and larger
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The Goals and Results
⊗Develop and architectural framework that

would address these problems

⊗Results:
⊕ Domain specific SW architecture as a basis for

the next generation of oscilloscopes

⊕ The framework has been extended and adapted
to accommodate a broader class of systems

⊕ Also, refined to better suit the needs of the
instrumentation software!
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1st Attempt: Object-Oriented
Model

⊗Clarified the data types
⊕ Waveform, signals, measurements, trigger

modes, …

⊕ However, this fell short of expectations due to:
• No overall model that explained how the types fit

together

• Not clear how to partition functionality
♦ Should the measurements be associated with the types of

data being measured,

♦ Which objects should the UI interface with

See Fig. 3.6
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2nd Attempt: A Layered Model

⊗Core layer - signal manipulation functions
⊕ Filter signals as they enter the oscilloscope

⊗Subsequent layers
⊕ Waveform acquisition (2), manipulation (3)

• Measurement, addition of waveforms, Fourier
transformation . . .

⊕ Display functions (4)
• Mapping digitized waveforms and measurements to

visual representations

• Responsible for interacting with the user

See Fig. 3.7
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2nd Attempt: A Layered Model
→Debacle!

⊗Layered models was intuitively appealing

⊗Unfortunately. . .
⊕ Wrong model for the application domain!

• The boundaries of abstraction enforced by layers conflicted
with the needs for interaction among various functions!

• Model suggested that all interactions with the user should
be with the visual representation…but,

• Real users need to directly affect the functions at all layers
♦ E.g., setting attenuation at the signal manipulation layer, choosing

acquisition mode and parameters at the acquisition layer, etc.)
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3rd Attempt:Pipe and Filter
Model

⊗Functions viewed as incremental
transformers of data
⊕ Signal transformers used to condition external

signals

⊕ Acquisition transformers derive digitized
waveforms from these signals

⊕ Display transformers convert these waveforms
into visual data

See Fig. 3.8
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Significant Improvement,
Except...

⊗Functions were not isolated in separate partitions
⊕ Nothing prevents signal data from feeding directly

into display filters

⊕ Model was intuitive wrt the engineers view of signal
processing
• Allowed clean intermingling and substitution of HW and

SW components within a system design!

⊕ However, one main problem was
• Unclear how the user would interact with it!!!
• User put simply at visual end → worse than layered model!
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4th Attempt:Modified Pipe and
Filter Model

⊗Accounts for the user inputs by associating
with each filter a control interface
⊕ Setting the sample rate, configuration

parameters

⊕ The filters were modeled as higher order (HO)
functions

⊕ The HO functions determine what data
transformation the filter will perform

See Fig. 3.9
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Solved the UI Problem

⊗Provided a collection of settings to dynamically
modify aspects of the oscilloscope
characteristics
⊕ Decoupled certain functions from the UI (as was

needed for the signal processing functions)

⊕ UI can treat the signal processing functions solely in
terms of the control parameters
• Changes in the implementation SW/HW are possible with

out affecting the implementation of the UI
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Further Specialization Yet
⊗Still, performance was poor

⊕ Each time  a filter needs to process a wave-form
it copies a significantly large chunk of internal
storage!

⊕ Further, different filters run at radically different
speeds!  … potential to cause a significant
bottleneck

⊗Solution was to introduce colors of pipes
⊕ Some allowed processing w/o copying

⊕ Some allowed incoming data to be ignored

⊕ In all, tailoring of pipe/filter computations
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What Have We Learned

⊗Seen some real issues

⊗Emphasized the trade-offs

⊗See that typical industrial SW must be
adapted to the specific domains

⊗The final result depended greatly on the
properties of the pipe and filter architectures
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Mobile Robotics System
Case Study

⊗Controls manned/partially manned vehicles
⊕ Space exploration, hazardous waste disposal,

underwater exploration

⊗The software must deal with:
⊕ External sensors and actuators

⊕ Real-time responsiveness

⊕ Acquire sensor I/P, control motion and plan
future paths

⊕ Many issues from imperfect inputs to
unexpected/unpredictable obstacles, and events
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Design Considerations:
Mobile Robots

⊗ Four basic requirements….
⊕ Accommodate deliberate and reactive behavior

• Coordinate actions it must undertake to achieve its designated
objective (collect rock sample, avoid obstacles)

⊕ Allow for uncertainty
• Framework for actions even when faced with incomplete or

unreliable information (contradictory sensor readings)

⊕ Account for dangers
• Must be fault tolerant, safe and with high performance (e.g., cope

with reduced power, dangerous vapors, etc.)

⊕ Give design flexibility
• Development requires frequent experimentation and reconfiguration
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⊗Lozano’s Control Loops

⊗Elfes’s Layered Organization

⊗Simmons’s Task Control Architecture

⊗Shafer’s Application of Blackboards

Lets Examine Four Architectural
Designs
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Solution 1: Control Loop
 ——  SpecificsSpecifics ——

⊗Industrial robots need only handle
minimally unpredictable events
⊕ Tasks are fully defined (no need for a

planer) and has no responsibility wrt its
environment
• Open loop paradigm applies

• Robot initiates actions without caring about
consequences

⊕ Lets add feedback for closed loop
• Robot adjusts the future plans based on monitored

information

See Fig. 3.9
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Solution 1: Control Loop
Requirements Trade-Off Analysis

⊗ Req1– Advantage: simplicity
⊕ Simplicity is a drawback in more unpredictable environments

⊕ Robots mostly confronted with disparate discrete events that
require them to switch between very different behavior modes

⊕ For complex tasks, gives no leverage for decomposition into
cooperating components

⊗ Req2– Advantage: reducing unknowns through iteration
⊕ Is biased toward one method (only).

⊕ Trial and error process of action-reaction to eliminate possibilities
at each turn.

⊕ No framework for integrating these with the basic loop or for
delegating them to separate entities.
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Solution 1: Control Loop
Requirements Trade-Off Analysis Continued

⊗ Req3– Advantage: supports fault tolerance and safety
⊕ Simplicity makes duplication easy

• Reduces the chance of errors creeping into the system

⊗ Req4 – Advantage: clearly partition-able into supervisor,
sensors and motors that are independent and replaceable

⊕ More refined tuning is however not really supported (inside the
modules)

⊗ Conclusion: Most appropriate for simple robotic systems
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Solution 2: Layered Architecture
——  SpecificsSpecifics ——

⊗ Influenced the sonar and navigational systems design
used on the Terregator and Neptune mobile Robots…
⊕ Level 1 (core) control routines (motors, joints,..),

⊕ Level 2-3 real world I/P (sensor interpretation and
integration (analysis of combined I/Ps)

⊕ Level 4 maintains the real world model for robot

⊕ Level 5 manage navigation

⊕ Level 6-7 Schedule & plan robot actions (including
exception handling and replanning)

⊕ Top level deals with UI and overall superviosory functions
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Solution 2: Layered Architecture
 Requirements Trade-Off Analysis

⊗ Req1 Avoids some problems encountered in the
control loop style by defining more components to
delegate tasks.
⊕ Defines abstraction levels (robot control versus

navigation) to guide the design

⊕ Does not however fit the actual data / control flow
patterns!!
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Solution 2: Layered Architecture
 Requirements Trade-Off Analysis (continued)

⊕ Information exchange is less straightforward because
the layers suggest that services and requests be
passed between layers
• Fast reaction times drives the need to bypass layers to go

directly to the problem-handling agent at level 7 …skip
layers to improve response time!

⊕ Two separate abstractions are needed that are not
supported
• Data hierarchy

• Control hierarchy
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Solution 2: Layered Architecture
 Requirements Trade-Off Analysis (continued)

⊗Req2 Abstraction layers address the need to
manage uncertainty
⊕ What is uncertain at the lower layers may

become clear with added knowledge available
from the higher layers

⊕ For Example
• The context embodied in the world model can

provide the clues to disambiguate conflicting sensor
data
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Solution 2: Layered Architecture
 Requirements Trade-Off Analysis (continued)

⊗Req3 Fault tolerance and passive safety
(strive not to do something)
⊕ Thumbs up data and commands are analyzed

from different perspectives

⊕ Possible to incorporate many checks and
balances

⊕ Performance and active safety may require that
layers be short circuited
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Solution 2: Layered Architecture
 Requirements Trade-Off Analysis (continued)

⊗Req4 Flexibility in replacement and
addition of components
⊕ Interlayer dependencies are an obstacle

⊕ Complex relationships between layers can
become more difficult to decipher with each
change

⊗Success because the layers provide
precision in defining the roles of each layer

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

38

Solution 3: Implicit Invocation
Basis and Specifics

⊗ Based on various hierarchies of tasks
⊕ Utilizes dynamic task trees

• Run-time configurable

• Permits selective concurrency

⊗ Supports 3 different functions
⊕ Exceptions

• Suited to handle spontaneous events

• Manipulate task trees

⊕ Wiretapping
• Messages intercepted by tasks superimposed on a task tree

⊕ Monitors
• Read info and execute some actions if data fulfills a criterion
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Solution 3: Implicit Invocation
Requirements Trade-Off Analysis

⊗ Req1 Advantage: clear cut separation of action
⊕ Explicit incorporation of concurrent agents in its model

⊗ Req2 Disadvantage: uncertainty not well addressed
⊕ Task tree could be built by exception handler

⊗ Req3 Advantage: accounts for performance, safety,
& fault tolerances
⊕ Redundant fault handlers

⊕ Multiple requests handled concurrently
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Solution 3: Implicit Invocation
Requirements Trade-Off Analysis (continued)

⊗ Req3 advantage: Accounts for performance,
safety, & fault tolerances
⊕ Redundant fault handlers

⊕ Multiple requests handled concurrently

⊗ Req4 advantage: Incremental development &
replacement straightforward
⊕ Possible to use wiretaps, monitors, or new handlers

without affecting existing components
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Solution 4: Blackboard Arch.
Basis and Specifics

⊗ Based on CODGER system used in NAVLAB
project (known as whiteboard arch)

⊗ Relies on abstractions similar to those found in the
layered architecture example

⊗ Utilizes a shared repository for communication
between components
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Solution 4: Blackboard Arch.
Basis and Specifics (continued)

⊗ Components register interest in certain types of data
⊕ This info is returned immediately or when it is inserted

onto blackboard by some other module

⊗ Components of CODGER architecture are:
⊕ Captain: overall supervisor

⊕ Map navigator: high-level path planner

⊕ Lookout: monitors environment for landmarks

⊕ Pilot: low-level path planner and motor controller

⊕ Perception subsystems: accept sensor input and integrate
it into a coherent situation interpretation
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Solution 4: Blackboard Arch.
Requirements Trade-Off Analysis

⊗ Req1 Deliberative and reactive
⊕ Components register for the type of information they are

interested in and receive it as it becomes available

⊕ This shared communication mechanism supports both
deliberative and reactive behavior requirements

⊕ However, the control flow must be worked around the
database mechanism; rather than communication between
components
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Solution 4: Blackboard Arch.
Requirements Trade-Off Analysis

⊗ Req2 Allow for uncertainty
⊕ provides means for resolving conflicts or uncertainties as

all data is in database (from all components)

⊕ modules responsible for resolution simply register for
required data and process it accordingly
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Solution 4: Blackboard Arch.
 Requirements Trade-Off Analysis (continued)

⊗ Req3 - account for environment dangers
⊕ Separate modules that watch the database for

unexpected situations provide exception mechanism,
monitoring and wiretapping to adjust for environment
conditions and deliver safety, reliability, reaction time
guarantees, etc.
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Solution 4: Blackboard Arch.
 Requirements Trade-Off Analysis (continued)

⊗ Req4 - design flexibility
⊕ Maintenance is facilitated by de-coupling senders from

receivers

⊕ Component concurrency is supported

⊕ There is some loss of design flexibility due to the fact
that control is intrinsically dependant on shared
database
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Solution 4: Blackboard Arch.
Summary

⊗ Capable of modeling cooperation of tasks
⊕ task coordination

⊕ flexible resolution of uncertainty

⊗ Based on implicit invocation mechanism triggered
by shared database contents

⊗ Workable solution that is slightly less powerful
than the TCA Implicit Invocation solution
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Comparisons The Score Card
⊗ Task coordination

⊕  Ctl loop 2 | Layers 0 | ImpInvoc 3 | Blkbrd 1

⊗ Dealing with uncertainty
⊕ Ctl loop 0 | Layers 2 | ImpInvoc 2 | Blkbrd 1

⊗ Fault-tolerance
⊕ Ctl loop 2 | Layers 2 | ImpInvoc 3 | Blkbrd 1

⊗ Safety
⊕ Ctl loop 2 | Layers 2 | ImpInvoc 3 | Blkbrd 1

⊗ Performance
⊕ Ctl loop 2 | Layers 2 | ImpInvoc 3 | Blkbrd 1

⊗ Flexibility
⊕ Ctl loop 2 | Layers 0 | ImpInvoc 1 | Blkbrd 1
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Cruise Control Case
Study

⊗ Illustrates the application of the control-loop paradigm to a
simple problem that is traditionally cast in object oriented terms.

⊗ Demonstrates that the use of the control-loop architecture can
contribute significantly to clarifying the important architectural
dimensions of the problem.

⊗ This case study has traditionally been used by Booch and others
to compare/contrast object oriented and functional
programming.
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Problem Statement
According to Booch

⊗ A cruise control (CC) system that exists to maintain the constant
vehicle speed even over varying terrain.

⊗ Inputs:
⊕ System On/Off: If on, maintain speed

⊕ Engine On/Off: If on, engine is on.  CC is active only in this state 

⊕ Wheel Pulses: One pulse from every wheel revolution

⊕ Accelerator: Indication of how far accelerator is de-pressed

⊕ Brake: If on, temp revert cruise control to manual mode

⊕ Inc/Dec Speed: If on, increase/decrease maintained speed

⊕ Resume Speed: If on, resume last maintained speed

⊕ Clock: Timing pulses every millisecond

⊗ Outputs:
⊕ Throttle: Digital value for engine throttle setting

See Fig. 3.16
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Some Issues with Booch’s
Problem Statement

⊗ Ambiguity about rules for deriving the O/P from the I/Ps

⊗ Ambiguity about what speed is to be controlled
⊕ Current speed versus maintained speed

⊗ Stated output is a throttle setting value versus a change in
throttle setting (as expected in classical process control)

⊕ Change output avoids calibration + sensor wear problems

⊗ Specifies a millisecond clock used in combination with
wheel pulses to compute current speed ⇒ over specified ...

⊕ A slower clock or one that delivered current (precise) time on
demand would work while requiring less computing resources.
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Restatement of Cruise-Control
Problem

Whenever the system is active, determine
the desired speed, and control the engine
throttle setting to maintain that speed.
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Booch’s Object View of Cruise
Control

⊗ Each element corresponds to important quantities
and physical entities in the system

⊗ Each blob represents objects

⊗ Each directed line represents dependencies among
the objects

See Fig. 3.17
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Process-Control View of Cruise Cntl
⊗ Appropriate for SW embedded in a physical system

that involves continuing behavior:
⊕ Especially for systems subject to external perturbations

• True in the case of cruise control

⊗ Essential System Elements:
⊕ Computational Elements

• Process definition - take throttle setting as I/P & control vehicle speed
♦ Details irrelevant - while driving a mechanical device controlled by 1 or

more computers.

• Control algorithm - current speed (wheel pulses) compared to desired
speed

♦ Change throttle setting accordingly presents the issue:

•  decide how much to change setting for a given discrepancy
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Essential System Elements
(continued)

⊗ Essential System Elements:
• Control algorithm

♦ model current speed from wheel pulses

♦ compare to desired speed

♦ change throttle setting accordingly (decide how much to change
throttle setting for a given discrepancy)

⊕ Data Elements
• Controlled variable: current speed of vehicle

• Manipulated variable: throttle setting

• Set point: set by accelerator and increase/decrease speed inputs
♦ system on/off, engine on/off, brake and resume inputs also have a

bearing

• Controlled variable sensor:
♦ modeled on data from wheel pulses and clock
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Control-loop View Sub-Problems

“Whenever the system is active determine the desired speed.”

⊗ How to determine if the system is active given that
there are a variety of events that trigger the system
⊕ Use a state machine to determine active/inactive state of

system

⊗ how to compute desired speed
⊕ The desired speed (set point) is the current speed as

modeled from wheel pulses and increase/decrease
speed controls

See Fig. 3.19
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Control-loop View Sub-Problems
(continued)

“Control the engine throttle setting to maintain that speed.”

⊗ How to model the current speed from wheel pulses
⊕ Model could fail if the wheel spins

• Wheel pulses from spinning drive wheel - cruise control
maintaining wheel speed (at constant speed) even if vehicle stops

• Wheel pulse from non-drive wheel with spinning drive wheel -
cruise control will act as if current speed is too slow and
continually increase throttle setting

⊗ What control authority does the process have
⊕ Brake is not under control of the process (only throttle)

⊕ If vehicle coasts faster than desired speed, the controller
cannot slow it down

See Fig. 3.18
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Complete Cruise Control System

⊗ Combines control architecture, state machine and
event table to form system

⊗ System represents all of Booch’s objects with
clear roles

⊗ Design strategy for this system could easily be
hybrid
⊕ Employ control-loop architecture for the system as a

whole

⊕ Employ one or more other architectures (including
objects and state machines) to elaborate the elements of
the control loop architecture

See Fig. 3.21
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Control-Loop Summary

⊗ Shift from Object Oriented to Control-Loop (CL)
raised a number of important design issues

⊗ Limitations of the CL model also became clear:
⊕ Possible inaccuracies in the current speed model

⊕ Incomplete control at speed higher than set point

⊗ Data flow character of the CL model exposed
irregularities in the way input is specified to the system
⊕ mixture of state and event inputs

⊕ inappropriateness of the absolute position of the accelerator
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Analysis and Discussion
⊗ Control View Clarified Design:

⊕ Led to re-specify the O/P as the actual speed of the vehicle
(current speed)

⊕ Separating control from process makes speed model explicit
and therefore more likely to be validated
• Also raised the question of control authority

⊕ Explicit control algorithm elements sets up design decision
about the kind of control the be exercised

⊕ Establishing relationships among components ⇒ control
paradigm discriminates among different kinds of inputs and
makes the feedback loop more obvious

⊕ Clearly separates manual and automatic operation modes

⊕ Set point determination is easier to verify when separated
from control
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Control-Loop Methodologies

⊗ A methodology should help the designer to:
⊕ Decide when an architecture is appropriate

⊕ Identify the elements of the design and their interactions

⊕ Identify critical design decisions and potential safety
problems

⊕ Provide for system modification

⊗ Astron and Wittenmark Methodology ⇒ Choose:
⊕ Control principle, control variables, the measured

variables, and ...

⊕ Create appropriate subsystems

© F.T. Sheldon

Univ. of Colorado at Colorado Springs

62

Performance: System Response
to Control

⊗ Process control provides powerful tools for the selection and
analysis of the response characteristics of the system

⊗ Example: Cruise-controller can set throttle in several ways:
⊕ On/Off control: simple on/off control of process (more applicable

systems like a thermostat)
• hysteresis could be used to control fluttering of power

⊕ Proportional control: the output is a fixed multiple of the measured error
• can lead to steady state values that are not quite equal to the set point or to

oscillation around the set point

⊕ Proportional plus Rest control: a proportional response to the error in
combination with an ever changing output as long as the error is present
• tends to force error towards zero

• can speed correction by basing on a derivative of error speeds (probably
over kill for cruise control)
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Summary
⊗ Much of the design methodology expressiveness arises from

how well it focuses attention on the significant decisions at
appropriate times

⊗ In the cruise-control example, higher level decisions were
better elicited by the methodology based on process control
than for the more common object oriented methodology

⊕ Control paradigm separates the operation of the main process from
compensation for external disturbances

⊕ Yielded appropriate abstractions

⊕ Revealed important design issues
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Three Vignettes
in Mixed Style

⊗Purpose is to review three systems with
mixed styles of architecture
⊕ PROVOX process control system

⊕ Hayes-Roth Rule Based system

⊕ HEARSAY II speech recognition system
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PROVOX

⊗The Fisher Controls PROVOX system offers
distributed process control for chemical
production processes:
⊕ simple control loops to control pressure, flow, levels

⊕ complex strategies involving interrelated control
loops

⊕ provisions for integration with plant management
and information systems
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PROVOX 5 Level Hierarchy

⊗ Integrates process control with plant management and
other corporate information systems
⊕ Level 1: Process measurement and control

• direct adjustment of final control elements

⊕ Level 2: Process supervision
• operations console for monitoring and controlling Level 1

⊕ Level 3: Process management
• computer based plant automation; including management reports,

optimization strategies, and guidance to the operations console

⊕ Level 4 & 5: Plant and corporate management
• higher level functions such as cost accounting, inventory control,

and order processing/scheduling

See Fig. 3.22
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PROVOX Architecture

⊗Different computation and response times
are required at the different levels of the
system
⊕ Therefore different computation models are

used to achieve these results
• Levels 1 - 3: object-oriented

• Levels 4 - 5: Largely based on conventional data
processing repository (database) models
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Process-Control (Levels 1 - 3)
⊗ PROVOX uses a set of points (or Loci)

⊕ seven specialized forms support the most common kinds of
control

⊕ point are object-oriented design elements

⊕ points encapsulate information about control points of the
process

⊕ points are individually configured to achieve desired control
strategy

⊕ Data associated with the points includes:
• Operating Parameters

♦ current process value

♦ set point (target value)

♦ valve output

♦ mode (automatic or manual)

See Fig. 3.23
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Process-Control (Levels 1 - 3)
(continued)

⊕ Data associated with the points includes
(continued):
• Tuning Parameters

♦ Gain, reset, derivative and alarm trip points

• Configuration Parameters
♦ Tag (name), I/O channels

⊕ Points can include a template for a control
strategy

⊕ Points include procedural definitions such as:
• Control algorithms and communication connections

• Reporting services and trace facilities
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Process-Control (Levels 1 - 3)
(continued)

⊗ Collections of points implement the desired process-
control strategy

⊕ Through the communication services, and

⊕ Through the actual dynamics of the process (example: One point
increasing the flow in a tank will be reflected in another point that
senses tank level)

⊗ Reports from points appear as input transactions to the data
collection and analysis processes at higher design levels

⊗ The process designer can organize points into:
⊕ Control processes

⊕ Processes can be aggregated into Plant Process Areas and Plant
Management areas
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Plant/Corporate Management (Levels 4 -5)

⊗ Provisions for integration with plant management
and business systems exist at Levels 4 and 5
⊕ Provides transaction to these systems (typically selected

independently from process control system)

⊕ Systems are commonly designed as database
repositories with transaction processing functions
supporting a central data store (as opposed to the
object-oriented design seen in the lower levels)

⊕ Hierarchical design at the top levels:
•  Permits strong separation of different classes of functions, and

• Clean interfaces between the layers; but

• Are often too intricate to permit strict layering
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Rule Based Systems

⊗ Provide a means of codifying the problem solving skills of
human experts

⊕ Captured as sets of situation-action rules

⊕ Whose execution or activation is sequenced in response to the
conditions of the computation (rather than being predetermined)

⊗ Hayes-Roth rendering of a Rule Based system includes:
⊕ Pseudocode - to be executed

⊕ Interpretation engine - rule interpreter (heart of interface engine)

⊕ Control state of interpretation engine - rule and data element
selector

⊕ Current state of program - working memory

See Fig. 3.24
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Expanded Hayes-Roth Rule Based
System

⊗ Rule based systems heavily use pattern matching and
context (currently relevant rules)
⊕ Added special mechanisms to facilitate these features

complicate the original simple interpreter design

⊗ Combining figures 3.24 and 3.25 simplifies the
resulting model and leads to the following:
⊕ Knowledge base is a relatively simple structure; yet is able to

distinguish between active and inactive components

⊕ Rule interpreter is implemented as a table driven interpreter
• With control procedures for pseudocode and

• Execution stack modeling the current program state

See Fig. 3.25 and 3.26
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Expanded Hayes-Roth Rule Based System
(continued)

⊕ “Rule and data element selection” is
implemented as a pipeline
• that progressively transforms active rules and facts

to prioritized activations

• the third filter (“nominators”) uses a fixed database
of meta-rules

⊕ Working memory is not further elaborated
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Hayes-Roth Conclusions

⊗ In a sophisticated rule-based system, elements of the simple
rule-based system are elaborated in response to the execution
characteristics of the particular class of languages being
interpreted

⊕ Retains the original concept to guide understanding and ….

⊕ Ease later maintenance of the system

⊗ As the design is elaborated, different components can be
elaborated with different idioms

⊗ Rule-based model can itself be thought of as a design structure:
⊕ Set of rules whose control relations are determined during execution by

computation state

⊕ A rule-based system provides a virtual machine (rule extractor) to
support this model
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Blackboard Globally Recast as an
Interpreter

⊗ Blackboard model of problem solving is a highly
structured special case of opportunistic problem solving

⊕ Solution space is organized into several application dependent
hierarchies

⊕ Domain knowledge is partitioned into independent modules of
knowledge that operate on knowledge within and between levels

⊗ HEARSY-II speech recognition system was the first major
blackboard architecture system

⊕ Implemented between 1971 and 1976 on DEC PDP-10

⊕ 6 to 8 level hierarchy in which each level abstracts information
from its adjacent lower level

⊕ Blackboard elements represent hypotheses about the interpretation
of an utterance

See Fig. 3.27
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HEARSAY-II
(continued)

⊕ Knowledge sources correspond to tasks like:
• segmenting the raw signal

• identifying phenomes

• generating word candidates

• hypothesizing syntactic segments

• proposing semantic interpretations

⊗ Knowledge sources contain:
⊕ Condition Part:

• specifies when it is appropriate

⊕ Action Part:
• process relevant blackboard elements and generate new ones
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HEARSAY-II
(continued)

⊗ Control component is realized as a blackboard monitor and
scheduler

⊕ scheduler monitors blackboard and calculates priorities for
applying knowledge source to various blackboard elements

⊗ PDP-10 was not directly capable of condition-triggered
control

⊕ HEARSAY-II implementation compensates by providing
mechanisms of a virtual machine to realize implicit invocation
semantics

⊕ this addition complicates Fig 3.27

⊗ Blackboard model can be recovered by
⊕ suppressing the control mechanism and

⊕ regrouping the conditions and action into knowledge sources

See Fig. 3.28 and 3.29
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HEARSAY-II
(continued)

⊗ Function assignment facilitates the virtual machine
in the form of an interpreter
⊕ Blackboard corresponds cleanly to the current state of

the recognition task

⊕ Collection of knowledge sources roughly supply the
pseudocode of the interpreter
• actions also contribute

⊕ Interpretation engine includes:
• blackboard monitor

• focus-of-control database

• scheduler

• actions and knowledge sources
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HEARSAY-II
(continued)

⊕ Scheduling queue corresponds to control state

⊕ Condition contribute to rule selection as well as
forming pseudocode
• to the extent that the condition execution determines priorities
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HEARSAY-II Conclusions

⊗ System initially designed with one model
(blackboard, a special form of repository)

⊗ System realized through a different model
(interpreter)

⊗ Interpreter view invokes a different aggregation of
components that the blackboard view
⊕ as opposed to a component by component expansion as

in the previous two examples


