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Objectives

⊗ To explain the place of formal software specification
in the software process.

⊗ To explain when formal specification is cost-
effective.

⊗ To describe a process model based on the
transformation of formal specifications to an
executable system.

⊗ To introduce a simple approach to formal
specification based on pre and post conditions
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Topics covered

⊗ Formal specification on trial

⊗ Transformational development

⊗ Specifying functional abstractions
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Specification in the software process

⊗ Specification and design are inextricably
intermingled.

⊗ Architectural design is essential to structure a
specification.

⊗ Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.
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Formal specification on trial

⊗ Formal techniques are not widely used in industrial
software development

⊗ Given the relevance of mathematics in other
engineering disciplines, why is this the case?
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Why aren't formal methods used?

⊗ Inherent management conservatism.  It is hard to
demonstrate the advantages of formal specification in
an objective way

⊗ Many software engineers lack the training in discrete
math necessary for formal specification

⊗ System customers may be unwilling to fund
specification activities

⊗ Some classes of software (particularly interactive
systems and concurrent systems) are difficult to
specify using current techniques
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Why aren't formal methods used?

⊗ There is widespread ignorance of the applicability of
formal specifications

⊗ There is little tool support available for formal
notations

⊗ Some computer scientists who are familiar with
formal methods lack knowledge of the real-world
problems to which these may be applied and
therefore oversell the technique
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Advantages of formal specification

⊗ It provides insights into the software requirements and
the design.

⊗ Formal specifications may be analyzed mathematically
and the consistency and completeness of the
specification demonstrated.

⊗ It may be possible to prove that the implementation
corresponds to the specification

CS 422 Software Engineering Principles                   Chapter 9

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  11

Advantages of formal specifications

⊗ Formal specifications may be used to guide the tester
of the component in identifying appropriate test cases

⊗ Formal specifications may be processed using
software tools. It may be possible to animate the
specification to provide a software prototype
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Seven myths of formal methods
⊗ Perfect software results from formal methods

⊕ Nonsense - the formal specification is a model of the real-world and
may incorporate misunderstandings, errors and omissions.

⊗ Formal methods means program proving
⊕ Formally specifying a system is valuable without formal program

verification as it forces a detailed analysis early in the development
process.

⊗ Formal methods can only be justified for
safety-critical systems.

⊕ Industrial experience suggests that the development costs for all
classes of system are reduced by using formal specification.
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Seven myths of formal methods

⊗ Formal methods are for mathematicians
⊕ Nonsense - only simple math is needed.

⊗ Formal methods increase development costs
⊕ Not proven. However, formal methods definitely push development

costs towards the front-end of the life cycle.

⊗ Clients cannot understand formal specifications
⊕ They can if they are paraphrased in natural language.

⊗ Formal methods have only been used for trivial
systems

⊕ There are now many published examples of experience with formal
methods for non-trivial software systems.
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The verdict!

⊗ The reasons put forward for not using formal
specifications and methods are weak

⊗ However, there are good reasons why these methods
are not used

⊕ The move to interactive systems. Formal specification techniques
cannot cope effectively with graphical user interface specification

⊕ Successful software engineering. Investing in other software
engineering techniques may be more cost-effective
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Use of formal methods

⊗ These methods are unlikely to be widely used in the
foreseeable future. Nor are they likely to be cost-
effective for most classes of system

⊗ They will become the normal approach to the
development of safety critical systems and standards

⊗ This changes the expenditure profile through the
software process
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Development costs with formal
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Transformational development
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Specifying functional abstractions

⊗ The simplest specification is function  specification.
There is no need to be concerned with global state
(assuming no side-effects)

⊗ The formal specification is expressed as input and
output predicates (pre and post conditions)

⊗ Predicates are logical expressions which are always
either true or false

⊗ Predicate operators include the usual logical operators
and quantifiers such as for-all and exists
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Examples of predicates

All variables referenced are of type INTEGER

1.  The value of variable A is greater than the value of B and the 
value of variable C is greater than D

A > B and C > D

2.  This predicate illustrates the use of the exists quantifier. The predicate is true if there are values
 of i, j and k between M and N such that  i2 = j2 + k2. Thus, if M is 1 and N is 5, the predicate is true as 
32 + 42 = 52. If M is 6 and N is 9, the predicate is false.  There are no values of i, j and k between
 6 and 9 which satisfy the condition.

exists i, j, k in M..N: i2 = j2 + k2

3. This predicate illustrates the use of the universal quantifier for_all. It concerns the values of an
 array called Squares. It is true if the first ten values in the array take a value which is the square
 of an integer between 1 and 10.

for_all i in 1..10, exists j in 1..10: Squares (i) = j2
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Specification with pre & post
conditions

⊗ Set out the pre-conditions
⊕ A statement about the function parameters stating what is invariably

true before the function is executed

⊗ Set out the post-conditions
⊕ A statement about the function parameters stating what is invariably

true after the function has executed

⊗ The difference between the pre & post conditions is
due to the application of the function to its parameters.
Together the pre and post conditions are a function
specification
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Specification development

⊗ Establish the bounds of the input parameters.
⊕ Specify this as a predicate

⊗ Specify a predicate defining the condition which must
hold on the result of the function if it computes
correctly

⊗ Establish what changes are made to the input
parameters by the function
⊕ Specify this as a predicate

⊗ Combine the predicates into pre and post conditions
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The specification of a search

function Search ( X: in INTEGER_ARRAY ; Key: INTEGER )
          return INTEGER ;

Pre:   exists i in X'FIRST..X'LAST: X(i) = Key
Post:  X” (Search (X, Key)) = Key and X = X”
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Search pre-conditions

⊗ One of the array elements must match the key

⊗ Use the exists quantifier to specify that an
element must exist which matches the key

⊕ exists i in X’FIRST..X’LAST: X (i) = Key

⊗ Assume FIRST and LAST refer to the upper
and lower bounds of the array
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Search post-conditions

⊗ The result of Search should be the value of the array
index which refers to the element containing the key

⊕ X”(Search (X, Key)) = Key

⊗ The array after the operation is referenced by
'priming' the array name

⊗ The array should not be changed by the Search
function

⊕ X = X”
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Specification with error predicate

function Search (X: in INTEGER_ARRAY ; Key: INTEGER)
                  return INTEGER ;
Pre:  exists i in X'FIRST..X'LAST: X (i) = Key
Post: X” (Search (X, Key)) = Key and X = X”
Error: Search (X, Key) = X'LAST + 1
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Formal specification approaches

⊗ Algebraic approach
⊕ The system is described in terms of interface operations and their

relationships

⊗ Model-based approach
⊕ A model of the system acts as a specification. This model is

constructed using well-understood mathematical entities such as sets
and sequences

⊗ These are covered in the following two chapters
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Formal specification languages

Sequential Concurrent
Algebraic Larch (Guttag et al., 1985),  

OBJ (Futatsugi et al., 1985)
Lotos (Bolognesi and
Brinksma, 1987),  

Model-based Z (Spivey, 1989)
VDM (Jones, 1980)

CSP (Hoare, 1985)
Petri Nets (Peterson, 1981)
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Key points

⊗ Formal system specification complements informal
specification techniques

⊗ Formal specifications are precise and unambiguous.
They remove areas of doubt in a specification

⊗ Formal specification forces an analysis of the system
requirements at an early stage. Correcting errors at
this stage is cheaper than modifying a delivered
system
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Key points

⊗ Formal specification techniques are not cost-
effective for the development of interactive systems.
They are most applicable in the development of
safety-critical systems and standards.

⊗ Functions can be specified by setting out pre and
post conditions for the function.
⊕ However, this approach does not scale up to large or

medium-sized systems.


