
CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 1

Chapter 9

Chapter 9 Formal Specification

Learning Objective

... Techniques for the unambiguous
specification of software.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 2

Objectives

⊗ To explain the place of formal software specification
in the software process.

⊗ To explain when formal specification is cost-
effective.

⊗ To describe a process model based on the
transformation of formal specifications to an
executable system.

⊗ To introduce a simple approach to formal
specification based on pre and post conditions

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 3

Topics covered

⊗ Formal specification on trial

⊗ Transformational development

⊗ Specifying functional abstractions

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 4

Specification in the software process

⊗ Specification and design are inextricably
intermingled.

⊗ Architectural design is essential to structure a
specification.

⊗ Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 5

Specification and design

Architectural
design

Requirements
specification

Requirements
definition

Software
specification

High-level
design

Increasing contractor involvement

Decreasing client involvement

Specification

Design

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 6

Specification in the software process

Requirements
specification

Formal
specification

System
modelling

Architectural
design

Requirements
definition

High-level
design

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 7

Formal specification on trial

⊗ Formal techniques are not widely used in industrial
software development

⊗ Given the relevance of mathematics in other
engineering disciplines, why is this the case?

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 8

Why aren't formal methods used?

⊗ Inherent management conservatism. It is hard to
demonstrate the advantages of formal specification in
an objective way

⊗ Many software engineers lack the training in discrete
math necessary for formal specification

⊗ System customers may be unwilling to fund
specification activities

⊗ Some classes of software (particularly interactive
systems and concurrent systems) are difficult to
specify using current techniques

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 9

Why aren't formal methods used?

⊗ There is widespread ignorance of the applicability of
formal specifications

⊗ There is little tool support available for formal
notations

⊗ Some computer scientists who are familiar with
formal methods lack knowledge of the real-world
problems to which these may be applied and
therefore oversell the technique

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 10

Advantages of formal specification

⊗ It provides insights into the software requirements and
the design.

⊗ Formal specifications may be analyzed mathematically
and the consistency and completeness of the
specification demonstrated.

⊗ It may be possible to prove that the implementation
corresponds to the specification

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 11

Advantages of formal specifications

⊗ Formal specifications may be used to guide the tester
of the component in identifying appropriate test cases

⊗ Formal specifications may be processed using
software tools. It may be possible to animate the
specification to provide a software prototype

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 12

Seven myths of formal methods
⊗ Perfect software results from formal methods

⊕ Nonsense - the formal specification is a model of the real-world and
may incorporate misunderstandings, errors and omissions.

⊗ Formal methods means program proving
⊕ Formally specifying a system is valuable without formal program

verification as it forces a detailed analysis early in the development
process.

⊗ Formal methods can only be justified for
safety-critical systems.

⊕ Industrial experience suggests that the development costs for all
classes of system are reduced by using formal specification.

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 13

Seven myths of formal methods

⊗ Formal methods are for mathematicians
⊕ Nonsense - only simple math is needed.

⊗ Formal methods increase development costs
⊕ Not proven. However, formal methods definitely push development

costs towards the front-end of the life cycle.

⊗ Clients cannot understand formal specifications
⊕ They can if they are paraphrased in natural language.

⊗ Formal methods have only been used for trivial
systems

⊕ There are now many published examples of experience with formal
methods for non-trivial software systems.

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 14

The verdict!

⊗ The reasons put forward for not using formal
specifications and methods are weak

⊗ However, there are good reasons why these methods
are not used

⊕ The move to interactive systems. Formal specification techniques
cannot cope effectively with graphical user interface specification

⊕ Successful software engineering. Investing in other software
engineering techniques may be more cost-effective

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 15

Use of formal methods

⊗ These methods are unlikely to be widely used in the
foreseeable future. Nor are they likely to be cost-
effective for most classes of system

⊗ They will become the normal approach to the
development of safety critical systems and standards

⊗ This changes the expenditure profile through the
software process

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 16

Development costs with formal
specification

Specification

Design and
Implementation

Validation

Specification

Design and
Implementation

Validation

Cost

Without formal
specification

With formal
specification

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 17

Transformational development

R2R1
Formal

specification R3
Executable
program

P1 P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 18

Specifying functional abstractions

⊗ The simplest specification is function specification.
There is no need to be concerned with global state
(assuming no side-effects)

⊗ The formal specification is expressed as input and
output predicates (pre and post conditions)

⊗ Predicates are logical expressions which are always
either true or false

⊗ Predicate operators include the usual logical operators
and quantifiers such as for-all and exists

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 19

Examples of predicates

All variables referenced are of type INTEGER

1. The value of variable A is greater than the value of B and the
value of variable C is greater than D

A > B and C > D

2. This predicate illustrates the use of the exists quantifier. The predicate is true if there are values
 of i, j and k between M and N such that i2 = j2 + k2. Thus, if M is 1 and N is 5, the predicate is true as
32 + 42 = 52. If M is 6 and N is 9, the predicate is false. There are no values of i, j and k between
 6 and 9 which satisfy the condition.

exists i, j, k in M..N: i2 = j2 + k2

3. This predicate illustrates the use of the universal quantifier for_all. It concerns the values of an
 array called Squares. It is true if the first ten values in the array take a value which is the square
 of an integer between 1 and 10.

for_all i in 1..10, exists j in 1..10: Squares (i) = j2

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 20

Specification with pre & post
conditions

⊗ Set out the pre-conditions
⊕ A statement about the function parameters stating what is invariably

true before the function is executed

⊗ Set out the post-conditions
⊕ A statement about the function parameters stating what is invariably

true after the function has executed

⊗ The difference between the pre & post conditions is
due to the application of the function to its parameters.
Together the pre and post conditions are a function
specification

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 21

Specification development

⊗ Establish the bounds of the input parameters.
⊕ Specify this as a predicate

⊗ Specify a predicate defining the condition which must
hold on the result of the function if it computes
correctly

⊗ Establish what changes are made to the input
parameters by the function
⊕ Specify this as a predicate

⊗ Combine the predicates into pre and post conditions

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 22

The specification of a search

function Search (X: in INTEGER_ARRAY ; Key: INTEGER)
 return INTEGER ;

Pre: exists i in X'FIRST..X'LAST: X(i) = Key
Post: X” (Search (X, Key)) = Key and X = X”

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 23

Search pre-conditions

⊗ One of the array elements must match the key

⊗ Use the exists quantifier to specify that an
element must exist which matches the key

⊕ exists i in X’FIRST..X’LAST: X (i) = Key

⊗ Assume FIRST and LAST refer to the upper
and lower bounds of the array

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 24

Search post-conditions

⊗ The result of Search should be the value of the array
index which refers to the element containing the key

⊕ X”(Search (X, Key)) = Key

⊗ The array after the operation is referenced by
'priming' the array name

⊗ The array should not be changed by the Search
function

⊕ X = X”

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 25

Specification with error predicate

function Search (X: in INTEGER_ARRAY ; Key: INTEGER)
 return INTEGER ;
Pre: exists i in X'FIRST..X'LAST: X (i) = Key
Post: X” (Search (X, Key)) = Key and X = X”
Error: Search (X, Key) = X'LAST + 1

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 26

Formal specification approaches

⊗ Algebraic approach
⊕ The system is described in terms of interface operations and their

relationships

⊗ Model-based approach
⊕ A model of the system acts as a specification. This model is

constructed using well-understood mathematical entities such as sets
and sequences

⊗ These are covered in the following two chapters

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 27

Formal specification languages

Sequential Concurrent
Algebraic Larch (Guttag et al., 1985),

OBJ (Futatsugi et al., 1985)
Lotos (Bolognesi and
Brinksma, 1987),

Model-based Z (Spivey, 1989)
VDM (Jones, 1980)

CSP (Hoare, 1985)
Petri Nets (Peterson, 1981)

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 28

Key points

⊗ Formal system specification complements informal
specification techniques

⊗ Formal specifications are precise and unambiguous.
They remove areas of doubt in a specification

⊗ Formal specification forces an analysis of the system
requirements at an early stage. Correcting errors at
this stage is cheaper than modifying a delivered
system

CS 422 Software Engineering Principles Chapter 9

From Software Engineering by I. Sommerville, 1996. Slide 29

Key points

⊗ Formal specification techniques are not cost-
effective for the development of interactive systems.
They are most applicable in the development of
safety-critical systems and standards.

⊗ Functions can be specified by setting out pre and
post conditions for the function.
⊕ However, this approach does not scale up to large or

medium-sized systems.

