
CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 1

Chapter 7

Chapter 7 Requirements Definition
and Specification

Learning Objective

… Techniques for defining and specifying
software system requirements.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 2

Objectives

u To illustrate a forms-based method of writing
requirements definition

u To describe ways of writing precise specifications

u To explain the importance of non-functional
requirements

u To describe different types of non-functional
requirement and how these can be specified

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 3

Topics covered

u Requirements definition

u Requirements specification

u Non-functional requirements

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 4

Definition and specification

u Requirements definition
• Customer-oriented descriptions of the system’s functions and

constraints on its operation

u Requirements specification
• Precise and detailed descriptions of the system’s functionality and

constraints. Intended to communicate what is required to system
developers and serve as the basis of a contract for the system
development

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 5

Requirements definition

u Should specify external behavior of the system so
the requirements should not be defined using a
computational model

u Includes functional and non-functional requirements
• Functional requirements are statements of the services that the

system should provide

• Non-functional requirements are constraints on the services and
functions offered by the system

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 6

Writing requirements definitions

u Natural language, supplemented by diagrams and
tables is the normal way of writing requirements
definitions

u This is universally understandable but three types of
problem can arise
• Lack of clarity. Precision is difficult without making the document

difficult to read

• Requirements confusion. Functional and non-functional
requirements tend to be mixed-up

• Requirements amalgamation. Several different requirements may be
expressed together

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 7

APSE database requirement

4.A.5 The database shall support the generation and control of
configuration objects; that is, objects which are themselves
groupings of other objects in the database. The configuration
control facilities shall allow access to the objects in a version
group by the use of an incomplete name.

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 8

Editor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a
diagram, the user may turn on a grid in either centimeters or
inches, via an option on the control panel. Initially, the grid is off.
The grid may be turned on and off at any time during an editing
session and can be toggled between inches and centimeters at any
time. A grid option will be provided on the reduce-to-fit view but
the number of grid lines shown will be reduced to avoid filling the
smaller diagram with grid lines.

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 9

Defining requirements

u Editor requirement mixes up functional and non-
functional requirements and is incomplete

u Easy to criticize but hard to write good requirements
definitions

u Use of a standard format with pre-defined fields to
be filled means that information is less likely to be
missed out

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 10

Editor grid definition

2.6 Grid facilities

2.6.1 The editor shall provide a grid facility where a matrix of horizontal and
vertical lines provide a background to the editor window. This grid shall
be a passive grid where the alignment of entities is the user's responsibility.
Rationale: A grid helps the user to create a tidy diagram with well-spaced
entities. Although an active grid, where entities 'snap-to' grid lines can be
useful, the positioning is imprecise. The user is the best person to decide
where entities should be positioned.

2.6.2 When used in ‘reduce-to-fit’ mode (see 2.1), the number of units
separating grid lines must be increased.
Rationale: If line spacing is not increased, the background will be
 very cluttered with grid lines.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 11

Requirements rationale

u It is important to provide rationale with requirements

u This helps the developer understand the application
domain and why the requirement is stated in its
current form

u Particularly important when requirements have to be
changed. The availability of rationale reduces the
chances that change will have unexpected effects

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 12

Node creation definition

3.5.1 Adding nodes to a design

3.5.1.1 The editor shall provide a facility where users can add nodes of a specified type
to a design. Nodes are selected (see 3.4) when they are added to the design.

3.5.1.2 The sequence of actions to add a node should be as follows:
1. The user should select the type of node to be added.
2. The user moves the cursor to the approximate node position in the diagram and
indicates that the node symbol should be added at that point.
3. The symbol may then be dragged to its final position.

Rationale: The user is the best person to decide where to position a node on the
diagram. This approach gives the user direct control over node type selection and
positioning.

Specification : ECLIPSE/WS/Tools/DE/FS. Section 3.5.1

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 13

Requirements specification

u The specifications adds detail to the requirements
definition. It should be consistent with it.

u Usually presented with system models which are
developed during the requirements analysis. These
models may define part of the system to be
developed

u Often written in natural language but this can be
problematical

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 14

Problems with natural language

u Natural language relies on the specification readers
and writers using the same words for the same
concept

u A natural language specification is over-flexible and
subject to different interpretations

u Requirements are not partitioned by language
structures

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 15

Natural language alternatives

u Structured natural language

u Design description languages

u Requirements specification languages

u Graphical notations

u Mathematical specifications

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 16

Requirements traceability

u Requirements traceability means that related
requirements are linked in some way and that
requirements are (perhaps) linked to their source

u Traceability is a property of a requirements
specification which reflects the ease of finding
related requirements

u Some CASE tools provide traceability support
facilities. For example, they may be able to find all
requirements which use the same terms

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 17

Traceability techniques

u Assign a unique number to all requirements

u Cross-reference related requirements using this
unique number

u Produce a cross-reference matrix for each
requirements document showing related requirements.
• Several matrices may be necessary for different types of

relationship

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 18

Structured language specifications

u A limited form of natural language may be used to
express requirements

u This removes some of the problems resulting from
ambiguity and flexibility and imposes a degree of
uniformity on a specification

u Often bast supported using a forms-based approach

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 19

Form-based specifications

u Definition of the function or entity

u Description of inputs and where they come from

u Description of outputs and where they go to

u Indication of other entities required

u Pre and post conditions (if appropriate)

u The side effects (if any)

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 20

Form-based node specification
ECLIPSE/Workstation/Tools/DE/FS/3.5.1

Function Add node

Description Adds a node to an existing design. The user selects the type of node, and its position.
When added to the design, the node becomes the current selection. The user chooses the node position by
moving the cursor to the area where the node is added.

Inputs Node type, Node position, Design identifier.

Source Node type and Node position are input by the user, Design identifier from the database.

Outputs Design identifier.

Destination The design database. The design is committed to the database on completion of the
operation.

Requires Design graph rooted at input design identifier.

Pre-condition The design is open and displayed on the user's screen.

Post-condition The design is unchanged apart from the addition of a node of the specified type
at the given position.

Side-effects None

Definition: ECLIPSE/Workstation/Tools/DE/RD/3.5.1

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 21

PDL-based requirements definition

u Requirements may be defined operationally using a
language like a programming language but with more
flexibility of expression

u Most appropriate in two situations
• Where an operation is specified as a sequence of actions and the order

is important

• When hardware and software interfaces have to be specified

u Disadvantages are
• The PDL may not be sufficiently expressive to define domain concepts

• The specification will be taken as a design rather than a specification

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 22

PDL description of an ATM

procedure ATM is -- ATM/RS/CONT/1 Control specification for an ATM
PIN: Pin_no ;
Acc_no: Account_number ; Balance: Amount ;
Service: Available_services ; Valid_card, Valid_PIN: Boolean ;
begin
loop

Get_card (Acc_no, PIN, Valid_card) ;
if Valid_card then

Validate_PIN (PIN, Valid_PIN) ;
if Valid_PIN then

Get_account (Acc_no, Balance) ;
Get_service (Service) ;
while a service is selected loop

Deliver_selected_service ;
Get_service (Service) ;

end loop ;
Return_card ;

end if ;
end if ;

end loop ;
end ATM ;

Form-based node specification

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 23

Interface specification

u Almost all software systems operate in an
environment where there are other systems. They
may be interfaces to these systems in different ways

u Three types of interface may have to be defined in a
requirements specification
• Procedural interfaces. Sub-systems offer a range of services

• Data interfaces. Data structures are exchanged

• Representation interfaces. Specific data representation patterns may
have to be used

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 24

Procedural interface example

package Print_server is
procedure Initialize (P: PRINTER) ;
procedure Print (P: PRINTER ; F: PRINT_FILE) ;

 procedure Display_print_queue (P: PRINTER) ;
procedure Cancel_print_job (P: PRINTER; N: PRINT_ID) ;
procedure Switch_printer (P1, P2: PRINTER; N: PRINT_ID) ;

end Print_server ;

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 25

Data interface example
type MESSAGE is record
 Sender : SYSTEM_ID;

Receiver : SYSTEM_ID;
Dispatch_time : DATE;
Length: MESSAGE_LENGTH ;
Terminator: CHARACTER ;
Message : TEXT;

end record;
type SYSTEM_ID is range 20_000..30_000 ;
type YEAR_TYPE is range 1980..2080 ;
type DATE is record

Seconds: NATURAL ;
Year: YEAR_TYPE ;

end record ;
type MESSAGE_LENGTH is range 0..10_000 ;
type TEXT is array (MESSAGE_LENGTH) of CHARACTER ;

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 26

Size representation

for SYSTEM_ID’SIZE use 2*BYTE ;
for YEAR_TYPE’SIZE use 2*BYTE ;
for MESSAGE_LENGTH’SIZE use 2*BYTE ;

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 27

Representation interface example

type STATE is (Halted, Waiting, Ready, Running);
for STATE use (Halted => 1, Waiting => 4, Ready => 16,

Running => 256);

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 28

Non-functional requirements

u Define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

u Process requirements may also be specified mandating
a particular CASE system, programming language or
development method

u Non-functional requirements may be more critical
than functional requirements. If these are not met, the
system is useless

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 29

Non-functional classifications

u Product requirements
• Requirements which specify that the delivered product must behave

in a particular way e.g. execution speed, reliability, etc.

u Organizational requirements
• Requirements which are a consequence of organizational policies

and procedures e.g. process standards used, implementation
requirements, etc.

u External requirements
• Requirements which arise from factors which are external to the

system and its development process e.g. interoperability
requirements, legislative requirements, etc.

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 30

Non-functional requirement types

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 31

Non-functional requirements examples

u Product requirement
• 4.C.8 It shall be possible for all necessary communication between the

APSE and the user to be expressed in the standard Ada character set.

u Organizational requirement
• 9.3.2 The system development process and deliverable documents

shall conform to the process and deliverables defined in XYZCo-SP-
STAN-95.

u External requirement
• 7.6.5 The system shall provide facilities that allow any user to check

if personal data is maintained on the system. A procedure must be
defined and supported in the software that will allow users to inspect
personal data and to correct any errors in that data.

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 32

Requirements verifiability

u Requirements should be written so that they can be
objectively verified

u The problem with this requirement is its use of vague
terms such as ‘errors shall be minimized”
• The system should be easy to use by experienced controllers and

should be organized in such a way that user errors are minimized.

u The error rate should be been quantified
• Experienced controllers should be able to use all the system functions

after a total of two hours training. After this training, the average
number of errors made by experienced users should not exceed two
per day.

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 33

Requirements measures
Property Measure
Speed Processed transactions/second

User/Event response time
Screen refresh time

Size K Bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 34

Requirements separation

u Functional and non-functional requirements should,
in principle, be distinguished in a requirements
specification

u However, this is difficult as requirements may be
expressed as whole system requirements rather than
constraints on individual functions

u It is sometimes difficult to decide if a requirement is
functional or a non-functional
• For example, requirements for safety are concerned with non-

functional properties but may require functions to be added to the
system

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 35

System-level requirements

u Some requirements place constraints on the system as
a whole rather than specific system functions

u Example
• The time required for training a system operator to be proficient in

the use of the system must not exceed 2 working days.

u These may be emergent requirements (see Chapter 2)
which cannot be derived from any single sub-set of
the system requirements

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 36

Key points

u A requirements definition is used by customers and
end-users. It must be written in a language which
they can understand

u Rationale for a requirement should always be
included in a requirements definition

u Requirements should be written so that they may be
verified

CS 422 Software Engineering Principles Chapter 7
From Software Engineering by I. Sommerville, 1996. Slide 37

Key points

u Requirements specifications are intended to precisely
communicate the system functions and constraints.
They may be written in some form of structured
language

u Three classes of non-functional requirement are
product requirements, process requirements and
external requirements

u Natural language is normally used to write non-
functional requirements because of their variability
and complexity

