
CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  1

Chapter 19

Chapter 19 Programming for Reliability

Learning Objective

... Programming techniques for building reliable
software systems.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  2

Objectives

⊗ To describe programming techniques for reliable
systems development

⊗ To discuss fault avoidance by error-prone construct
minimization

⊗ To describe fault tolerant system architectures

⊗ To show how exception handling constructs may be
used to create robust programs and as part of a
defensive approach to programming

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  3

Topics covered

⊗ Fault avoidance techniques

⊗ Fault tolerance and fault tolerant architectures

⊗ Exception handling and management

⊗ Defensive programming

⊗ Program examples are presented in both Ada and
C++



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  4

Software reliability

⊗ In general, software customers expect all software to
be reliable. However, for non-critical applications,
they may be willing to accept some system failures

⊗ Some applications, however, have very high
reliability requirements and special programming
techniques must be used to achieve this

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  5

Reliability achievement

⊗ Fault avoidance
⊕ The software is developed in such a way that it does not contain

faults

⊗ Fault detection
⊕ The development process is organized so that faults in the software

are detected and repaired before delivery to the customer

⊗ Fault tolerance
⊕ The software is designed so that faults in the delivered software do

not result in complete system failure

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  6

Fault avoidance

⊗ Current methods of software engineering now
allow for the production of fault-free software.

⊗ Fault-free software means software which
conforms to its specification. It does NOT mean
software which will always perform correctly as
there may be specification errors.

⊗ The cost of producing fault free software is very
high. It is only cost-effective in exceptional
situations. May be cheaper to accept software faults



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  7

Fault removal costs

Cost
per error
deleted

Few
Number of residual errors

ManyVery
few

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  8

Fault-free software development
⊗ Needs a precise (preferably formal) specification.

⊗ Information hiding and encapsulation in software
design is essential

⊗ A programming language with strict typing and run-
time checking should be used

⊗ Extensive use of reviews at all process stages

⊗ Requires an organizational commitment to quality.

⊗ Careful and extensive system testing is still
necessary

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  9

Ada and C++

⊗ Ada was designed for large-scale software engineering
and is a strictly typed language. However, few
compilers available for personal computers

⊗ However, C++ is becoming increasingly widely used
for development. Combines the efficiency of a low-
level language (C) with object-oriented programming
constructs. Better type checking than C but not so good
as Ada.



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  10

Structured programming

⊗ First discussed in the 1970's

⊗ Programming without gotos

⊗ While loops and if statements as the only
control statements.

⊗ Top-down design.

⊗ Important because it promoted thought and
discussion about programming.

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  11

Error-prone constructs
⊗ Floating-point numbers

⊕ Inherently imprecise. The imprecision may lead to invalid
comparisons

⊗ Pointers
⊕ Pointers referring to the wrong memory areas can corrupt data.

Aliasing can make programs difficult to understand and change.

⊗ Dynamic memory allocation
⊕ Run-time allocation can cause memory overflow

⊗ Parallelism
⊕ Can result in subtle timing errors because of unforeseen

interaction between parallel processes

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  12

Error-prone constructs

⊗ Recursion
⊕ Errors in recursion can cause memory overflow

⊗ Interrupts
⊕ Interrupts can cause a critical operation to be terminated and make a

program difficult to understand. they are comparable to goto statements.

⊗ It is NOT suggested that these constructs should always
be avoided but they must be used with great care.



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  13

Information hiding

⊗ Information should only be exposed to those parts of
the program which need to access it. This involves the
creation of objects or abstract data types which
maintain state and operations on that state

⊗ This avoids faults for three reasons:
⊕ the probability of accidental corruption of information

⊕ the information is surrounded by ‘firewalls’ so that problems are less
likely to spread to other parts of the program

⊕ as all information is localized, the programmer is less likely to make
errors and reviewers are more likely to find errors

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  14

Data typing

⊗ Each program component should only be allowed
access to data which is needed to implement its
function

⊗ The representation of a data type should be concealed
from users of that type

⊗ Ada, Modula-2 and C++ offer direct support for
information hiding

⊗ The type system can be used to enhance program
readability by modeling real-world entities directly.

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  15

Type declarations

⊗ C++ type declarations
⊕ typedef enum { red, redamber, amber, green} TrafficLightColor ;

TrafficLightColor ColorShowing, NextColor ;

⊗ Ada type declarations
⊕ type POSITIVE is INTEGER range 1..MAXINT ;

⊕ type OIL_STATUS is new BOOLEAN ;
type DOOR_STATUS is new INTEGER ;
type FUEL_STATUS is new BOOLEAN ;



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  16

Objects and abstract data types

⊗ Implemented in C++ as objects, in Ada as packages

⊗ The type name is declared within the object or ADT

⊗ Type operations are defined as procedures or
functions.

⊗ The type representation is defined in the private part.

⊗ Generic abstract data structures may be
parameterized using the type name.

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  17

Ada specification of an integer queue
package Queue is

type T is private ;
procedure Put (IQ : in out T; X: INTEGER);
procedure Remove (IQ : in out T; X : out INTEGER);
function Size (IQ : T ) return NATURAL;

private 
type Q_RANGE is range 0..99 ;
type Q_VEC is array ( Q_RANGE ) of INTEGER ;
type T is record 

The_queue: Q_VEC ;
front, back : Q_RANGE ;

end record; 
end Queue;

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  18

C++ Queue class declaration

class Queue {
public:

Queue () ;
~Queue () ;
void Put ( int x ) ; // adds an item to the queue
int Remove () ; // this has side effect of changing the queue
int Size( ) ;  // returns number of elements in the queue

private:
int front, back ;
int qvec [100] ;

} ;



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  19

Generics

⊗ The behavior of objects and ADTs which are composed
of other objects or ADTs is often independent of the
type of these included objects

⊗ Generics enable writing generalized, parameterized
ADTs and objects which may be instantiated later with
particular types

⊗ Both Ada and C++ have generic type or class definition
facilities

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  20

Ada declaration of a generic queue
generic
  type ELEM is private ;
  type Q_SIZE is range <> ;
package  Queue is
  type T is private ;
  procedure  Put (IQ : in out T; X: ELEM );
  procedure  Remove (IQ : in out T; X : out ELEM );
  function Size (IQ : in T ) return NATURAL ;
private 
  type Q_VEC is array (Q_SIZE) of ELEM ;
  type T is record 
    The_queue: Q_VEC ;
    Front : Q_SIZE := Q_SIZE’FIRST ;
    Back: Q_SIZE := Q_SIZE’FIRST ;
  end record ; 
end Queue;

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  21

C++ generic queue

template
<class elem>

class Queue {
public:

Queue ( int size = 100 ) ; // default to queue of size 100 elements
~Queue () ;
void Put ( elem x ) ; 
elem Remove ( ) ; // this has side effect of changing queue
int Size ( ) ;

private:
int front, back ;
elem* qvec ; 

} ;



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  22

Generic instantiation

⊗ Generics are instantiated at compile-time NOT at run-
time so type checking is possible

⊗ Ada
⊕ type IQ_SIZE is range 0..49 ;  type LQ_SIZE is range 0..199 ;

package Integer_queue is new Queue (ELEM => INTEGER, 
Q_SIZE => IQ_SIZE ) ;

package List_queue is new Queue (ELEM => List.T,
Q_SIZE => LQ_SIZE ) ;

⊗ C++
⊕ //Assume List has been defined elsewhere as a type

Queue <int> Int_queue (50) ;
Queue <List> List_queue (200) ;

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  23

Fault tolerance

⊗ In critical situations, software systems must be fault
tolerant.

⊗ Fault tolerance means that the system can continue in
operation in spite of software system failure

⊗ Even if the system has been demonstrated to be fault-
free, it must also be fault tolerant as there may be
specification errors or the validation may be incorrect

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  24

Fault tolerance actions

⊗ Failure detection
⊕ The system must detect that a failure has occurred.

⊗ Damage assessment
⊕ The parts of the system state affected by the failure must be detected.

⊗ Fault recovery
⊕ The system must restore its state to a known safe state.

⊗ Fault repair
⊕ The system may be modified to prevent recurrence of the fault.

⊕ As many software faults are transitory, this is often unnecessary.



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  25

Fault occurrence

⊗ Many software failures are transient and dependent on
individual data. Operation may continue by re-starting
the system

⊗ If this is impossible, dynamic system re-configuration
may be necessary where software components are
replaced without stopping the system

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  26

Hardware fault tolerance

⊗ Depends on triple-modular redundancy (TMR)

⊗ There are three replicated identical components which
receive the same input and whose outputs are
compared

⊗ If one output is different, it is ignored and component
failure is assumed

⊗ Based on most faults resulting from  component
failures rather than design faults and a low probability
of simultaneous component failure

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  27

Hardware reliability with TMR

A2

A1

A3

Output
comparator



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  28

Software analogies

⊗ N-version programming
⊕ The same specification is implemented in a number of different

versions. All versions compute simultaneously and the majority
output is selected.

⊕ This is the most commonly used approach e.g. in Airbus 320.
However, it does not provide fault tolerance if there are specification
errors.

⊗ Recovery blocks
⊕ Versions are executed in sequence. The output which conforms to an

acceptance test is selected.

⊕ The weakness in this system is writing an appropriate acceptance test.

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  29

N-version programming

Version 2

Version 1

Version 3

Output
comparator

N-versions

Agreed
result

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  30

N-version programming

⊗ The different system versions are designed and
implemented by different teams. It is assumed that
there is a low probability that they will make the
same mistakes

⊗ However, there is some empirical evidence that teams
commonly misinterpret specifications in the same
way and use the same algorithms in their systems



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  31

Recovery blocks

Acceptance
test

Algorithm 2

Algorithm 1

Algorithm 3

Recovery
blocks

Test for
success

Retest

Retry

Retest

Try algorithm
1

Continue execution if
acceptance test succeeds
Signal exception if all
algorithms fail

Acceptance test
fails – re-try

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  32

Recovery blocks

⊗ Force a different algorithm to be used for each version
so they reduce the probability of common errors

⊗ However, the design of the acceptance test is difficult
as it must be independent of the computation used

⊗ Like N-version programming, susceptible to
specification errors

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  33

Exception handling

⊗ A program exception is an error or some unexpected
event such as a power failure.

⊗ Exception handling constructs allow for such events to
be handled without the need for continual status
checking to detect exceptions.

⊗ Using normal control constructs to detect exceptions in
a sequence of nested procedure calls needs many
additional statements to be added to the program and
adds a significant timing overhead.



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  34

Exceptions in nested procedure calls

B;

A

C;

B

C
Call

sequence

Exception
occurrence

Exception
return

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  35

Ada exception handling

⊗ Ada has a built-in type exception and names can
therefore be associated with exceptions

⊗ Drawing attention to an exception is called raising the
exception (keyword raise)

⊗ An Ada program unit can have an exception handler
which is a block of code defining how exceptions
should be processed

⊗ Code is automatically switched to the exception
handler when an exception is raised

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  36

Ada’s built-in exceptions
⊗ CONSTRAINT_ERROR

⊕ Raised when an attempt is made to assign an out of range
value to a variable e.g. array access out of bounds.

⊗ NUMERIC_ERROR
⊕ Raised when an error occurs in an arithmetic operation (e.g.

division by zero)

⊗ PROGRAM_ERROR
⊕ Raised when a control structure is violated.

⊗ STORAGE_ERROR
⊕ Raised when dynamic store is exhausted.

⊗ TASKING_ERROR
⊕ Raised when inter-task communication fails.



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  37

C++ exception handling

⊗ Keyword throw means raise an exception. Handler is
indicated by the keyword catch

⊗ Exceptions are defined as classes so may inherit
properties from other exception classes

⊗ Normally, exceptions are completely handled in the
block where they arise rather than propagated for
handling

⊗ All exceptions are user-defined. No built-in exceptions.

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  38

A temperature controller

⊗ Controls a freezer and keeps temperature within a
specified range

⊗ Switches a refrigerant pump on and off

⊗ Sets of an alarm is the maximum allowed temperature
is exceeded

⊗ Uses external entities Pump, Temperature_dial,
Sensor, Alarm.

⊗ External shared state is held in a package called
Globals (in Ada)

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  39

Freezer controller (Ada)
with Pump, Temperature_dial, Sensor, Globals, Alarm;
use Globals ;
procedure  Control_freezer is

Ambient_temperature: FREEZER_TEMP ;
begin

loop
Ambient_temperature := Sensor.Get_Temperature ;
if Ambient_temperature > Temperature_dial.Setting then

if Pump.Status = Off then
Pump.Switch (State => On) ;
-- Wait for the freezer to cool
Wait (Cooling_time ) ;

elsif Pump.Status = On then
-- Switch pump off because temperature is low
Pump.Switch (State => Off) ;

    end if ;
end if ;
-- Problem - can’t lower temperature
if Ambient_temperature > Danger_temperature then

raise Freezer_too_hot ;  end if ;
end loop ;

exception
when Freezer_too_hot => Alarm.Activate ;

    raise  ;
  when others => Alarm_activate ;
    raise  Control_problem ;
end Control_freezer;



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  40

Freezer controller (C++)
void Control_freezer ( const float Danger_temp) 
{

float Ambient_temp ;
// try means exceptions will be handled in this block
// Assume that Sensor, Temperature_dial and Pump are
//objects which have been declared elsewhere
try {

while (true) {
Ambient_temp = Sensor.Get_temperature () ;
if (Ambient_temp > Temperature_dial.Setting () )

if (Pump.Status () == off)
{

Pump.Switch (on) ;
Wait (Cooling_time) ;

}
else

if (Pump.Status () == on)
Pump.Switch (off) ;

if ( Ambient_temp > Danger_temp )
throw Freezer_too_hot ( ) ;

}  // end of while loop 
}  // end of exception handling try block
// catch indicates the exception handling code. 
catch ( Freezer_too_hot )

Alarm.Activate () ;
}

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  41

Defensive programming

⊗ An approach to program development where it
is assumed that undetected faults may exist in programs

⊗ The program contains code to detect and
recover from such faults

⊗ Does NOT require a fault-tolerance controller
yet can provide a significant measure of fault tolerance

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  42

Failure prevention

⊗ Type systems allow many potentially corrupting
failures to be detected at compile-time

⊗ Range checking and exceptions allow another
significant group of failures to be detected at run-time

⊗ State assertions may be developed and included as
checks in the program to catch a further class of
system failures



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  43

Ada range checking

⊗ Types are declared as an allowed range e.g. 1..100

⊗ Ada’s range checking automatically raises a
CONSTRAINT_ERROR exception if an
assignment is out of range

⊗ Range checking only applies to a single
variable. Checks which apply across variables
(e.g. if A=0 then B=1) cannot be applied.

⊗ Out of range errors may require further processing
to locate the error source

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  44

⊗ Logical predicates over the system state variables.

⊗ May be incorporated directly in a language but
this can cause compilation problems if quantifiers are
used.

⊗ Usually implemented as program checks.

⊗ Simplified if ALL state operations are through
abstract data types.  In many cases, predicates  need
only be associated with the ADT.

State assertions

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  45

Even number type
Ada
package Positive_even is 
  type NUMB is limited private ;
  procedure Assign (A: in out NUMB; B: NATURAL; 
                   State_error: in out BOOLEAN) ;
  function Eval (A: NUMB) return NATURAL ;

-- overload operator = 
  function “=“ (A, B: NUMB) return BOOLEAN ;
private
  type NUMB is new NATURAL ;
end Positive_even ;

C++
class Positive_even {
public:

// New assignment function to assign integer to
// positive even number object
void Assign ( int b, Error_type  &State_error) ;
int Eval ( ) ;
// Equals can be re-defined because it is always true or false
int operator == (Positive_even b) ;

private:
int numb ;

} ; //Positive_even



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  46

Assertion checking
Ada
procedure Assign (A: in out NUMB; B: NATURAL; 
                 State_error: in out BOOLEAN) is
begin

if B rem 2 /= 0 then 
State_error := TRUE ;

else
State_error := FALSE ;
A := NUMB (B ) ;

end if ;
end Assign ;

C++
void Positive_even:: Assign ( int b,  Error_type &State_error)
{

if (b%2 != 0)
State_error = failure ;

else {
State_error = OK ;
numb = b ;

}
}

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  47

Damage assessment

⊗ Analyse system state to judge the extent of
corruption caused by a system failure

⊗ Must assess what parts of the state space have
been affected by the failure

⊗ Generally based on ‘validity functions’ which can
be applied to the state elements to assess if their
value is within an allowed range

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  48

⊗ Checksums are used for damage assessment in data
transmission

⊗ Redundant pointers can be used to check the
integrity of data structures

⊗ Watch dog timers can check for non-terminating
processes. If no response after a certain time, a
problem is assumed

Damage assessment techniques



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  49

Ada type with damage assessment
generic

type ELEM is private ;
type INDEX is range <> ;

package Robust_array is 
type T is private ;
-- Ada 95. Access types to functions are not defined in Ada 83 
type CHECK_FUNCTION is access function (E: ELEM) return

BOOLEAN ;
function Eval (A: T; I: INDEX) return ELEM ;
procedure  Assign (A: in out T; I: INDEX; 

E: ELEM ) ;
-- This is Ada 95 NOT Ada 93
-- Test is a pointer to a function which checks elements against
--  some condition and returns a boolean value. If damaged
--  it sets the corresponding element in the array Checks
procedure  Assess_damage (A: T ;  Test: CHECK_FUNCTION) ;
-- Returns TRUE if any array element is damaged
function Is_damaged (A: T ) return  BOOLEAN ;
-- Access the state associated with element I
function Eval_state (A: T; I: INDEX) return  BOOLEAN ;

private
type T is record

Vals: array (INDEX) of ELEM ;
Checks: array (INDEX) of BOOLEAN ;

end record ;
end Robust_array ;

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  50

C++ class with damage assessment
template <class elem> class Robust_array {
public:

Robust_array (int size = 20) ;
~Robust_array () ;
void Assign ( int Index, elem Val) ;
elem Eval  (int Index) ;

// Damage assessment functions
// Assess_damage takes a pointer to a  function as a parameter
// It sets the corresponding element of Checks if a problem is
// detected by the function Test
void Assess_damage ( void (*Test ) (boolean*)) ;
boolean Eval_state (int Index) ;
boolean  Is_damaged () ;

private:
elem* Vals ;
boolean* Checks ;

} ;

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  51

⊗ Forward recovery
⊕ Apply repairs to a corrupted system state

⊗ Backward recovery
⊕ Restore the system state to a known safe state

⊗ Forward recovery is usually application specific
- domain knowledge is required to compute possible
state corrections

⊗ Backward error recovery is simpler. Details of a safe
state are maintained and this replaces the corrupted
system state

Fault recovery



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  52

⊗ Corruption of data coding
⊕ Error coding techniques which add redundancy to coded

data can be used for repairing data corrupted during
transmission

⊗ Redundant pointers
⊕ When redundant pointers are included in data structures

(e.g. two-way lists), a corrupted list or filestore may be
rebuilt if a sufficient number of pointers are uncorrupted

⊕ Often used for database and filesystem repair

Forward recovery

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  53

⊗ Transactions are a frequently used method of
backward recovery.
⊕ Changes are not applied until computation is complete.

⊕ If an error occurs, the system is left in the state preceding
the transaction.

⊗ Periodic checkpoints allow system to 'roll-back'
to a correct state

Backward recovery

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  54

Safe sort procedure

⊗ Sort operation monitors its own execution and
assesses if the sort has been correctly executed

⊗ Maintains a copy of its input so that if an error
occurs, the input is not corrupted

⊗ Based on identifying and handling exceptions

⊗ Possible in this case as ‘valid’ sort is known.
⊕ However, in many cases it is difficult to write validity

checks



CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  55

⊗ Reliability in a system can be achieved through
fault avoidance and fault tolerance

⊗ Some programming language constructs such
as gotos, recursion and pointers are inherently
error-prone

⊗ Data typing allows many potential faults to be
trapped at compile time.

⊗ Fault tolerant software can continue in execution in
the presence of software faults

Key points

CS 422 Software Engineering Principles                  Chapter 19

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  56

Key points

⊗ Fault tolerance requires…. failure detection, damage
assessment, recovery and repair

⊗ N-version programming and recovery blocks
are approaches to fault tolerance

⊗ Exception handling mechanisms can be used to
recover from failure

⊗ Defensive programming can provide some fault
tolerance without a special fault-tolerant controller


