Chaptgg 19

Chgpte‘r‘.‘éogr,amming for Reliability
W -

L earning Objective

... Programming techniques for building
systems.

Frederick T Sheldon
Assistant Professor of Computer Science
Washington State University

Objectives

A To describe programming techniques for reliable
systems devel opment

A To discuss fault avoidance by error-prone construct
minimization

A To describe fault tolerant system architectures

A To show how exception handling constructs may be
used to create robust programs and as part of a
defensive approach to programming

w9
84
83

Topics covered

Fault avoidance techniques

Fault tolerance and fault tolerant architectures
Exception handling and management
Defensive programming

Program examples are presented in both Ada and
C++

> P> D> > D

CS 422 Software Enginesring Principles

om SvereExgnesingty 1. Somenile 19

2g
g8
P

Software reliability

A Ingeneral, software customers expect all software to
be reliable. However, for non-critica applications,
they may be willing to accept some system failures

A Some applications, however, have very high
reliability requirements and specia programming
techniques must be used to achieve this

ggggggg

Reliability achievement

A Fault avoidance

A The software is developed in such away that it does not contain
faults

A Fault detection

A The development process is organized so that faultsin the software
are detected and repaired before delivery to the customer

A Fault tolerance

A The software is designed so that faultsin the delivered software do
not result in complete system failure

sssss

Fault avoidance

A Current methods of software engineering now
allow for the production of fault-free software.

A Fault-free software means software which
conformsto its specification. It does NOT mean
software which will always perform correctly as
there may be specification errors.

A The cost of producing fault free software is very
high. It is only cost-effective in exceptional
situations. May be cheaper to accept software faults

CS 422 Software Enginesring Principles
om sivereExnesingty 1. Somenile 1995

2g
g8
o R

Fault removal costs

Cost A
per error
deleted
Very Few Many >
few Number of residual errors

ggggggg

Fault-free software development

A Needs a precise (preferably formal) specification.

A Information hiding and encapsulation in software
design is essential

A A programming language with strict typing and run-
time checking should be used

A Extensive use of reviews at all process stages

A Requires an organizational commitment to quality.

A Careful and extensive system testing is still
necessary

aaaaa

Adaand C++

A Adawas designed for large-scal e software engineering
and isastrictly typed language. However, few
compilers available for personal computers

A However, C++ is becoming increasingly widely used
for development. Combines the efficiency of alow-
level language (C) with object-oriented programming
constructs. Better type checking than C but not so good
asAda

CS 422 Software Enginesring Principles

om SvereExgnesingty 1. Somenile 19

2g
g8
P

Structured programming

First discussed in the 1970's

A Programming without gotos
While loops and if statements as the only
control statements.
Top-down design.
Important because it promoted thought and
discussion about programming.

Chepter 19
Side 10

csaz

Error-prone constructs

A Floating-point numbers
A Inherently imprecise. The imprecision may lead to invalid
comparisons
A Pointers

A Pointers referring to the wrong memory areas can corrupt data.
Aliasing can make programs difficult to understand and change.

A Dynamic memory allocation
A Run-time allocation can cause memory overflow
A Pardlelism

A Can result in subtle timing errors because of unforeseen
interaction between parallel processes

Chepter 19
Side 11

Error-prone constructs

A Recursion
A Errorsin recursion can cause memory overflow
A Interrupts

A Interrupts can cause a critical operation to be terminated and make a
program difficult to understand. they are comparable to goto statements.

A 1tisNOT suggested that these constructs should always
be avoided but they must be used with gresat care.

Chapter 19

CS 422 Software Enginesring Principles
Side 12

om SvereExgnesingty 1. Somenile 19

Information hiding

A Information should only be exposed to those parts of
the program which need to accessit. Thisinvolvesthe
creation of objects or abstract data types which
maintain state and operations on that state

A Thisavoids faults for three reasons:
A the probability of accidental corruption of information
A theinformation is surrounded by ‘firewalls' so that problems are less
likely to spread to other parts of the program
A asdl information islocalized, the programmer is less likely to make
errors and reviewers are more likely to find errors

Chepter 19
Side 13

Data typing

A Each program component should only be allowed
access to datawhich is needed to implement its
function

A The representation of a data type should be concealed
from users of that type

A Ada, Modula-2 and C++ offer direct support for
information hiding

A Thetype system can be used to enhance program
readability by modeling real-world entities directly.

Chepter 19
Side 14

Type declarations

A C++ type declarations
A typedef enum { red, redamber, amber, green} TrafficLightColor ;
TrafficLightColor ColorShowing, NextColor ;
A Adatype declarations
A type POSITIVE isINTEGER range 1.MAXINT ;

A type OIL_STATUS isnew BOOLEAN ;
type DOOR_STATUS isnew INTEGER ;
type FUEL_STATUSisnew BOOLEAN ;

CS 422 Software Enginesring Principles Crepter 19
om sivereExnesingty 1. Somenile 1995 Side 15

Objects and abstract data types

A Implemented in C++ as objects, in Ada as packages
The type name is declared within the object or ADT

A Type operations are defined as procedures or
functions.

A Thetype representation is defined in the private part.

A Generic abstract data structures may be
parameterized using the type name.

CS 422 Softwere Enginessing Principles Chepter 19
From e Exareingby || Sl 1995 Side 16

Ada specification of an integer queue

package Queue is
type T is private ;
procedure Put (IQ : in out T; X: INTEGER);
procedure Remove (IQ : inout T; X : out INTEGER);
function Size (IQ : T) return NATURAL,;
private
type Q_RANGE is range 0..99;
type Q_VEC is array (Q_RANGE) of INTEGER ;
type T is record
The_queue: Q_VEC ;
front, back : Q_RANGE ;
end record;
end Queue;

C5 422 50f eering Principles Chepter 19
Franss 1. Somenile 1536 Side 17

C++ Queue class declaration

class Queue {
public:
Queue () ;
~Queue () ;
void Put (int x) ; // adds an item to the queue
int Remove () ; // this has side effect of changing the queue
int Size() ; // returns number of elements in the queue
private:
int front, back ;
int gvec [100] ;

CS 422 Software Enginearing Principles Crepter 19
wtvaeengrs il 156

Side 18

Generics

A The behavior of objects and ADTs which are composed
of other objects or ADTsis often independent of the
type of these included objects

A Generics enable writing generalized, parameterized
ADTs and objects which may be instantiated later with
particular types

A Both Adaand C++ have generic type or class definition
facilities

Chepter 19

csaz
Fransn Side 19

Ada declaration of ageneric queue

generic
type ELEM is private ;
type Q_SIZE is range <>;
package Queue is
type T is private ;
procedure Put (IQ : in out T; X: ELEM);
procedure Remove (1Q : in out T; X : out ELEM);
function Size (1Q :in T) return NATURAL ;
private
type Q_VEC is array (Q_SIZE) of ELEM ;
type T is record
The_queue: Q_VEC;
Front : Q_SIZE := Q_SIZE'FIRST ;
Back: Q_SIZE := Q_SIZE'FIRST ;
end record;
end Queue;

i Principles Chepter 19
‘‘‘‘‘‘‘‘ . Side 20

C++ generic queue

template
<class elem>
class Queue {
public:
Queue (int size =100) ; // default to queue of size 100 elements
~Queue () ;
void Put (elem x) ;
elem Remove () ; // this has side effect of changing queue
int Size () ;
private:
int front, back ;
elem* qvec ;

b

CS 422 Software Enginesring Principles Crepter 19
om SvereExgnesingty 1. Somenile 19 Side 21

Generic instantiation

A Generics areinstantiated at compile-time NOT at run-
time so type checking is possible

A Ada

A type lQ_SIZE is range 0..49 ; type LQ_SIZE is range 0..199 ;
package Integer_queue is new Queue (ELEM => INTEGER,
Q_SIZE =>1Q_SIZE);
package List_queue is new Queue (ELEM => List.T,
Q_SIZE=>LQ_SIZE);

A C++

A I//Assume List has been defined elsewhere as a type
Queue <int> Int_queue (50) ;
Queue <List> List_queue (200) ;

Chepter 19

csaz
Fransn Side 22

Fault tolerance

A Incritical situations, software systems must be fault
tolerant.

A Fault tolerance means that the system can continue in
operation in spite of software system failure

A Evenif the system has been demonstrated to be fault-
free, it must also be fault tolerant as there may be
specification errorsor the validation may be incorrect

Chepter 19
Side 23

CS 422 Software Engi

Fault tolerance actions

A Failure detection
A The system must detect that a failure has occurred.
A Damage assessment
A The parts of the system state affected by the failure must be detected.
A Fault recovery
A The system must restore its state to a known safe state.
A Fault repair
A The system may be modified to prevent recurrence of the fault.
A Asmany software faults are transitory, thisis often unnecessary.

CS 422 Software Enginesring Principles Crepter 19
om sivereExnesingty 1. Somenile 1995 Side 24

Fault occurrence

A Many software failures are transient and dependent on
individual data. Operation may continue by re-starting
the system

A If thisisimpossible, dynamic system re-configuration
may be necessary where software components are
replaced without stopping the system

ccccccc
sssss

Hardware fault tolerance

A Depends on triple-modular redundancy (TMR)

A There are three replicated identical components which
receive the same input and whose outputs are
compared

A If one output is different, it isignored and component
failureis assumed

A Based on most faults resulting from component
failures rather than design faults and alow probability
of simultaneous component failure

sssss

Hardware reliability with TMR

Output
comparator

CS 422 Software Enginesring Principles Crepter 19
omemeeEgy | Sneile 96 ik

Software analogies

A N-version programming

A The same specification isimplemented in a number of different
versions. All versions compute simultaneously and the majority
output is selected.

A Thisisthe most commonly used approach e.g. in Airbus 320.
However, it does not provide fault tolerance if there are specification
errors.

A Recovery blocks

A Versions are executed in sequence. The output which conforms to an
acceptance test is selected.

A Theweaknessin this system is writing an appropriate acceptance test.

csaz

Chepter 19
Side 28

N-version programming

N-versions

Output
comparator
Agreed
result

CS 422 Software Engi

Chepter 19
Side 29

N-version programming

A Thedifferent system versions are designed and
implemented by different teams. It is assumed that
thereisalow probability that they will make the
same mistakes

A However, thereis some empirical evidence that teams
commonly misinterpret specifications in the same
way and use the same algorithmsin their systems

CS 422 Software Enginesring Principles
om sivereExnesingty 1. Somenile 1995

Chapter 19
Side 30

Recovery blocks

Try agorithm Test for
1 success
—>| Algorithm 1 Acceptance Continue execution if
acceptance test succeeds
Signal exception if all
A " et algorithms fail
cceptance
fails—re-try Retest

Algorithm 2 I Algorithm 3 |

Recovery
blocks

ggggggg
sssss

Recovery blocks

A Force adifferent agorithm to be used for each version
so they reduce the probability of common errors

A However, the design of the acceptance test is difficult
asit must be independent of the computation used

A Like N-version programming, susceptible to
specification errors

Exception handling

A A program exception isan error or some unexpected
event such as a power failure.

A Exception handling constructs allow for such eventsto
be handled without the need for continual status
checking to detect exceptions.

A Using normal control constructs to detect exceptionsin
a sequence of nested procedure calls needs many
additional statements to be added to the program and
adds a significant timing overhead.

CS 422 Software Enginesring Principles Crepter 19
e Egy | Sneile 96 Siges

Exceptionsin nested procedure calls

Exception
return
Cal
sequence
i —
Exception
occurrence

Chepter 19
Side 34

Ada exception handling

A Adahas abuilt-in type exception and names can
therefore be associated with exceptions

A Drawing attention to an exception is called raising the
exception (keyword r aise)

A An Adaprogram unit can have an exception handler
which isablock of code defining how exceptions
should be processed

A Codeisautomatically switched to the exception
handler when an exception is raised

Chepter 19
Side 35

Ada s built-in exceptions

A CONSTRAINT_ERROR

A Raised when an attempt is made to assign an out of range
valueto avariable e.g. array access out of bounds.

A NUMERIC_ERROR

A Raised when an error occurs in an arithmetic operation (e.g.
division by zero)

A PROGRAM_ERROR

A Raised when acontrol structure is violated.

A STORAGE_ERROR
A Raised when dynamic store is exhausted.

A TASKING_ERROR

A Raised when inter-task communication fails.

CS 422 Software Enginesring Principles Crepter 19
om sivereExnesingty 1. Somenile 1995 Side 36

C++ exception handling

A Keyword throw means raise an exception. Handler is
indicated by the keyword catch

A Exceptions are defined as classes so may inherit
properties from other exception classes

A Normally, exceptions are completely handled in the
block where they arise rather than propagated for
handling

A All exceptions are user-defined. No built-in exceptions.

Chepter 19

csaz
Fransn Side 37

A temperature controller

A Controls afreezer and keeps temperature within a
specified range

A Switches arefrigerant pump on and off
Sets of an alarm is the maximum allowed temperature
is exceeded

A Usesexterna entities Pump, Temperature_dial,
Sensor, Alarm.

A Externa shared state is held in a package called
Globals (in Ada)

Chepter 19
Side 38

Freezer controller (Ada)

with Pump, Temperature_dial, Sensor, Globals, Alarm;
use Globals ;
—— procedure Control_freezer is
Ambient_temperature: FREEZER_TEMP ;
begin
loop
Ambient_temperature := Sensor.Get_Temperature ;
if Ambient_temperature > Temperature_dial.Setting then
if Pump.Status = Off then
Pump.Switch (State => On) ;
-- Wait for the freezer to cool
Wait (Cooling_time) ;
elsif Pump.Status = On then
-- Switch pump off because temperature is low
Pump.Switch (State => Off) ;
end if ;
end if ;
-- Problem - can't lower temperature
if Ambient_temperature > Danger_temperature then
raise Freezer_too_hot; end if ;
end loop ;
exception
when Freezer_too_hot => Alarm.Activate ;
raise ;
when others => Alarm_activate ;
raise Control_problem ;
crapter 19

s 422 Softart .
end Control_freezer; Siide 38

pr—

Freezer controller (C++)

void Control_freezer (const float Danger_temp)

float Ambient_temp ;
11 try means exceptions will be handled in this block
1l Assume that Sensor, Temperature_dial and Pump are
Ilobjects which have been declared elsewhere
try {
while (true) {
Ambient_temp = Sensor.Get_temperature () ;
if (Ambient_temp > Temperature_dial.Setting ())
if (Pump.Status () == off)

{
Pump.Switch (on) ;
Wait (Cooling_time) ;
}
else

if (Pump.Status () == on)
Pump.Switch (off) ;
if (Ambient_temp > Danger_temp)
throw Freezer_too_hot () ;
} /1 end of while loop

} /1 end of exception handling try block

/I catch indicates the exception handling code.

catch (Freezer_too_hot)

Alarm.Activate () ; Chepter 18
}

Cs 422 Softward
. Side 40

Defensive programming

A An approach to program development where it

is assumed that undetected faults may exist in programs
A The program contains code to detect and

recover from such faults
A DoesNOT require afault-tolerance controller

yet can provide a significant measure of fault tolerance

Chepter 19
Side 41

Failure prevention

A Type systems allow many potentially corrupting
failures to be detected at compile-time

A Range checking and exceptions alow another
significant group of failuresto be detected at run-time

A State assertions may be developed and included as

checks in the program to catch afurther class of
system failures

CS 422 Software Enginesring Principles Crepter 19
om sivereExnesingty 1. Somenile 1995 Side 22

Ada range checking

A Types are declared as an allowed range e.g. 1..100

A Ada srange checking automatically raises a
CONSTRAINT_ERROR exception if an
assignment is out of range

A Range checking only appliesto asingle
variable. Checks which apply across variables
(e.g. if A=0then B=1) cannot be applied.

A Out of range errors may require further processing
to locate the error source

Chepter 19
Side 43

State assertions

A Logical predicates over the system state variables.

A May beincorporated directly in alanguage but
this can cause compilation problemsif quantifiers are
used.

A Usually implemented as program checks.

A Simplified if ALL state operations are through
abstract datatypes. In many cases, predicates need
only be associated with the ADT.

Chepter 19
Side 44

Even number type

Ada
package Positive_evenis
type NUMB is limited private ;
procedure Assign (A: in out NUMB; B: NATURAL;
State_error: in out BOOLEAN) ;
function Eval (A: NUMB) return NATURAL ;
-- overload operator =
function “=* (A, B: NUMB) return BOOLEAN ;
private
type NUMB is new NATURAL ;
end Positive_even ;

C++

class Positive_even {

public:
/I New assignment function to assign integer to
/I positive even number object
void Assign (int b, Error_type &State_error) ;
int Eval () ;
/I Equals can be re-defined because it is always true or false
int operator == (Positive_even b) ;

private:

csazz st int numb ; [

seretg] } lIPositive_even e 45

Assertion checking

Ada
procedure Assign (A: in out NUMB; B: NATURAL;
State_error: in out BOOLEAN) is
begin
if Brem 2 /=0 then
State_error := TRUE ;
else
State_error := FALSE ;
A:=NUMB (B);
end if ;
end Assign ;

C++
void Positive_even:: Assign (int b, Error_type &State_error)

if (b%2 !=0)
State_error = failure ;
else {
State_error = OK ;
numb=b;

ig
-

ggggggg

Damage assessment

A Anayse system state to judge the extent of
corruption caused by a system failure

A Must assess what parts of the state space have
been affected by the failure

A Generaly based on ‘validity functions’ which can
be applied to the state elements to assess if their
valueiswithin an allowed range

Damage assessment techniques

A Checksums are used for damage assessment in data
transmission

A Redundant pointers can be used to check the
integrity of data structures

A Watch dog timers can check for non-terminating

processes. |f no response after acertain time, a
problem is assumed

CS 422 Software Enginesring Principles
om SvereExgnesingty 1. Somenile 19 Side 48

Adatype with damage assessment

generic
type ELEM is private ;
type INDEX is range <>
package Robust_array is
type T is private ;
-- Ada 95. Access types to functions are not defined in Ada 83
type CHECK_FUNCTION is access function (E: ELEM) return
BOOLEAN ;
function Eval (A: T; I: INDEX) return ELEM ;
procedure Assign (A: in out T; I: INDEX;
E:ELEM);
-- This is Ada 95 NOT Ada 93
-- Test is a pointer to a function which checks elements against
-- some condition and returns a boolean value. If damaged
-- it sets the corresponding element in the array Checks
procedure Assess_damage (A: T; Test: CHECK_FUNCTION) ;
-- Returns TRUE if any array element is damaged
function Is_damaged (A: T) return BOOLEAN ;
-- Access the state associated with element |
function Eval_state (A: T; I: INDEX) return BOOLEAN ;

private
type T is record
Vals: array (INDEX) of ELEM ;
Checks: array (INDEX) of BOOLEAN ;
end record ;
S sz Sl end Robust_array ; Pt

C++ class with damage assessment

template <class elem> class Robust_array {
public:
Robust_array (int size = 20) ;
~Robust_array () ;
void Assign (int Index, elem Val) ;
elem Eval (int Index) ;

// Damage assessment functions

Il Assess_damage takes a pointer to a function as a parameter
/I It sets the corresponding element of Checks if a problem is

/I detected by the function Test

void Assess_damage (void (*Test) (boolean®)) ;

boolean Eval_state (int Index) ;

boolean Is_damaged () ;

private:

elem* Vals ;
boolean* Checks ;

Chepter 19
Side 50

Fault recovery

A Forward recovery
A Apply repairsto a corrupted system state
A Backward recovery
A Restore the system state to a known safe state
A Forward recovery is usually application specific
- domain knowledge is required to compute possible
state corrections
A Backward error recovery issimpler. Details of a safe
state are maintained and this replaces the corrupted
system state

CS 422 Software Enginesring Principles Crepter 19
om sivereExnesingty 1. Somenile 1995 Side 51

Forward recovery

A Corruption of data coding

A Error coding techniques which add redundancy to coded
data can be used for repairing data corrupted during
transmission

A Redundant pointers

A When redundant pointers are included in data structures
(e.g. two-way lists), acorrupted list or filestore may be
rebuilt if a sufficient number of pointers are uncorrupted

A Often used for database and filesystem repair

Chepter 19
Side 52

Backward recovery

A Transactions are a frequently used method of
backward recovery.
A Changes are not applied until computation is complete.
A If an error occurs, the system is |eft in the state preceding
the transaction.
A Periodic checkpoints allow system to 'roll-back'
to acorrect state

Chepter 19
Side 53

Safe sort procedure

A Sort operation monitorsits own execution and
assesses if the sort has been correctly executed

A Maintains a copy of itsinput so that if an error
occurs, the input is not corrupted

Based on identifying and handling exceptions
A Possibleinthiscaseas‘valid’ sort is known.

A However, in many casesit is difficult to write validity
checks

CS 422 Software Enginesring Principles
om sivereExnesingty 1. Somenile 1995

Chapter 19
Side 54

Key points

A Reliability in a system can be achieved through
fault avoidance and fault tolerance

A Some programming language constructs such
as gotos, recursion and pointers are inherently
error-prone

A Datatyping alows many potential faultsto be
trapped at compile time.

A Fault tolerant software can continue in execution in
the presence of software faults

ccccccc
sssss

Key points

A Fault tolerance requires.... failure detection, damage
assessment, recovery and repair

A N-version programming and recovery blocks
are approaches to fault tolerance

A Exception handling mechanisms can be used to
recover fromfailure

A Defensive programming can provide some fault
tolerance without a special fault-tolerant controller

