
CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 1

Chapter 24
Static Verification

Learning Objective
...to discover how to verify the conformance of a software system and its

specification without executing the code.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 2

Static verification

⊕ Verifying the conformance of a
software system and its
specification without executing
the code

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 3

Objectives

⊕ To discuss the cost-effectiveness of static
verification

⊕ To describe the program inspection process

⊕ To illustrate a mathematical approach to
program verification

⊕ To show how static analysis tools may be used
⊕ To describe the Cleanroom software

development process

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 4

Topics covered

⊕ Program inspection

⊕ Mathematically-based verification

⊕ Static analysis tools

⊕ Cleanroom software development

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 5

Static verification
⊕ Involves analyses of source text by humans or

software

⊕ Can be carried out on ANY documents
produced as part of the software process

⊕ Discovers errors early in the software process

⊕ Usually more cost-effective than testing for
defect detection at the unit and module level

⊕ Allows defect detection to be combined with
other quality checks

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 6

Static verification effectiveness

⊕ More than 60% of program errors can be
detected by informal program inspections

⊕ More than 90% of program errors may be
detectable using more rigorous mathematical
program verification

⊕ The error detection process is not confused by
the existence of previous errors… why?

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 7

Program inspections

⊕ Formalised approach to document reviews

⊕ Intended explicitly for defect DETECTION
(not correction)

⊕ Defects may be logical errors, anomalies in the
code that might indicate an erroneous
condition (e.g. an uninitialised variable) or
non-compliance with standards

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 8

Inspection pre-conditions
⊕ A precise specification must be available

⊕ Team members must be familiar with the
organisation standards

⊕ Syntactically correct code must be available

⊕ An error checklist should be prepared

⊕ Management must accept that inspection will
increase costs early in the software process

⊕ Management must not use inspections for staff
appraisal

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 9

The inspection process

Inspection
meeting

Individual
preparation

Overview

Planning

Rework

Follow-up

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 10

Inspection procedure

⊕ System overview presented to inspection team

⊕ Code and associated documents are distributed
to inspection team in advance

⊕ Inspection takes place and discovered errors
are noted

⊕ Modifications are made to repair discovered
errors

⊕ Re-inspection may or may not be required

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 11

Inspection teams

⊕ Made up of at least 4 members

⊕ Author of the code being inspected

⊕ Reader who reads the code to the team
⊕ Inspector who finds errors, omissions and

inconsistencies

⊕ Moderator who chairs the meeting and notes
discovered errors

⊕ Other roles are Scribe and Chief moderator

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 12

Inspection rate

⊕ 500 statements/hour during overview

⊕ 125 source statements/hour during individual
preparation

⊕ 90-125 statements/hour can be inspected

⊕ Inspection is therefore an expensive process

⊕ Inspecting 500 lines costs about 40 man/hours
effort = $5000 (at $125.00/hour)

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 13

Inspection checklists

⊕ Checklist of common errors should be used to
drive the inspection

⊕ Error checklist is programming language
dependent

⊕ The 'weaker' the type checking, the larger the
checklist

⊕ Examples: Initialisation, constant naming, loop
termination, array bounds, etc.

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 14

Inspection
checks

Fault class Inspection check
Data faults Are all program variables initialised before their values

are used?
Have all constants been named?
Should the lower bound of arrays be 0, 1, or something
else?
Should the upper bound of arrays be equal to the size of
the array or Size -1?
If character strings are used, is a delimiter explicitly
assigned?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?

Interface faults Do all function and procedure calls have the correct
number of parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the
same model of the shared memory structure?

Storage management
faults

If a linked structure is modified, have all links been
correctly reassigned?
If dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into
account?

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 15

Mathematically-based verification

⊕ Verification is based on mathematical
arguments which demonstrate that a
program is consistent with its
specification

⊕ Programming language semantics must
be formally defined

⊕ The program must be formally specified

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 16

Program proving
⊕ Rigorous mathematical proofs that a

program meets its specification are long
and difficult to produce

⊕ Some programs cannot be proved because
they use constructs such as interrupts
⊗ Interrupts are necessary for real-time performance

⊕ The high cost of developing a program
proof makes this technique impractical to
use for most software projects

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 17

Program verification arguments
⊕ Less formal, mathematical arguments can

increase confidence in a program's
conformance to its specification

⊕ Must demonstrate that a program
conforms to its specification

⊕ Must demonstrate that a program will
terminate

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 18

Axiomatic approach
⊕ Define pre and post conditions for the

program or routine

⊕ Demonstrate by logical argument that the
application of the code logically leads from
the pre to the post-condition

⊕ Demonstrate that the program will always
terminate

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 19

Binary search specification

procedure Binary_search (Key : ELEM ; T: ELEM_ARRAY;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
T’LAST - T’FIRST >= 0 and

for_all i, T’FIRST >= i <= T’LAST-1, T (i) <= T (i + 1)

Post-condition
 (Found and T (L) = Key) or
 (not Found and not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 20

Binary search procedure 1

procedure Binary_search (Key: ELEM ; T: ELEM_ARRAY ;
 Found: in out BOOLEAN ; L: in out ELEM_INDEX) is

-- Pre: T’LAST - T’FIRST > 0 and
-- for_al l i , T’FIRST >= i <= T’LAST-1, T (i) <= T (i + 1)

 Bott : ELEM_INDEX := T’FIRST;
 Top : ELEM_INDEX := T’LAST ;
 Mid : ELEM_INDEX;
begin
 L := (T’FIRST + T’LAST) mod 2;
 Found := T(L) = Key;
 -- loop invariant
 -- 1. Found and T(L) = Key or

-- not Found and not Key in T(T’FIRST..Bott-1, Top+1..T’LAST)

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 21

Binary search procedure 2
while Bott <= Top and not Found loop
 Mid := (Top + Bott) / 2;
 if T(Mid) = Key then
 Found := true;
 L := Mid;
 -- 2. Key = T(Mid) and Found
 elsif T(Mid) < Key then
 -- 3. not Key in T(T’FIRST..Mid)
 Bott := Mid + 1;
 -- 4. not Key in T(T’FIRST..Bott-1)
 else
 -- 5. not Key in T(Mid..T’LAST)
 Top := Mid - 1;
 -- 6. not Key in T(Top+1..T’LAST)
 end if;
 end loop;
-- Post: Found and T (L) = Key or
-- (not Found and not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))
end Binary_search;

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 22

Termination argument
⊕ While loop terminates if Found or Bott > Top

⊕ If an element = key exists, Found is set true

⊕ In a loop execution either Found is set true,
Bott is increased or Top is decreased

⊕ As Top > Bott initially, the effect of loop
execution (if found is false) will always mean
that eventually Top-Bott will become negative
so Bott > Top and the loop will terminate

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 23

Correctness argument
⊕ Loop invariant states that Key does not lie in

the portion of the array which has been examined
or the value at the mid-point of the array matches
Key. True on entry to the loop as none of the array
has been examined.

⊕ Assertion 2 follows because of the successful
test Key = Mid

⊕ Assertion 3 follows because the array is
ordered. If T (Mid) < Key all values up to T
(Mid) must also be less than the key

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 24

Correctness argument
⊕ Assertion 4 follows by substituting Bott-1 for Mid

⊕ Assertions 5 and 6. Similar argument to 3 and 4

⊕ After loop execution, either the key has been
found or there is no value in the array which
has been searched which matches the key.
However, Bott > Top so all the array has been
searched

⊕ Therefore, the binary search routine code
conforms to its specification

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 25

Static analysis tools

⊕ Software tools for source text processing

⊕ Try to discover potentially erroneous
conditions in a program and bring these to
the attention of the V & V team

⊕ Very effective as an aid to inspections. A
supplement to but not a replacement for
inspections

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 26

Static analysis checks
Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used
between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 27

Stages of static analysis
⊕ Control flow analysis. Checks for loops with

multiple exit or entry points, finds
unreachable code, etc.

⊕ Data use analysis. Detects uninitialised
variables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.

⊕ Interface analysis. Checks consistency of
routine/ procedure declarations and their use

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 28

Stages of static analysis
⊕ Information flow analysis. Identifies the

dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review

⊕ Path analysis. Identifies paths through the
program and sets out the statements executed in
that path. Again, potentially useful in the review
process

⊕ Both these stages generate vast amounts of
information. Must be used with care.Must be used with care.

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 29

138% more lint_ex.c
#include <stdio.h>
printarray (Anarray)
 int Anarray;
{ printf(“%d”,Anarray);
}
main () {
 int Anarray[5]; int i; char c;
 printarray (Anarray, i, c);
 printarray (Anarray) ;
}
139% cc lint_ex.c
140% lint lint_ex.c
lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11)
printf returns value which is always ignored

LINT
static analysis

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 30

⊕ The name is derived from the 'Cleanroom'
process in semiconductor fabrication. The
philosophy is defect avoidance rather than
defect removal

⊕ Software development process based on:
⊗ Incremental development

⊗ Formal specification

⊗ Static verification using correctness arguments

⊗ Statistical testing to determine program reliability

Cleanroom software development

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 31

The Cleanroom process

Construct
structured
program

Define
software

increments

Formally
verify
code

Integrate
increment

Formally
specify
system

Develop
operational

profile
Design

statistical
tests

Test
integrated

system

Error rework

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 32

Incremental development

Formal
specification

Develop s/w
increment

Establish
rerquirements

Deliver
software

Frozen
specification

Requirements change request

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 33

⊕⊕ Specification team.Specification team. Responsible for developing
and maintaining the system specification

⊕⊕ Development team.Development team. Responsible for
developing and verifying the software. The
software is NOT executed or even compiled
during this process

⊕⊕ Certification team.Certification team. Responsible for developing
a set of statistical tests to exercise the software
after development. Reliability growth models
used to determine when reliability is acceptable

Cleanroom process teams

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 34

⊕ Results in IBM have been very impressive with
few discovered faults in delivered systems

⊕ Independent assessment shows that the process
is no more expensive than other approaches

⊕ Fewer errors than in a 'traditional' development
process

⊕ Not clear how this approach can be transferred
to an environment with less skilled or less
highly motivated engineers

Cleanroom process evaluation

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 35

Key points
⊕ Static verification is based on source code

analysis: complements rather than replaces
program testing

⊕ Program inspections are very effective in
discovering errors

⊕ Mathematical verification involves making
logical arguments about program correctness

⊕ The axiomatic approach to verification argues
correctness from a pre to a post condition

CS 422 So ftware Engineering Princip les Chapter 24

From Software Engineering by I. Somerville, 1996. Slide 36

Key points

⊕ Static analysis tools can discover program
anomalies which may be an indication of
faults in the code

⊕ The Cleanroom development process
depends on incremental development,
static verification and statistical testing

