
CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 1

Chapter 20

Chapter 20 Software Reuse

Learning Objective

... Building software from reusable
components.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 2

Objectives

⊗ To discuss the advantages and disadvantages of
software reuse

⊗ To describe development with and for reuse

⊗ To discuss the characteristics of generic reusable
components

⊗ To describe methods of developing portable
application systems

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 3

Topics covered

⊗ Software development with reuse

⊗ Software development for reuse

⊗ Generator-based reuse

⊗ Application system portability

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 4

Reusable component types
⊗ Application system reuse

⊕ The whole of an application system may be reused on a
different machine. Usually referred to as program
portability

⊗ Sub-system reuse
⊕ Major sub-systems such as a pattern-matching system may

be reused

⊗ Modules or object reuse
⊕ The reusable component is a collection of functions or

procedures

⊗ Function reuse
⊕ The reusable component is a single function

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 5

Reuse practice

⊗ Application system reuse
⊕ Widespread. It is common practice for developers of systems (e.g.

Microsoft) to make their products available on several platforms

⊗ Sub-system and module reuse
⊕ Practiced informally in that individual engineers reuse previous

work. Little systematic reuse but increasing reuse awareness

⊗ Function reuse
⊕ Common in some application domains (e.g. engineering) where

domain-specific libraries of reusable functions have been
established. Reuse is the principal reason why languages such as
FORTRAN are still used

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 6

Four aspects of reuse

⊗ Software development with reuse
⊕ Developing software given a base of reusable components

⊗ Software development for reuse
⊕ How to design generic software components for reuse

⊗ Generator-based reuse
⊕ Domain-specific reuse through application generation

⊗ Application system reuse
⊕ How to write application systems so that they may be readily ported

from one platform to another

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 7

Software development with reuse

⊗ Attempts to maximize the use of existing components

⊗ These components may have to be adapted in
a new application

⊗ Fewer components need be specified, designed and
coded

⊗ Overall development costs should therefore be
reduced

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 8

Further advantages

⊗ System reliability is increased

⊗ Overall risk is reduced

⊗ Effective use can be made of specialists

⊗ Organizational standards can be embodied in
reusable components

⊗ Software development time can be reduced

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 9

Development with reuse process

Design
system

aachitecture

Specify
components

Search for
reusable

components

Incorporate
discovered
components

See reuse-driven development (slide 12)
in contrast to development with reuse process

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 10

Requirements for reuse

⊗ It must be possible to find appropriate reusable
components in a component data base

⊗ Component reusers must be able to understand
components and must have confidence that they will
meet their needs

⊗ The components must have associated documentation
discussing HOW they can be reused and the potential
costs of reuse

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 11

Reuse-driven development

⊗ Rather than reuse being considered after the software
has been specified, the specification takes into
account the existence of reusable components

⊗ This approach is commonplace in the design of
electronic, electrical and mechanical systems.

⊗ If adopted for software, should significantly increase
the proportion of components reused

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 12

Reuse-driven development

Search for
reusable

components

Outline
system

requirements

Modify requirements
according to
discovered
components

Search for
reusable

components

Architectural
design

Specify system
components

based on reusable
components

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 13

Reuse problems
⊗ Difficult to quantify costs and benefits of development

with reuse

⊗ CASE tool-sets do not support development with
reuse. They cannot be integrated with a component
library systems

⊗ Some software engineers prefer to rewrite rather than
reuse components

⊗ Current techniques for component classification,
cataloging and retrieval are immature

⊗ The cost of finding suitable components is high

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 14

Software development for reuse

7

⊗ Software components are not automatically reusable

⊗ They must be modified to make them usable across a
range of applications

⊗ Software development for reuse is a development
process which takes existing components and aims to
generalize and document them for reuse across a
range of applications

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 15

Development for reuse hurdles

⊗ The development cost of reusable components is
higher than the cost of specific equivalents

⊗ This extra reusability enhancement cost should be an
organization rather than a project cost

⊗ Generic components may be less space-efficient and
may have longer execution times than their specific
equivalents

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 16

Reusability enhancement (next →)

⊗ Name generalization
⊕ Names in a component may be modified so that they are not a direct

reflection of a specific application entity

⊗ Operation generalization
⊕ Operations may be added to provide extra functionality and

application specific operations may be removed

⊗ Exception generalization
⊕ Application specific exceptions are removed and exception

management added to increase the robustness of the component

⊗ Component certification
⊕ Component is certified as reusable

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 17

Reusability enhancement process

Name
generalization

Operation
generalization

Exception
generalization

Component
certification

Reusable
component

Initial
component

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 18

Domain-specific reuse

⊗ Components can mostly be reused in the application
domain for which they were originally developed as
they reflect domain concepts and relationships

⊗ Domain analysis is concerned with studying domains
to discover their elementary characteristics

⊗ With this knowledge, components can be generalized
for reuse in that domain

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 19

Domain-specific reuse

⊗ Reusable components should encapsulate a domain
abstraction

⊗ In order to be reusable, an abstraction has to be
complete

⊗ The abstraction must be parameterized (at least to
some extent) to allow for instantiation in different
systems with specific requirements

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 20

The abstract data structures domain

⊗ Well-understood application domain

⊗ Important as a foundation for many types of software
system

⊗ The requirements for reusable abstract data
structures have been published by several authors
(e.g. Booch)

⊗ A classification scheme for such components has been
invented

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 21

ADS generalization

⊗ Involves adding operations to a component to ensure
domain coverage

⊗ Operations required include
⊕ Access operations

⊕ Constructor operations

⊕ I/O operations

⊕ Comparison operations

⊕ Iterate operations, if the component is a collection of components

ADS - Abstract Data Structures

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 22

Model of a reusable ADS

Abstract data
structure

Access
operations

Iterator
operations

Exported type
names I/O operations

Constructor
operations

Comparison
operations

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 23

Reuse guidelines

⊗ Implement data structures as generic packages

⊗ Provide operations to create and assign instances

⊗ Provide a mechanism to indicate whether or not
operations have been successful

⊗ Minimize the amount of information defined in the
component specification

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 24

Reuse guidelines

⊗ Implement operations which can fail as procedures
and return an error indicator as an out parameter.

⊗ Provide an equality operation to compare structures.

⊗ Provide an iterator which allows each element in a
collection to be visited efficiently without modification
to that element

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 25

Reusable component example

⊗ Linked list of elements where each element maintains
a pointer to the next element in the list

⊗ Commonly implemented in application systems but
application-specific components are rarely generic as
their operations reflect specific application needs

⊗ Linked list operations are usually independent of the
type of element in the list

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 26

generic
 type ELEMENT is private ;
package Linked is

-- Exported type declarations
 type LIST is limited private ;
 type STATUS is range 1..10 ;
 type ITERATOR is private ;

-- Comparison operations
function Equals (L1, L2: LIST) return BOOLEAN ;
function Equivalent (L1, L2: LIST) return BOOLEAN ;

-- Access operations (Fig 20.6)
-- Constructor operations (Fig. 20.7)
-- I/O operations (Fig. 20.8)
-- Iterator operations (Fig. 20.9)

private
 type LIST_ELEM;
 type LIST is access LIST_ELEM ;
 type ITERATOR is access LIST_ELEM ;
end Linked ;

Linked
list
generic
package

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 27

Access operations

-- true if the list has no elements
function Is_empty (L: LIST) return BOOLEAN ;
-- returns the number of elements in the list
function Size_of (L: LIST) return NATURAL ;
-- true if a list element is the same as E
function Contains (E: ELEMENT; L: LIST)
 return BOOLEAN ;
-- returns the first list element
procedure Head (L: LIST; E: in out ELEMENT ;
 Error_level: out STATUS) ;
-- removes the first list element and returns the remaining list
procedure Tail (L: LIST; Outlist: in out LIST ;
 Error_level: out STATUS) ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 28

Constructor
operations -- Append adds an element to the end of the list

 procedure Append (E: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Add adds an element to the front of the list
 procedure Add (E: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Add_before adds an element before element value E
 procedure Add_before (E: ELEMENT ; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Add_after adds an element after element E
 procedure Add_after (E: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Replace replaces the element matching E1 with E2
 procedure Replace (E1, E2: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Clear deletes all members of a list
 procedure Clear (Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Prune removes the last element from the list
 procedure Prune (Outlist: in out LIST ;
 Error_level: out STATUS) ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 29

Constructor
operations
(continued) -- Prune_to deletes the list up to and including

 -- the element matching E
 procedure Prune_to (E: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Prune_from deletes list after element matching E
 procedure Prune_from(E: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Remove deletes the element which matches E
 procedure Remove (E: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;
 -- Remove_before and Remove_after delete the element before
 -- and after E respectively
 procedure Remove_before (E: ELEMENT; Outlist: in out LIST;
 Error_level: out STATUS) ;
 procedure Remove_after (E: ELEMENT; Outlist: in out LIST ;
 Error_level: out STATUS) ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 30

I/O procedures

-- print onto standard output

procedure Print_list (L: LIST; Error_level: out STATUS) ;
procedure Write_list (F: TEXT_IO.FILE_TYPE ; L: LIST;
 Error_level: out STATUS) ;
 procedure Read_list (F: TEXT_IO.FILE_TYPE ;
 Outlist: out LIST ; Error_level: out STATUS) ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 31

Iterate operations

procedure Iterate_initialize (L: LIST; Iter: in out ITERATOR;
 Error_status: in out STATUS) ;
procedure Go_next (L: LIST; Iter: in out ITERATOR;
 Error_status: in out STATUS) ;
procedure Eval (L: List; Iter: in out ITERATOR;
 Val: out ELEMENT; Error_status: in out STATUS) ;
function At_end (L: LIST; Iter: ITERATOR) return BOOLEAN ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 32

C++ linked
list
component

template <class elem> class List
{
public:

List(); // Automatic constructor
~List(); // Automatic destructor
// Basic list operations
elem Head (error_indic &Err) ;
 int Length () ;
List <elem> Tail (error_indic &Err) ;
// Equality operations
friend List <elem> operator == (List <elem> L1, List <elem> L2) ;
friend List <elem> Equivalent (List <elem> L1, List <elem> L2) ;
// Constructor operations for linked list
void Append (elem E, error_indic &Err) ;

 void Add (elem E, error_indic &Err) ;
 void Add_before (elem E, error_indic &Err) ;
 void Add_after (elem E, error_indic &Err) ;
 void Replace (elem E, error_indic &Err) ;
 void Clear (error_indic &Err) ;
 void Prune (error_indic &Err) ;
 void Prune_to (elem E, error_indic &Err) ;
 void Prune_from (elem E, error_indic &Err) ;
 void Remove (elem E, error_indic &Err) ;
 void Remove_before (elem E, error_indic &Err) ;
 void Remove_after (elem E, error_indic &Err) ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 33

C++ linked
list
component
(continued)

// I/O functions
void Print(error_indic &Err) ;

 void Write_list(char* filename, error_indic &Err) ;
 void Read_list(char* filename, error_indic &Err) ;
private:

typedef struct Linkedlist {
 elem val;
 Linkedlist* next;
 } Linkedlist;

 Linkedlist* Listhead ; // (Internal) Pointer to start of list
};

template <class elem> class Iterator {
 friend class List <elem> ;
public:
 Iterator () ;
 ~Iterator () ;
 void Create (List <elem> L, error_indic &Err) ;
 void Go_next (error_indic &Err) ;
 elem Eval (error_indic &Err) ;
 boolean At_end () ;
private:
 Linkedlist* iter ;
} ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 34

Language-dependent reuse

⊗ Reuse guidelines for domain abstractions are
independent of the implementation language

⊗ However, some reuse guidelines may be language
dependent...

⊕ In Ada, do not pass array size as a parameter to reusable components
which operate on arrays. Use the built-in attribute to determine the
array size

⊕ In C++, always pass the array size as a parameter to reusable
components which operate on arrays

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 35

Component adaptation

⊗ Extra functionality may have to be added to a
component

⊗ When this has been added, the new component may
be made available for reuse:

⊕ Unneeded functionality may be removed from a component to
improve its performance or reduce its space requirements

⊕ The implementation of some component operations may have to be
modified.

⊕ This suggests that the original generalization decisions may be
incorrect

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 36

Reuse and inheritance
⊗ Objects are inherently reusable because they package

state and associated operations (i.e., self-contained with
no external dependencies)

⊗ Inheritance means that a class inherits attributes and
operations from a super-class (i.e., essentially, these are
being reused)

⊗ Multiple inheritance allows several objects to act as a
base class so attributes and operations from several
sources are reused

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 37

A class lattice

Tape Disk Printer Screen
Text
input

Position
sensor

Dot-matrix Laser Film Ink-jet

Storage Output Input

Peripheral

Attributes and
operations reused by
inheritance down the

hierarchy

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 38

Problems with inheritance

⊗ As component classes are developed, the inheritance
lattice becomes very complex with duplications across
the lattice. Regular rationalization is required.

⊗ To understand a component, many classes in the
hierarchy may have to be examined and understood

⊗ In many cases, it may be impossible to avoid inheriting
unneeded functionality

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 39

Generator-based reuse (next →)

⊗ Program generators involve the reuse of standard
patterns and algorithms

⊗ These are embedded in the generator and
parameterized by user commands. A program is then
automatically generated

⊗ Compilers are program generators where the
reusable patterns are object code fragments
corresponding to high-level language commands

4

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 40

Reuse through program generation

5

Program generator Generated programApplication
description

Application domain
knowledge Database

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 41

Types of program generator

⊗ Types of program generator
⊕ Application generators for business data processing

⊕ Parser and lexical analyzer generators for language processing

⊕ Code generators in CASE tools

⊗ Generator-based reuse is very cost-effective but its
applicability is limited to a relatively small number
of application domains

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 42

Application system portability

⊗ Portability is a special case of reuse where an
entire application is reused on a different platform

⊗ The portability of a program is a measure of the
amount of work required to make that program
work in a new environment

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 43

Aspects of system portability (next →)

⊗ Transportation
⊕ The physical movement of the program code and associated data

from one environment to another

⊕ This is a less significant problem than it used to be as electronic
interchange of programs through networks avoids media
incompatibility

⊗ Adaptation
⊕ The changes required to make a program work in a different

environment

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 44

Application program interfaces

Application
program

Run-time
system

Operating
system

Libraries

Memory and CPU

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 45

Portability dependencies

⊗ Machine architecture dependencies
⊕ Dependencies on information representation and organization

⊗ Operating system dependencies
⊕ Dependencies on operating system characteristics

⊗ Run-time system problems
⊕ Dependencies on a particular run-time support system

⊗ Library problems
⊕ Dependencies on a specific set of libraries

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 46

Development for portability

⊗ Isolate parts of the system which are dependent on
the external program interfaces. These interfaces
should be implemented as a set of abstract data types
or objects

⊗ Define a portability interface to hide machine
architecture and operating system characteristics

⊗ To port the program, only the code behind the
portability interface need be rewritten

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 47

A portability interface

Portability interface

Application system

Operating system
and I/O calls

Data
references

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 48

Machine architecture dependencies

⊗ The program must rely on the information
representation scheme supported by a particular
machine architecture

⊗ Common problems are:
⊕ The precision of real numbers

⊕ Bit ordering in number representation

⊗ Can be tackled by the use of abstract data types.
Different representations can be supported

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 49

A portable
counter
component

Ada
package Counter is
 type T is limited private;
 procedure Inc (Cnt : in out T) ;
 procedure Dec (Cnt : in out T) ;
 procedure Copy (Cnt1: T ; Cnt2: out T) ;
 function Cequals (Cnt1, Cnt2: T) return BOOLEAN ;
private
 type T is range 0..500_000 ;
end Counter;

C++
class Counter {
public:
 Counter () ;
 void Inc () ;
 void Dec () ;
 friend Counter Copy (Counter c1, Counter c2) ;
 // Overload the operator == to compare two counters
 friend Counter operator == (Counter c1, Counter c2) ;
private:
 int value ;
};

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 50

Operating system dependencies

⊗ The program relies on the use of specific operating
system calls such as facilities to support process
management

⊗ The program depends on a specific file system
organization supported by the operating system

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 51

Portable
process
management

package Process_manager is
 type PROCESS is private ;
 type STATUS is (READY, RUNNING, WAITING, KILLED)
 function Create return PROCESS ;
 function Kill (Process: PROCESS) return STATUS ;
 function Get_status (P: PROCESS) return STATUS ;
 function Wake_up (P: PROCESS) return STATUS ;
 function Sleep (P: PROCESS) return STATUS ;
 procedure Wait (P: PROCESS ; S: STATUS) ;
private type PROCESS is record

PID: NATURAL ;
State: STATUS ;

end record ;
end Process_manager ;

class Process {
public:
 Process () ;
 P_state Kill () ;
 P_state Get_status () ;
 P_state Wake_up () ;

 P_state Sleep ();
 void Wait (P_state &status) ;

private:
int PID ;
P_state status ;

} ;

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 52

Portability interface implementation

Abstract data type interface

Application

Database systemUnix filestore

OR

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 53

⊗ Standards are an agreement across the community
which reduces the amount of variability in software
systems

⊗ The development of standards in the 1980s means that
program portability is now much simpler than before

⊗ In principle, as standards are further developed,
heterogeneous systems may be developed where parts
of a program may run on completely different
machines

Standards

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 54

⊗ Programming language standards
⊕ Ada, Pascal, C, C++, FORTRAN.

⊗ Operating system standards
⊕ UNIX, MS-DOS (de-facto standard), MS Windows

⊗ Networking standards
⊕ TCP/IP protocols, X400, X500, Sun NFS, OSI layered model,

HTML, WWW

⊗ Window system standards
⊕ X-windows. Motif toolkit

Existing standards

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 55

⊗ Software reuse involves using components developed
in some application in a different application

⊗ Systematic reuse can reduce costs, reduce
management risk and improve software reliability

⊗ Development with reuse must be based on a library of
reusable components

⊗ Components must be generalized for reuse

Key points

CS 422 Software Engineering Principles Chapter 20

From Software Engineering by I. Sommerville, 1996. Slide 56

Key points

⊗ Abstract data types and objects are encapsulations of
reusable components

⊗ Generator-based reuse depends on using standard
domain-specific patterns

⊗ Application portability is a form of reuse where an
entire application is reused on a different platform

⊗ Portability is achieved by developing according to
standards and isolating platform dependencies

