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components.
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Objectives

⊗ To discuss the advantages and disadvantages of
software reuse

⊗ To describe development with and for reuse

⊗ To discuss the characteristics of generic reusable
components

⊗ To describe methods of developing portable
application systems
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Topics covered

⊗ Software development with reuse

⊗ Software development for reuse

⊗ Generator-based reuse

⊗ Application system portability
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Reusable component types
⊗ Application system reuse

⊕ The whole of an application system may be reused on a
different machine.  Usually referred to as program
portability

⊗ Sub-system reuse
⊕ Major sub-systems such as a pattern-matching system may

be reused

⊗ Modules or object reuse
⊕ The reusable component is a collection of functions or

procedures

⊗ Function reuse
⊕ The reusable component is a single function
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Reuse practice

⊗ Application system reuse
⊕ Widespread. It is common practice for developers of systems (e.g.

Microsoft) to make their products available on several platforms

⊗ Sub-system and module reuse
⊕ Practiced informally in that individual engineers reuse previous

work. Little systematic reuse but increasing reuse awareness

⊗ Function reuse
⊕ Common in some application domains (e.g. engineering) where

domain-specific libraries of reusable functions have been
established. Reuse is the principal reason why languages such as
FORTRAN are still used
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Four aspects of reuse

⊗ Software development with reuse
⊕ Developing software given a base of reusable components

⊗ Software development for reuse
⊕ How to design generic software components for reuse

⊗ Generator-based reuse
⊕ Domain-specific reuse through application generation

⊗ Application system reuse
⊕ How to write application systems so that they may be readily ported

from one platform to another
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Software development with reuse

⊗ Attempts to maximize the use of existing  components

⊗ These components may have to be adapted in
a new application

⊗ Fewer components need be specified, designed and
coded

⊗ Overall development costs should therefore be
reduced
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Further advantages

⊗ System reliability is increased

⊗ Overall risk is reduced

⊗ Effective use can be made of specialists

⊗ Organizational standards can be embodied in
reusable components

⊗ Software development time can be reduced
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Development with reuse process

Design
system

aachitecture

Specify
components

Search for
reusable

components

Incorporate
discovered
components

See reuse-driven development (slide 12) 
in contrast to development with reuse process



CS 422 Software Engineering Principles                   Chapter 20

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  10

Requirements for reuse

⊗ It must be possible to find appropriate reusable
components in a component data base

⊗ Component reusers must be able to understand
components and must have confidence that they will
meet their needs

⊗ The components must have associated documentation
discussing HOW they can be reused and the potential
costs of reuse
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Reuse-driven development

⊗ Rather than reuse being considered after the software
has been specified, the specification takes into
account the existence of reusable components

⊗ This approach is commonplace in the design of
electronic, electrical and mechanical systems.

⊗ If adopted for software, should significantly increase
the proportion of components reused
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Reuse-driven development
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components
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components
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Reuse problems
⊗ Difficult to quantify costs and benefits of development

with reuse

⊗ CASE tool-sets do not support development with
reuse. They cannot be integrated with a component
library systems

⊗ Some software engineers prefer to rewrite rather than
reuse components

⊗ Current techniques for component classification,
cataloging and retrieval are immature

⊗ The cost of finding suitable components is high
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Software development for reuse

7

⊗ Software components are not automatically reusable

⊗ They must be modified to make them usable across a
range of applications

⊗ Software development for reuse is a development
process which takes existing components and aims to
generalize and document them for reuse across a
range of applications
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Development for reuse hurdles

⊗ The development cost of reusable components is
higher than the cost of specific equivalents

⊗ This extra reusability enhancement cost should be an
organization rather than a project cost

⊗ Generic components may be less space-efficient and
may have longer execution times than their specific
equivalents
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Reusability enhancement (next →)

⊗ Name generalization
⊕ Names in a component may be modified so that they are not a direct

reflection of a specific application entity

⊗ Operation generalization
⊕ Operations may be added to provide extra functionality and

application specific operations may be removed

⊗ Exception generalization
⊕ Application specific exceptions are removed and exception

management added to increase the robustness of the component

⊗ Component certification
⊕ Component is certified as reusable
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Reusability enhancement process

Name
generalization

Operation
generalization

Exception
generalization

Component
certification

Reusable
component

Initial
component
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Domain-specific reuse

⊗ Components can mostly be reused in the application
domain for which they were originally developed as
they reflect domain concepts and relationships

⊗ Domain analysis is concerned with studying domains
to discover their elementary characteristics

⊗ With this knowledge, components can be generalized
for reuse in that domain
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Domain-specific reuse

⊗ Reusable components should encapsulate a domain
abstraction

⊗ In order to be reusable, an abstraction has to be
complete

⊗ The abstraction must be parameterized (at least to
some extent) to allow for instantiation in different
systems with specific requirements
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The abstract data structures domain

⊗ Well-understood application domain

⊗ Important as a foundation for many types of software
system

⊗ The requirements for reusable abstract data
structures have been published by  several authors
(e.g. Booch)

⊗ A classification scheme for such components has been
invented
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ADS generalization

⊗ Involves adding operations to a component to ensure
domain coverage

⊗ Operations required include
⊕ Access operations

⊕ Constructor operations

⊕ I/O operations

⊕ Comparison operations

⊕ Iterate operations, if the component is a collection of components

ADS - Abstract Data Structures
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Model of a reusable ADS

Abstract data
structure

Access
operations

Iterator
operations

Exported type
names I/O operations

Constructor
operations

Comparison
operations
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Reuse guidelines

⊗ Implement data structures as generic packages

⊗ Provide operations to create and assign instances

⊗ Provide a mechanism to indicate whether or not
operations have been successful

⊗ Minimize the amount of information defined in the
component specification
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Reuse guidelines

⊗ Implement operations which can fail as procedures
and return an error indicator as an out parameter.

⊗ Provide an equality operation to compare structures.

⊗ Provide an iterator which allows each element in a
collection to be visited efficiently without modification
to that element
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Reusable component example

⊗ Linked list of elements where each element maintains
a pointer to the next element in the list

⊗ Commonly implemented in application systems but
application-specific components are rarely generic as
their operations reflect specific application needs

⊗ Linked list operations are usually independent of the
type of element in the list
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generic 
    type ELEMENT is private ;
package Linked is 

-- Exported type declarations
     type LIST is limited private ; 
     type STATUS is range 1..10 ; 
     type ITERATOR is private ;
   

-- Comparison operations
function Equals (L1, L2: LIST) return BOOLEAN ;
function Equivalent (L1, L2: LIST) return BOOLEAN ;

-- Access operations (Fig 20.6)
-- Constructor operations (Fig. 20.7)
-- I/O operations (Fig. 20.8)
-- Iterator operations (Fig. 20.9)

private 
     type LIST_ELEM;  
     type LIST is access LIST_ELEM ; 
     type ITERATOR is access LIST_ELEM ;
end Linked  ;

Linked
list
generic
package
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Access operations

-- true if the list has no elements
function  Is_empty (L: LIST) return BOOLEAN ;
-- returns the number of elements in the list
function  Size_of (L: LIST ) return NATURAL ; 
--  true if a list element is the same as E
function  Contains (E: ELEMENT;  L: LIST )
                 return BOOLEAN ;
-- returns the first list element
procedure  Head (L: LIST; E: in out ELEMENT ;
                     Error_level: out STATUS )  ; 
-- removes the first list element and returns the remaining list
procedure  Tail (L: LIST;  Outlist: in out LIST ;
                     Error_level: out STATUS )  ; 
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Constructor
operations -- Append adds an element to the end of the list  

 procedure Append  ( E: ELEMENT; Outlist: in out LIST ; 
        Error_level: out STATUS )  ; 
 -- Add adds an element to the front of the list 
 procedure Add  ( E: ELEMENT; Outlist: in out LIST ;  
      Error_level: out STATUS )  ; 
 -- Add_before adds an element before element value  E 
 procedure Add_before ( E: ELEMENT ; Outlist:  in out LIST ;
        Error_level: out STATUS )  ; 
 -- Add_after adds an element after element E  
 procedure Add_after ( E: ELEMENT; Outlist: in out LIST ;       
      Error_level: out STATUS )  ; 
 -- Replace replaces the element matching E1 with E2 
 procedure Replace ( E1, E2: ELEMENT; Outlist: in out LIST ;   
       Error_level: out STATUS )  ; 
 -- Clear deletes all members of a list 
 procedure Clear ( Outlist: in out LIST ;       
      Error_level: out STATUS )  ; 
 -- Prune removes the last element from the list 
 procedure Prune ( Outlist: in out LIST ;
             Error_level: out STATUS )  ; 
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Constructor
operations
(continued) -- Prune_to deletes the list up to and including 

 -- the element matching E
 procedure Prune_to ( E: ELEMENT; Outlist: in out LIST ;
      Error_level: out STATUS )  ; 
 -- Prune_from deletes list after element matching E 
 procedure Prune_from( E: ELEMENT; Outlist: in out LIST ;
      Error_level: out STATUS )  ; 
 -- Remove deletes the element which matches E 
 procedure Remove ( E: ELEMENT; Outlist: in out LIST ;
      Error_level: out STATUS )  ; 
 -- Remove_before and Remove_after delete the element before 
 -- and after E respectively 
 procedure Remove_before ( E: ELEMENT; Outlist:  in out LIST;
      Error_level: out STATUS )  ; 
 procedure Remove_after ( E: ELEMENT; Outlist: in out LIST ;
      Error_level: out STATUS )  ;
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I/O procedures

-- print onto standard output

procedure  Print_list (L: LIST; Error_level: out STATUS ) ;
procedure  Write_list (F: TEXT_IO.FILE_TYPE ; L: LIST;
         Error_level: out STATUS ) ; 
 procedure  Read_list (F: TEXT_IO.FILE_TYPE ; 
        Outlist: out LIST ; Error_level: out STATUS )  ;
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Iterate operations

procedure  Iterate_initialize (L: LIST; Iter: in out ITERATOR;
                     Error_status: in out STATUS) ;
procedure  Go_next (L: LIST; Iter: in out ITERATOR;
                     Error_status: in out STATUS) ;
procedure  Eval (L: List; Iter: in out ITERATOR;
                    Val: out ELEMENT;  Error_status: in out STATUS) ;
function  At_end (L: LIST; Iter: ITERATOR) return BOOLEAN ;
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C++ linked
list
component

template <class elem> class List
{
public:

List();         // Automatic constructor
~List();        // Automatic destructor
// Basic list operations
elem Head (error_indic &Err) ;
 int Length ( ) ;
List <elem> Tail (error_indic &Err) ;
// Equality operations
friend List <elem> operator == (List <elem> L1, List <elem> L2) ;
friend List <elem> Equivalent (List <elem> L1, List <elem> L2) ;
// Constructor operations for linked list
void Append (elem E, error_indic &Err) ;

        void Add (elem E, error_indic &Err) ;
        void Add_before (elem E, error_indic &Err) ;
        void Add_after (elem E, error_indic &Err) ;
        void Replace (elem E, error_indic &Err) ;
        void Clear (error_indic &Err ) ;
        void Prune (error_indic &Err ) ;
        void Prune_to (elem E, error_indic &Err ) ;
        void Prune_from (elem E, error_indic &Err ) ;
        void Remove (elem E, error_indic &Err ) ;
        void Remove_before (elem E, error_indic &Err ) ;
        void Remove_after (elem E, error_indic &Err ) ;
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C++ linked
list
component
(continued)

// I/O functions
void Print(error_indic &Err) ;

       void Write_list(char* filename, error_indic &Err) ;
       void Read_list(char* filename, error_indic &Err) ;
private:

typedef struct Linkedlist {
                elem     val;
                Linkedlist*     next;
        } Linkedlist;

        Linkedlist* Listhead ;    // (Internal) Pointer to start of list
};

template <class elem> class Iterator {
        friend class List <elem> ;
public:
        Iterator () ;
        ~Iterator () ;
        void Create (List <elem> L, error_indic &Err) ;
        void Go_next (error_indic &Err) ;
        elem Eval (error_indic &Err) ;
        boolean At_end () ;
private:
        Linkedlist* iter ;
} ;
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Language-dependent reuse

⊗ Reuse guidelines for domain abstractions are
independent of the implementation language

⊗ However, some reuse guidelines may be language
dependent...

⊕ In Ada, do not pass array size as a parameter to reusable components
which operate on arrays. Use the built-in attribute to determine the
array size

⊕ In C++, always pass the array size as a parameter to reusable
components which operate on arrays
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Component adaptation

⊗ Extra functionality may have to be added to a
component

⊗ When this has been added, the new component may
be made available for reuse:

⊕ Unneeded functionality may be removed from a component to
improve its performance or reduce its space requirements

⊕ The implementation of some component operations may have to be
modified.

⊕ This suggests that the original generalization decisions may be
incorrect
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Reuse and inheritance
⊗ Objects are inherently reusable because they package

state and associated operations (i.e., self-contained with
no external dependencies)

⊗ Inheritance means that a class inherits attributes and
operations from a super-class (i.e., essentially, these are
being reused)

⊗ Multiple inheritance allows several objects to act as a
base class so attributes and operations from several
sources are reused
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A class lattice

Tape Disk Printer Screen
Text
input

Position
sensor

Dot-matrix Laser Film Ink-jet

Storage Output Input

Peripheral

Attributes and
operations reused by
inheritance down the

hierarchy
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Problems with inheritance

⊗ As component classes are developed, the inheritance
lattice becomes very complex with duplications across
the lattice.  Regular rationalization is required.

⊗ To understand a component, many classes in the
hierarchy may have to be examined and understood

⊗ In many cases, it may be impossible to avoid inheriting
unneeded functionality
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Generator-based reuse (next →)

⊗ Program generators involve the reuse of standard
patterns and algorithms

⊗ These are embedded in the generator and
parameterized by user commands. A program is then
automatically generated

⊗ Compilers are program generators where the
reusable patterns are object code fragments
corresponding to high-level language commands

4
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Reuse through program generation

5

Program generator Generated programApplication
description

Application domain
knowledge Database
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Types of program generator

⊗ Types of program generator
⊕ Application generators for business data processing

⊕ Parser and lexical analyzer generators for language processing

⊕ Code generators in CASE tools

⊗ Generator-based reuse is very cost-effective but its
applicability is limited to a relatively small number
of application domains
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Application system portability

⊗ Portability is a special case of reuse where an
entire application is reused on a different platform

⊗ The portability of a program is a measure of the
amount of work required to make that program
work in a new environment
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Aspects of system portability (next →)

⊗ Transportation
⊕ The physical movement of the program code and associated data

from one environment to another

⊕ This is a less significant problem than it used to be as electronic
interchange of programs through networks avoids media
incompatibility

⊗ Adaptation
⊕ The changes required to make a program work in a different

environment

CS 422 Software Engineering Principles                   Chapter 20

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  44

Application program interfaces

Application
program

Run-time
system

Operating
system

Libraries

Memory and CPU
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Portability dependencies

⊗ Machine architecture dependencies
⊕ Dependencies on information representation and organization

⊗ Operating system dependencies
⊕ Dependencies on operating system characteristics

⊗ Run-time system problems
⊕ Dependencies on a  particular run-time support system

⊗ Library problems
⊕ Dependencies on a specific set of libraries
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Development for portability

⊗ Isolate parts of the system which are dependent on
the external program interfaces. These interfaces
should be implemented as a set of abstract data types
or objects

⊗ Define a portability interface to hide machine
architecture and operating system characteristics

⊗ To port the program, only the code behind the
portability interface need be rewritten
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A portability interface

Portability interface

Application system

Operating system
and I/O calls

Data
references

CS 422 Software Engineering Principles                   Chapter 20

From Software Engineering by  I.  Sommerville, 1996.                                                                                                              Slide  48

Machine architecture dependencies

⊗ The program must rely on the information
representation scheme supported by a particular
machine architecture

⊗ Common problems are:
⊕ The precision of real numbers

⊕ Bit ordering in number representation

⊗ Can be tackled by the use of abstract data types.
Different representations can be supported
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A portable
counter
component

Ada
package Counter  is 
     type T is limited private;
    procedure Inc (Cnt : in out T ) ;
    procedure Dec (Cnt : in out T ) ;
    procedure Copy (Cnt1: T ; Cnt2: out T ) ;
    function Cequals (Cnt1, Cnt2: T ) return BOOLEAN ;
private 
    type  T  is range  0..500_000 ;
end Counter;

C++
class Counter {
public:
     Counter () ;
     void Inc () ;
     void Dec () ;
     friend Counter Copy ( Counter c1, Counter c2 ) ;
     // Overload the operator == to compare two counters
     friend Counter operator == ( Counter c1, Counter c2 ) ;
private:
     int value ;
};  
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Operating system dependencies

⊗ The program relies on the use of specific operating
system calls such as facilities to support process
management

⊗ The program depends on a specific file system
organization supported by the operating system
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Portable
process
management

package Process_manager  is
    type PROCESS  is private ;
    type STATUS is (READY, RUNNING, WAITING, KILLED)
    function Create return PROCESS  ;
    function Kill  (Process: PROCESS  ) return STATUS ;
    function Get_status  (P: PROCESS  ) return STATUS ;
    function Wake_up  (P: PROCESS  ) return STATUS ;
    function Sleep  (P: PROCESS  ) return STATUS ;
    procedure Wait  (P: PROCESS  ; S: STATUS) ;
private  type PROCESS is record

PID: NATURAL ;
State: STATUS ;

end record ;
end Process_manager ;

class Process {
public:
     Process () ;
     P_state Kill ()   ;
     P_state Get_status () ;
     P_state Wake_up () ;

 P_state Sleep ();
 void Wait (P_state &status)  ;

private:
int PID ;
P_state status ;

} ;
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Portability interface implementation

Abstract data type interface

Application

Database systemUnix filestore

OR
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⊗ Standards are an agreement across the community
which reduces the amount of variability in software
systems

⊗ The development of standards in the 1980s means that
program portability is now much simpler than before

⊗ In principle, as standards are further developed,
heterogeneous systems may be developed where parts
of a program may run on completely different
machines

Standards
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⊗ Programming language standards
⊕ Ada, Pascal, C, C++, FORTRAN.

⊗ Operating system standards
⊕ UNIX, MS-DOS (de-facto standard), MS Windows

⊗ Networking standards
⊕ TCP/IP protocols, X400, X500, Sun NFS, OSI layered model,

HTML, WWW

⊗ Window system standards
⊕ X-windows. Motif toolkit

Existing standards
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⊗ Software reuse involves using components developed
in some application in a different application

⊗ Systematic reuse can reduce costs, reduce
management risk and improve software reliability

⊗ Development with reuse must be based on a library of
reusable components

⊗ Components must be generalized for reuse

Key points
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Key points

⊗ Abstract data types and objects are encapsulations of
reusable components

⊗ Generator-based reuse depends on using standard
domain-specific patterns

⊗ Application portability is a form of reuse where an
entire application is reused on a different platform

⊗ Portability is achieved by developing according to
standards and isolating platform dependencies


