
This document describes the (end result of your team project) in partial fulfillment of the requirements for the (class name
here). Restrictions: This document can be freely distributed as long as a reference is made to or credit is given to project
team (your words here).

Design Notebook
for

Queuing System

CS 422 Software Engineering Principles

November 8, 2000

Our Color Name
Group #X

Student Name

Student Name

Student Name

Student Name

Student Name

Student Name

Version 2.0

i

Abstract

The Design Notebook for the Queuing System describes, in detail, the overall design of the

Queuing System.

The purpose of the Queuing System is to simulate a parallel server system consisting of five

servers fed by a single queue. Customers enter the system and are sent directly to the first

available server. If a server is not available, the customer enters the queue according to one of

two queuing options. If a customer does not receive satisfactory service from a server, the

customer is sent to the queue according to the specified queuing option. A customer remains in

the system until receiving satisfactory service.

The design of the Queuing System is based on the Structured System Analysis and

Structured Design Method. The methods of this design are explained further in the introduction

section of this document. The only design constraint of the system design is time.

There has been one modification to the original requirements of the Queuing System. The

new requirement is the system shall be extensible. This requirement is an added feature intended

to make the system, as implemented by Yellow NEARPS , modifiable for other applications of a

parallel server system.

The members and assigned tasks of Yellow NEARPS are as follows:

1. Student Name: Project Lead

2. Student Name: Testing Engineer

3. Student Name: Requirements Engineer

4. Student Name: Software Engineer and Marketing

5. Student Name: Lead Programmer

6. Student Name: Lead Designer

ii

Table of Contents

1 Introduction...4
1.1 Project Purpose and Goals ... 4
1.2 Design Approach ... 4
1.3 Traceability Approach .. 5
1.4 Background .. 6
1.5 Organization of This Document ... 6

2 Requirements Analysis..7
2.1 Functional Requirements .. 7

2.1.1 User-Defined Queuing Option .. 7
2.1.2 User Simulation Control .. 7
2.1.3 User Controlled Queue Modification ... 8
2.1.4 Simulation Requirements .. 8

2.2 Non-functional Requirements ... 9
2.2.1 High Level Non-functional Requirements ... 9

3 Design Representation ..10
3.1 Context Diagram ... 10
3.2 Level One Data Flow Diagrams and Process Specifications ... 10

3.2.1 Level One Data Flow Diagram ... 11
3.2.2 Process Specification for Level One Data Flow Diagram ... 11

3.3 Level Two and Three Data Flow Diagrams and Process Specifications 12
3.3.1 Level Two Data Flow Diagram 1.0 ... 13
3.3.2 Process Specification for Level Two DFD 1.0 .. 13
3.3.3 Level Two Data Flow Diagram 2.0 ... 15
3.3.4 Process Specifications for Level Two DFD 2.0 ... 15
3.3.5 Level Two Data Flow Diagram 3.0 ... 16
3.3.6 Process Specifications for Level Two Data Flow Diagram 3.0 ... 17
3.3.7 Level Three Data Flow Diagram 1.3 ... 18
3.3.8 Process Specifications for Level Three Data Flow Diagram 1.3 .. 19
3.3.9 Level Three Data Flow Diagram 2.2 ... 19
3.3.10 Process Specifications for Level Three Data Flow Diagram 2.2 20

3.4 Transaction Analysis .. 21
3.4.1 Partitions of the System DFD ... 21
3.4.2 Identified Transactions .. 23

3.5 Transform Analysis ... 24
3.5.1 Structure Chart ... 24

3.6 Design Decision Log ... 25

4 References..27

5 Glossary...28

APPENDIX A: Data Dictionary...29

APPENDIX B: Project Schedule..35

APPENDIX C: Requirements Traceability Matrix ..36

APPENDIX D: Identified Test Cases...38

iii

Table of Figures

Figure 1: Context Diagram..……………………………………………………………………10

Figure 2: Level One Data Flow Diagram………………………………………………………11

Figure 3: Level Two Data Flow Diagram (1.0)………………………………………………...13

Figure 4: Level Two Data Flow Diagram (2.0)………………………………………………...15

Figure 5: Level Two Data Flow Diagram (3.0)………………………………………………...17

Figure 6: Level Three Data Flow Diagram (1.3)………………………………………………18

Figure 7: Level Three Data Flow Diagram (2.2)………………………………………………20

Figure 8: GUI and Simulation Engine Interaction Chart…………………………………….22

Figure 9: Simulation Engine and Animation Interaction…………………………………….22

Figure 10: Structure Chart……………………………………………………………………..25

Figure A-1: Queuing System Project Schedule………………………………………………..35

Table of Tables

Table 1: Design Decision Log………………………………………………………………….26

Table A-1: Schedule Tasks Key and Limitations……………………………………………....35

Table C-1. Requirements Traceability Matrix…………………………………………………36

4

1 Introduction

This section of the Design Notebook covers the project purpose and goals, design approach,

traceability approach and background of the Queuing System. The overall organization of this

document is also covered.

1.1 Project Purpose and Goals

The Queuing System shall simulate a parallel server system, containing five servers, fed by a

single queue. Customers entering the system go directly to the first available server, if a server is

available. If a server is unavailable when the customer arrives in the system, the customer is sent

to the queue according to one of two queuing options. Queuing option one sends each entering

customer to the end of the queue. Queuing option two enters the arriving customer in the queue

according to the total number of times, in descending order, the customer had been previously

serviced by a server. A customer does not exit the system until the customer receives

satisfactory service from a server.

1.2 Design Approach

The design of the Queuing System follows the Structured System Analysis and Structured

Design Method. Fredrick T. Sheldon supplied the outline that is shown below.

Steps 1-2: Structured systems analysis (see Budgen Figure 10.5)

• Level 0 = context diagram

• Level 1 = top level DFD

• Level 2 = explosion of level 1 DFD bubbles

• Level 3 = use this level where appropriate

Step 3: Transaction analysis step and has five basic components:

1. The event in the systems environment that causes the transaction to occur

2. The stimulus that is applied to the system to inform it about the event

3. The activity that is performed by the system as a result of the stimulus

5

4. The response that this generates in terms of output from the system

5. The effect that this has upon the environment

Therefore, you will need to identify a simple but comprehensive example of a transaction

(see page 218 and Figure 10.8 of Budgen) that accounts for all of the five items described above.

This will help you to define a good set of test cases. There should be four transactions identified.

These will be your main starting points for the demonstration.

Step 4: Identify the central transform in the DFD:

You do not have to redraw the DFDs but if you add a “boss” bubble redraw showing where

the boss fits. Which will allow you to develop a hierarchical structure chart. Develop structure

charts for all of your level 1-2 DFDs.

Step 5: Merge the Structure Charts

The objective of this step is to produce a single structure chart (see Figures 10.23, 24 of

Budgen).

1.3 Traceability Approach

The ability to verify the satisfaction of requirements in the design is essential to the success

of the Queuing System’s design and implementation. To verify that all system requirements are

satisfied Yellow NEARPS has decided on the following approach:

• Each system requirement is assigned a unique identification number.
• Each system requirement is inserted into the Requirements Traceability Matrix (RTM).
• In the RTM, each requirement is assigned a DFD identifier during the design phase.
• Each requirement is associated with a Module in the implementation phase.
• Each requirement is assigned a testing method for verifying that each requirement is met.
• The right-most column in the RTM is used to check-off each requirement test as it is

completed.

The completion of the RTM (Appendix C) gives strong evidence that each requirement

outlined in the Software Requirements Specification was satisfied.

6

1.4 Background

The Queuing System design has changed very little since the presentation of the Preliminary

Design Review. There have been two major changes. The program design has been enhanced by

making the Queuing System extensible. To accomplish this task all constant values associated

with system elements (number of servers, simulation speed, etc.) have been changed to variables.

This allows the user to modify the system to suit a specific task.

The other major change to the system regarded the user simulation control. Yellow

NEARPS decided that it would be best to allow the user to not only start and stop/restart the

simulation, but to also allow the user to terminate the simulation before the simulation time

expired. This, in effect, allows the user to cut the simulation time short and still view the

simulation statistics as if the simulation time had expired.

1.5 Organization of This Document

This document will be organized as follows:

1. Introduction

2. Requirements Analysis: analyses functional, non-functional and derived requirements

3. Design Representation: follows SSA/SD Method

4. References

5. Glossary

6. Data Dictionary

7. Project Schedule

8. Requirements Traceability Matrix

9. Identified Test Cases

7

2 Requirements Analysis

This section gives an overview of functional, non-functional, and derived requirements for the

Queuing System. The requirements were originally defined in the Software Requirements

Specification and later modified in the Critical Design Review.

2.1 Functional Requirements

The Functional Requirements for the Queuing System are defined below to ensure that all user-

specified system functionality is incorporated into the system’s design. Each Top-level

functional requirement is followed by its derived lower-level functional requirements.

2.1.1 User-Defined Queuing Option

The system shall provide a way for the user to specify the preferred queuing option.

2.1.1.1 User-Defined Queuing Option Derived Requirements

The derived requirements for the queuing option requirement are the two choices the user has

regarding placing customers to the queue. The first choice is to send each new and returning

customer is added to the end of the queue. The second choice is to insert new and returning

customers into the queue in descending order using the number of times each customer has

received service as the sorting key. The reason the number of times serviced is used is because

the probability that a customer will receive satisfactory service increases each time a customer is

serviced.

2.1.2 User Simulation Control

The system shall allow the user to pause or stop the simulation process. This requirement was

requested by the customer. The ability to pause or stop the process gives the user greater

control over the simulation process.

2.1.2.1 User Simulation Control Derived Requirements

The requirements derived from giving the user greater control involve letting the user restart the

process after pausing the execution and displaying a simulation statistics screen upon a user

request to stop the simulation. Because the user can pause and restart the process the system is

required to not lose or alter any of the information in the Simulation Parameters or Master List

8

data stores, unless modified by the customer.

2.1.3 User Controlled Queue Modification

The user shall be allowed to modify the queue and servers during simulation pauses by either

inserting or deleting customers from the simulation. This requirement was requested by the

customer, and it also supports system extensibility. Allowing the insertion or removal of

customers from the system is analogous to disallowing a person’s use of a lab computer because

of violation of laboratory policy.

2.1.3.1 User Controlled Queue Modification Derived Requirements

The requirements derived from allowing the user to modify add and delete customers from the

system are mostly error checking requirements. Any system modification made by the user must

not cause the simulation to run improperly.

2.1.4 Simulation Requirements

The requirements for the simulation involve the behavior of the simulation and the statistics that

the simulation calculates. The system shall initially be empty and idle, customers shall be sent

from the front of the queue to the first available server, if all servers are busy, the customer is

sent to the queue using the specified queuing option and a customer shall exit the system after

receiving satisfactory service.

The statistics calculated during the simulation fall into two categories, customer statistics

and simulation statistics. The customer statistics include the number of times serviced, the total

time in the system and the amount of service time each customer receives. The simulation

statistics involve the interarrival times for new customer, whether a customer receives

satisfactory service and all other information required for the Simulation Statistics data store.

2.1.4.1 Simulation Derived Requirements

The requirements derived from the simulation requirements for system behavior and statistical

calculation cover the details that were over looked by the high level requirements.

The system is required to be empty and idle at the beginning of a simulation. To achieve

this, the queue shall be empty and each server shall be idle and available. After the simulation

9

begins, a new/returning customer shall be sent to the left-most available server, if all servers are

unavailable, the customer shall be added to the queue based on the selected queuing option.

When a customer is moved from the queue to a server, the customers remaining in the queue shall

be advanced one space in the queue, and the queue shall be empty if the last customer in the

queue is moved to a server. If a customer does not receive satisfactory service, the system shall

increase the customer’s number of times serviced variable. Every time an event takes place in the

system, the system records all statistics generated by the system in the Simulation Statistics List

data store.

The simulation system calculates statistics that enables simulation execution. It also

calculates statistics for each customer that passes through the system. The simulation execution

specific statistics include customer interarrival times, service times, customer satisfaction and

number of times each customer is serviced. The statistics calculated for each customer are

number of times serviced, average service time and the average/maximum time in the system.

During the simulation, the system calculates statistics for the display screen. The statistics are

the average/maximum time each customer is in a server and in the system, the average/maximum

length of the queue, the number of serviced/satisfied customers, the time-average and the

maximum number of busy servers.

2.2 Non-functional Requirements

The non-functional requirements for the Queuing System are those requirements not related to

the system’s functionality. These non-functional requirements are still essential to the Queuing

System’s design and implementation.

2.2.1 High Level Non-functional Requirements

The Queuing System shall be implemented using the Java programming language. The Queuing

System shall have a graphical user interface. The Queuing System shall provide an animation of

the simulation in real-time.

10

3 Design Representation

The Queuing System was designed using the Structured System Analysis and Structured Design

Method (SSA/SD). This section of the Design Notebook for the Queuing System follows the

steps of the SSA/SD and describes each step in detail.

3.1 Context Diagram

The Context Diagram, shown below in Figure 1, shows the Queuing System at its highest level of

abstraction. The system’s external entities are the User and the Animation Screen. The main

process bubble is a combination of the user interface, GUI, and the Queuing System, which

controls all interaction with the Master List and the Animation Screen. The Master List is the

only data store at this level.

3.2 Level One Data Flow Diagrams and Process Specifications

At Level One, the Queuing System is split into three main processes. The GUI (1.0) acts as a

middle man between the User and the Simulation Engine (2.0). The Simulation Engine (2.0)

executes the simulation of the Queuing System using data from the Simulation Parameters, and

Master List data stores. The Animation (3.0) uses the data in the Simulation Parameters and

User Animation
Window

User I/O
Animation

Display

Event List, Queue
and Server Data

Master List

Queuing
System

GUI
UserUser Animation

Window
Animation
Window

User I/OUser I/O
Animation

Display
Animation

Display

Event List, Queue
and Server Data

Event List, Queue
and Server Data

Master ListMaster List

Queuing
System

GUI

Queuing
System

GUI

Figure 1: Context Diagram

11

Master List data stores to create an animated representation of the activities executed during the

system simulation.

3.2.1 Level One Data Flow Diagram

The Level One Data Flow Diagram (DFD), Figure 2, for the Queuing System explodes the

Context Diagram into three processes, bubble 1.0 is the GUI, process bubble 2.0 is the

Simulation Engine and bubble 3.0 is the Animation. Two new data stores are introduced at this

level, Simulation Parameters and Simulation Statistics List. The Master List is also included at

this level. A definition of each data store can be found in the Data Dictionary (Appendix A).

3.2.2 Process Specification for Level One Data Flow Diagram

The process specifications for level one are an abstract narrative of how each process works in

relation to the other processes conducted by the Queuing System. The process specifications for

each process bubble are outlined below.

Simulation
Parameters

Master
List

Simulation Statistics
List

1.0
Graphical

User
Interface

2.0
Simulation

Engine

3.0
Animation

User

Animation
Window

User I/O

New Simulation
Parameters

Simulation
Parameters

Animation
Display

Simulation
Records

Queue/Server Status

Event List, Queue and
Server Data

Simulation
Parameters

Animation
Request

Simulation Commands

Simulation
Parameters

Master
List

Simulation Statistics
List

1.0
Graphical

User
Interface

2.0
Simulation

Engine

3.0
Animation

User

Animation
Window

User I/O

New Simulation
Parameters

Simulation
Parameters

Animation
Display

Simulation
Records

Queue/Server Status

Event List, Queue and
Server Data

Simulation
Parameters

Animation
Request

Simulation Commands

Simulation
Parameters

Master
List

Simulation Statistics
List

1.0
Graphical

User
Interface

2.0
Simulation

Engine

3.0
Animation

User

Animation
Window

User I/O

New Simulation
Parameters

Simulation
Parameters

Animation
Display

Simulation
Records

Queue/Server Status

Event List, Queue and
Server Data

Simulation
Parameters

Animation
Request

Simulation
Parameters
Simulation
Parameters

Master
List

Master
List

Simulation Statistics
List

Simulation Statistics
List

1.0
Graphical

User
Interface

2.0
Simulation

Engine

3.0
Animation

User

Animation
Window

User I/OUser I/O

New Simulation
Parameters
New Simulation
Parameters

Simulation
Parameters
Simulation
Parameters

Animation
Display
Animation
Display

Simulation
Records
Simulation
Records

Queue/Server StatusQueue/Server Status

Event List, Queue and
Server Data
Event List, Queue and
Server Data

Simulation
Parameters
Simulation
Parameters

Animation
Request

Simulation Commands

Figure 2: Level One Data Flow Diagram

12

3.2.2.1 Graphical User Interface (1.0)

The Graphical User Interface handles all user input and output. User output is a collection of

windows used either to gather information from, or to display information to the User. User

input is considered as all commands and data submitted by the user through the various output

windows displayed. The GUI also relays command messages, called simulation commands, to

the Simulation Engine (2.0) so each command given by the user is reflected in the behavior of the

simulation.

3.2.2.2 Simulation Engine (2.0)

The Simulation Engine process receives input from the Simulation Parameters and Master List

data stores and the GUI in order to execute the simulation. The while the simulation is executing,

the Simulation Engine process continuously interfaces the Master List regarding the status of the

Event List, the servers and the queue to determine if any action is necessary. For each customer

that is processed by the Simulation Engine statistics are recorded in the Simulation Statistics data

store. During execution of the Simulation Engine Process the Simulation Engine Process sends

animation requests to the Animation Process (3.0) to create and update the animation display.

3.2.2.3 Animation (3.0)

The Animation process inputs data from the Simulation Parameters and Master List data stores.

This information is used to create a display drawing that represents each server, the queue and

each customer in the system. The customers are drawn in one of two places, at a server or in the

queue. The animation display is updated each time the Animation process receives an animation

request from the Simulation Engine.

3.3 Level Two and Three Data Flow Diagrams and Process Specifications

The Level Two and Three DFDs further expand the process bubbles in the Level One DFD. The

GUI , System Engine and Animation process bubbles are expanded in Figure 3, Figure 4 and

Figure 5 respectively.

13

3.3.1 Level Two Data Flow Diagram 1.0

The Level Two Data Flow Diagram 1.0 (Figure 3) expands the GUI process bubble from Level

One. At this level, the processes executed by the GUI are clearer. Refer to the process

specification for more information on the operations of each process bubble shown below.

3.3.2 Process Specification for Level Two DFD 1.0

The Level Two DFD 1.0 process specifications elaborate on the process specifications from the

Level One DFD GUI process bubble (1.0). The tasks of the GUI process bubble (1.0) have been

expanded into five different processes and each is described below.

3.3.2.1 Process User Input (1.1)

Every time the user makes an entry in a dialog box or clicks on a button on the main GUI display,

a command message is passed to the GUI Process User Input process bubble. The information is

1.1
Process

User Input

New Simulation
Parameters

1.2
Modify

Simulation
Parameters

1.3
Invoke

User
Command

1.4
Request

User
Input

User

User Input
Request

Old Simulation
Parameters

New Simulation
Parameters

Simulation
Parameters

User
Input

User Input Request

User Command
Request

Simulation
Commands

1.5
GUI
User

Display

User Command
Request

GUI User Display Window

1.1
Process

User Input

New Simulation
Parameters

1.2
Modify

Simulation
Parameters

1.3
Invoke

User
Command

1.4
Request

User
Input

User

User Input
Request

Old Simulation
Parameters

New Simulation
Parameters
New Simulation
Parameters

Simulation
Parameters
Simulation
Parameters

User
Input

User Input Request

User Command
Request
User Command
Request

Simulation
Commands
Simulation
Commands

1.5
GUI
User

Display

User Command
Request

GUI User Display Window

Figure 3: Level Two DFD 1.0

14

examined to determine whether it is a command or data. If the input is a command, the Process

User Input process bubble relays that command request to the Invoke User Command process

bubble (1.3). If the user input is data, the Process User Input sends the new data to the Modify

Simulation Parameters process bubble (1.2).

3.3.2.2 Modify Simulation Parameters (1.2)

The Modify Simulation Parameters process bubble receives new simulation parameters from the

Process User Input process bubble (1.1) and saves the new parameters in the Simulation

Parameters data store for future use by the rest of the system. The Modify Simulation

Parameters process must determine if the new simulation parameters are within the determined

range to avoid invalid input to the Simulation Engine (2.0). If any of the new parameters are

invalid, the user is notified of the error and prompted to enter an input within the valid range.

The previous simulation parameters are not overwritten until all user input is valid.

3.3.2.3 Invoke User Command (1.3)

The Invoke User Command process at this level is still abstract. The main function of the

process is to input user command requests from the Interpret User Command process bubble

(1.1) and act as an interface between the User and the Simulation Engine (2.0). The system’s

user output is either in the form of a user input request or a display window. The Invoke User

Command process is responsible for determining which type of user output is required. If a user

input request is necessary, the request is relayed to the Request User Input process bubble (1.4).

If a user output screen is necessary, a request is sent to the GUI User Display process bubble

(1.5).

3.3.2.4 Request User Input (1.4)

The Request User Input process bubble is responsible for displaying a window to receive

necessary user input. The window type is determined by the user input request message passed

from the Invoke User Command process bubble (1.3). When the user input request message is

received by the Request User Input process, the process displays the corresponding window.

15

3.3.2.5 GUI User Display (1.5)

The GUI User Display process displays the contents of the Simulation Statistics data store to

the user at one of two times during the simulation. By default, the GUI User Display is executed

upon termination of the simulation. The other occurrence of the GUI User Display process is

during a simulation pause upon user request.

3.3.3 Level Two Data Flow Diagram 2.0

The Level Two Data Flow Diagram 2.0 (Figure 4) expands the Simulation Engine process bubble

(2.0) of the Level One Data Flow Diagram. The expansion is shown below followed by its

process specification.

3.3.4 Process Specifications for Level Two DFD 2.0

The Level Two DFD 2.0 process specifications explain, in greater detail, the process executed by

the Simulation Engine (2.0). Each process specification for the Level Two DFD 2.0 in figure 4

are illustrated below.

Simulation
Parameters

Master
List

2.1
Interpret

Simulation
Command

2.2
Invoke
Start

Command

2.3
Invoke
Pause

Command

2.4
Invoke
Stop

Command

Simulation Statistics
List

Simulation
Commands

Start
Command Request

Pause
Command Request

Stop
Command Request

Simulation Parameters

Event List, Queue and
Server Data

Simulation
Statistics

Simulation
Parameters
Simulation
Parameters

Master
List

Master
List

2.1
Interpret

Simulation
Command

2.2
Invoke
Start

Command

2.3
Invoke
Pause

Command

2.4
Invoke
Stop

Command

Simulation Statistics
List

Simulation Statistics
List

Simulation
Commands
Simulation
Commands

Start
Command Request
Start
Command Request

Pause
Command Request
Pause
Command Request

Stop
Command Request
Stop
Command Request

Simulation ParametersSimulation Parameters

Event List, Queue and
Server Data

Event List, Queue and
Server Data

Simulation
Statistics
Simulation
Statistics

Figure 4: Level Two DFD 2.0

16

3.3.4.1 Interpret Simulation Command (2.1)

The Interpret Simulation Command process bubble receives a simulation command message from

the GUI (1.0) and determines the command type. Once the command type is determined, the

Interpret Simulation Command process sends a command request to the corresponding function.

3.3.4.2 Invoke Start Command (2.2)

The Invoke Start Command process is the backbone of the simulation. Because of this, the

process is expanded and explained in greater detail in Level 3 DFD 2.2 (Figure 7). When the

Invoke Start Command process is called the simulation executes using information from the

Simulation Parameters and Master List data stores. As the simulation runs, animation requests

are sent to the Animation process (3.0) and simulation records are stored into the Simulation

Statistics data store. The simulation continues to execute until one of three events happen: (1)

The simulation time expires or (2) a stop command is executed or (3) a pause command is

executed.

3.3.4.3 Invoke Pause Command (2.3)

The Invoke Pause Command process temporarily stops the simulation execution. The time

remaining in the simulation is saved and the Invoke Pause Command GUI process (1.3.4) is

called. The simulation remains paused until the user chooses to resume the simulation, that

process is carried out by the Invoke Start Command (2.2).

3.3.4.4 Invoke Stop Command (2.4)

The Invoke Stop Command process stops the simulation as if the simulation time had elapsed.

Since the Invoke Stop Command process does not save information, like the Invoke Pause

Command process does, a warning message is displayed prompting the user to verify their

wishes to terminate the simulation. If the user chooses to stop the simulation, the Invoke Stop

Command GUI process is called and the simulation is stopped.

3.3.5 Level Two Data Flow Diagram 3.0

The Animation Process is pictured below (Figure 5). The Animation process is intended to give

a real time graphical representation of the simulation. The Level Two DFD 3.0 illustrates the

17

how information flows through the Animation process from the Simulation Parameters and

Master List data stores, through the interpreter and finally to the Animation Window.

3.3.6 Process Specifications for Level Two Data Flow Diagram 3.0

The process specifications for the Level Two DFD 3.0 explain how each process converts the

information in the Simulation Parameters and Master List data stores into the picture displayed

in the Animation Window.

3.3.6.1 Process Animation Data (3.1)

The Process Animation Data bubble receives information from the Simulation Parameters and

Master List data stores. The Simulation Parameters data store provides the simulation speed,

which is necessary to calculate the animation’s refresh rate. The refresh rate is calculated and the

information necessary to generate the animation is requested from the Master List data store

accordingly. The information necessary to generate the animation are the number of customers in

the queue, which servers are occupied and how many servers are in the system. This information

is pulled from the Master List data store. The above parameters are passed to the Draw

Display process (3.2)

Simulation
Parameters

Master
List

3.1
Process

Animation
Data

3.2
Draw

Display

3.3
Refresh
Screen

Animation
Window

Animation
Parameters

Server/Queue Status

Processed Animation
Information

New Display

Refreshed
Screen

Simulation
Parameters
Simulation
Parameters

Master
List

Master
List

3.1
Process

Animation
Data

3.2
Draw

Display

3.3
Refresh
Screen

Animation
Window

Animation
Parameters
Animation
Parameters

Server/Queue StatusServer/Queue Status

Processed Animation
Information

Processed Animation
Information

New DisplayNew Display

Refreshed
Screen

Refreshed
Screen

Figure 5: Level Two DFD 3.0

18

3.3.6.2 Draw Display (3.2)

The Draw Display process uses the animation parameters from the Process Animation Data

bubble (3.1) to determine where to draw each entity (servers, queue, and customers) in the

system in the proper place. The newly generated display and is passed to the Refresh Screen

process (3.3).

3.3.6.3 Refresh Screen (3.3)

The Refresh Screen process simply outputs the new drawing created by the Draw Display

process (3.2) to the Animation screen. The Animation screen is a window inside of the main

GUI display.

3.3.7 Level Three Data Flow Diagram 1.3

The Level Three Data Flow Diagram 1.3 (Figure 6) clarifies the functions of the Invoke User

Function process (1.3) from Level Two Data Flow Diagram 1.0 (Figure 3). The process

specifications for each new process bubble follow.

1.3.5
Invoke
Change

Simulation
Speed

1.3.2
Invoke
Start

Function
GUI

User Command
Request

1.3.1
Command

Type
Interpreter

1.3.3
Invoke
Stop

Function
GUI

1.3.4
Invoke
Pause

Function
GUI

Start Function

Request Stop Function
Request

Pause Function
Request

Change Speed
Function Request 1.3.5

Invoke
Change

Simulation
Speed

1.3.2
Invoke
Start

Function
GUI

User Command
Request

User Command
Request

1.3.1
Command

Type
Interpreter

1.3.3
Invoke
Stop

Function
GUI

1.3.4
Invoke
Pause

Function
GUI

Start Function

Request

Start Function

Request Stop Function
Request

Stop Function
Request

Pause Function
Request

Pause Function
Request

Change Speed
Function Request

Change Speed
Function Request

Figure 6: Level Three DFD 1.3

19

3.3.8 Process Specifications for Level Three Data Flow Diagram 1.3

The process specifications for Level Three Data Flow Diagram 1.3 explain the functionality of

each process bubble in Figure 6.

3.3.8.1 Command Type Interpreter (1.3.1)

The Command Type Interpreter process receives a user input request and determines which

command to invoke. If the command is either start, stop or pause, two different processes are

invoked. The Command Type Interpreter process sends a function request to both the

corresponding function’s GUI process and the Simulation Engine. If the command is not one of

the above functions, the Command Type Interpreter process sends a command request message

to the corresponding function’s GUI process.

3.3.8.2 Invoke Start Function GUI (1.3.2)

The Invoke Start Function GUI process sends a GUI request message to the GUI User Display

process (1.5) that tells the GUI User Display process (1.5) to generate the Simulation Execution

Graphical User Interface.

3.3.8.3 Invoke Stop Function GUI (1.3.3)

The Invoke Stop Function GUI process sends a GUI request to the GUI User Display (1.5)

requesting the generation of the End of Simulation Statistics Window.

3.3.8.4 Invoke Pause Function GUI (1.3.4)

The Invoke Pause Function GUI process send a User Input request to the Request User Input

process (1.4) that tells the Request User Input process (1.4) to display the Pause GUI Window

on the screen.

3.3.8.5 Invoke Change Simulation Speed (1.3.5)

The Invoke Change Simulation Speed process modifies the Simulation Speed parameter stored in

the Simulation Parameters data store while the simulation is executing.

3.3.9 Level Three Data Flow Diagram 2.2

The Level Three Data Flow Diagram 2.2 (Figure 7) explicitly demonstrates the numerous

processes involved when the Invoke Start Command process (2.2) is requested. The Invoke Start

20

Command process controls the execution of the Simulation Engine. The process specifications

that follow the Level Three Data Flow Diagram explain how each process controls the flow of

data between the Invoke Start Command process and the Simulation Parameters, Master List and

Simulation Statistics List data stores.

3.3.10 Process Specifications for Level Three Data Flow Diagram 2.2

The following process specifications explain each process bubble in the Level Three Data Flow

Diagram 2.2 (Figure 7).

3.3.10.1 Process Simulation Parameters (2.2.1)

The Process Simulation Parameters process inputs the current Simulation Parameters from the

Simulation Parameters data store and sends them to the Simulation Driver (2.2.2) and Invoke

Animation (2.2.4) processes.

3.3.10.2 Simulation Driver (2.2.2)

The Simulation Driver process uses the Master List data store to execute the simulation. Each

time an event takes place in the simulation, the Simulation Driver process generates an Animation

2.2.1
Process

Simulation
Parameters

Simulation

Parameters

Master List

2.2.2
Simulation

Driver

2.2.3
Update

Simulation
Statistics

2.2.4
Invoke

Animation
UpdateSimulation

Parameters

Animation
Update
Request

Simulation
Statistics

Event List,
Queue and
Server Data

Simulation
Parameters

Simulation
Statistics List

Simulation
Statistics

2.2.1
Process

Simulation
Parameters

Simulation

Parameters

Simulation

Parameters

Master ListMaster List

2.2.2
Simulation

Driver

2.2.3
Update

Simulation
Statistics

2.2.4
Invoke

Animation
UpdateSimulation

Parameters
Simulation
Parameters

Animation
Update
Request

Animation
Update
Request

Simulation
Statistics

Event List,
Queue and
Server Data

Event List,
Queue and
Server Data

Simulation
Parameters
Simulation
Parameters

Simulation
Statistics List

Simulation
Statistics List

Simulation
Statistics

Figure 7: Level Three Data Flow Diagram 2.2

21

Update Request and sends the request to the Invoke Animation Update process (2.2.4) and it

sends the current Simulation Statistics to the Update Simulation Statistics process (2.2.3).

3.3.10.3 Update Simulation Statistics (2.2.3)

The Update Simulation Statistics process inputs Simulation Statistics from the Simulation Driver

process (2.2.2) and writes the statistics into the Simulation Statistics data store.

3.3.10.4 Invoke Animation Update (2.2.4)

The Invoke Animation Update inputs an Animation Update Request from the Simulation Driver

process (2.2.2) and relays the message to the Animation process (3.0).

3.4 Transaction Analysis

The purpose of a transaction analysis is to separate a large system into smaller components of

related operations (Budgen, 216). In the following sections, the system DFD is partitioned into

smaller sub-systems and the transactions involved in the partitions are explained.

3.4.1 Partitions of the System DFD

The Queuing System design consists of three major sub-systems, the GUI, the Simulation Engine

and the Animation. This section shows the interaction of these three modules. The interaction

of the whole system is illustrated in section 3.5 by the system Structure Chart (Figure 10). The

GUI is the sub-system that controls all interaction between the user and the Simulation Engine.

The Simulation Engine and the Animation sub-system interact to produce a real-time animated

representation of the Queuing System’s simulation execution. The interaction of the three

systems are illustrated in Figure 8 and Figure 9 displayed below.

3.4.1.1 GUI and Simulation Engine Interaction

The GUI is used to translate information from the user into a form understood by the Simulation

Engine. The GUI also translates information from the Simulation Engine into a form understood

by the user. In Figure 8, the structure of these interactions is illustrated. The Interpret User

Input module determines if the user input is a Simulation Command and sends ,through the GUI

module, the request associated with that command to the Simulation Engine. The Simulation

22

Process Animation
Data

Animation

Refresh Screen

Draw Display

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Process Animation
Data

Animation

Refresh Screen

Draw Display

Process Animation
Data

Animation

Refresh Screen

Draw Display

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Figure 9: Simulation Engine and Animation
Interaction

Engine interprets that command request, invokes the corresponding function and tells the GUI

module to invoke the proper GUI display for that command.

3.4.1.2 Simulation Engine and Animation Interaction

Each time the Simulation Engine’s

Invoke Start Command process

executes an event it sends an

animation request to the Animation

process. Upon receiving an

animation request, the Animation

process produces a new display

drawing and updates the display

screen. This interaction is

illustrated in Figure 9 to the right.

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Invoke User
Commands

Command Type
Interpreter

Invoke Stop
Function GUI

Invoke Start
Function GUI

Invoke Pause
Function GUI

Process User Input

Graphical User
Interface (GUI)

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Invoke User
Commands

Command Type
Interpreter

Invoke Stop
Function GUI

Invoke Start
Function GUI

Invoke Pause
Function GUI

Process User Input

Invoke User
Commands

Command Type
Interpreter

Invoke Stop
Function GUI

Invoke Start
Function GUI

Invoke Pause
Function GUI

Process User Input

Graphical User
Interface (GUI)

Figure 8: GUI and Simulation Engine Interaction Chart

23

3.4.2 Identified Transactions

Each identified transaction for the Queuing System is defined using the SSA/SD Method

explained in the introduction of this document (Section 1.2). The transactions are explained using

the following fields.

• The EVENT in the systems environment that causes the transaction to occur
• The STIMULUS that is applied to the system to inform it about the event
• The ACTIVITY that is performed by the system as a result of the stimulus
• The RESPONSE that this generates in terms of output from the system
• The EFFECT that this has upon the environment

Each of the identified transactions are listed below:

3.4.2.1 Simulation Execution

The first transaction covers running the simulation using user defined simulation parameters or

the default parameters supplied by the system. The only effect that simulation parameter

modification has on the system are the statistics produced during simulation execution.

EVENT: The system user selects the Play button on the GUI

STIMULUS: The Invoke Start Command process is called

ACTIVITY: The simulation of the Queuing System is executed

RESPONSE: Simulation Statistics are saved and Animation is displayed

EFFECT: User can view animation without entering simulation parameters

3.4.2.2 Pause Simulation Execution

This transaction covers pausing simulation execution.

EVENT: The system user selects the Pause button on the GUI

STIMULUS: The Invoke Pause Command process is called

ACTIVITY: The simulation is temporarily stopped

RESPONSE: Simulation Pause GUI is displayed

EFFECT: User can choose options from Simulation Pause GUI

3.4.2.3 Stop Simulation Execution

This transaction describes how Simulation Execution Stops are handled.

EVENT: The system user selects the Stop button on the GUI

STIMULUS: The Invoke Stop Command process is called

24

ACTIVITY: The simulation execution is terminated

RESPONSE: The Simulation Statistics GUI is displayed

EFFECT: The user can view the Simulation Statistics, or exit the program

3.4.2.4 Insert and Delete Functions

The insert and delete functions are available to the user during simulation pauses. The

transaction associated with the insert and delete functions are described below.

The insert function allows the user to modify the queue and servers by inserting new

customers into either.

EVENT: During a pause, the user chooses the insert option

STIMULUS: A dialog box is displayed giving the user insert options

ACTIVITY: The options selected by the user are executed

RESPONSE: A dialog box asking for user request confirmation

EFFECT: The user can insert customers into the queue or servers

The delete function allows the user to modify the queue and servers by deleting an existing

customer from either.

EVENT: During a pause, the user chooses the delete option

STIMULUS: A dialog box is displayed giving the user delete options

ACTIVITY: The options selected by the user are executed

RESPONSE: A dialog box asking for user request confirmation

EFFECT: The user can delete customers from the queue or servers

3.5 Transform Analysis

This section illustrates the merging of the Data Flow Diagram partitions from the previous

section. This section follows step 5 of the SSA/SD Method (Section 1.2).

3.5.1 Structure Chart

The structure chart of the Queuing System (Figure 10) merges the structure charts from section

3.4. The structure charts from section 3.4 were also rearranged to show an overall system

hierarchy. The box labeled Main in the following structure chart handles all interaction between

the GUI, the Simulation Engine and the Animation modules.

25

3.6 Design Decision Log

The Design Decision Log is a collection of all major decisions made throughout the design of the

Queuing system. Each decision listed in table 1, below, is accompanied by the date the decision

was made, an explanation of the decision and the rationale that led to the decision.

 Table 1: Design Decision Log

Date of Decision Design Decision Rationale for Decision

September 10, 2000 Project Requirements decided

and prototyping started.

Beginning of project, need to develop a

starting point.

September 28, 2000 SRS version 1 completed and

sent to Design team for PDR.

Requirements tentatively stated, so

design process can begin.

Main

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Process Animation
Data

Animation

Refresh Screen

Draw Display

Modify Simulation
Parameters

GUI User DisplayRequest User InputInvoke User
Commands

Process User Input

Graphical User
Interface (GUI)

Command Type
Interpreter

Invoke Stop
Function GUI

Invoke Start
Function GUI

Invoke Change
Simulation Speed

Invoke Pause
Function GUI

Main

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Simulation Engine

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Interpret Simulation
Command

Invoke Start
Command

Invoke Stop
Command

Invoke Stop
Command

Process Animation
Data

Animation

Refresh Screen

Draw Display

Process Animation
Data

Animation

Refresh Screen

Draw Display

Modify Simulation
Parameters

GUI User DisplayRequest User InputInvoke User
Commands

Process User Input

Graphical User
Interface (GUI)

Command Type
Interpreter

Invoke Stop
Function GUI

Invoke Start
Function GUI

Invoke Change
Simulation Speed

Invoke Pause
Function GUI

Modify Simulation
Parameters

GUI User DisplayRequest User InputInvoke User
Commands

Process User Input

Modify Simulation
Parameters

GUI User DisplayRequest User InputInvoke User
Commands

Process User Input

Graphical User
Interface (GUI)

Command Type
Interpreter

Invoke Stop
Function GUI

Invoke Start
Function GUI

Invoke Change
Simulation Speed

Invoke Pause
Function GUI

Command Type
Interpreter

Invoke Stop
Function GUI

Invoke Start
Function GUI

Invoke Change
Simulation Speed

Invoke Pause
Function GUI

Figure 10: Structure Chart

26

Date of Decision Design Decision Rationale for Decision

October 10, 2000 PDR revision planned. Initial design needs to be reworked to

clarify DFD’s and process

specifications.

October 26, 2000 CDR revision planned. DFD’s and process specifications need

further clarification.

November, 5 2000 Final GUI selected Found the most user friendly GUI for

the time allowed for the decision/

November 7, 2000 Design Notebook version 2

completed.

Design is complete and ready to pass to

implementation and testing group.

November 7, 2000 Design Notebook revision

planned.

Design Notebook may need revision

before included with final submission of

project artifacts, so time is being

reserved.

27

4 References

1. IEEE Standard 1016.1-1993. IEEE Guide to Software Design Descriptions, 1993.

2. Pressman, Roger P. Software Engineering: A Practitioners Approach, Fourth Edition.
McGraw-Hill, New York, 1997.

3. Sheldon, F.T. Data Element Description Handout, date received: October 25, 2000.

4. Sheldon, F.T. Design Notebook Guidelines and Standards,
http://www.eecs.wsu.edu/~sheldon/cs422.html, date viewed: October 24, 2000.

5. Sheldon, F. T. General Documentation Style Guidelines and Standards,
http://www.eecs.wsu.edu/~sheldon/cs422.html, date viewed: October 23, 2000.

6. Sheldon, F.T. Overview of SSA/SD Structured System Analysis and Structured Design
Method, http://www.eecs.wsu.edu/~sheldon/cs422.html, date viewed: October 30,2000.

7. Sheldon, F.T. Project Requirements, http://www.eecs.wsu.edu/~sheldon/cs422.html, date
viewed: September 30, 2000.

8. Sommerville, Ian. Software Engineering, Sixth edition. Addison-Wesley, 2001.

28

5 Glossary

CDR – Critical Design Review: Final design review presented to customer to demonstrate the

design for the Queuing System.

DFD – Data Flow Diagram: a diagram used to describe a problem oriented view of the workings

of a system. A DFD provides a description bases on modeling the flow of information around a

network of operational elements, with each element making use of or modifying the information

flowing into that element (Budgen, 96).

GUI – Graphical User Interface: a user interface based on the WIMP interaction style.

PDR – Preliminary Design Review: Initial design review presented to customer. Action Items

are produced to determine the direction of the design strategy.

P-Spec – Process Specification: a specification of the processes symbolized by bubbles in a

Data Flow Diagrams.

RTM – Requirements Traceability Matrix: a table that is used to identify, track and verify each

system requirement.

SRS – Software Requirements Specification: an artifact produced by David Doran of Yellow

NEARPS that specifies all requirements of the Queuing System.

Structure Chart – a chart that illustrates the hierarchy of the system’s processes.

WIMP – Windows, Icons, Menus and Pointers interaction style. An example of a WIMP

interaction style is the Microsoft Windows operating system.

29

APPENDIX A: Data Dictionary

The Data Dictionary for the Queuing System contains explicit definitions of each major variable

used and each major message passed through the Queuing System. The entries are organized into

three sections 1) Simulation Parameters 2) Simulation Statistics and 3) List Variables. Each Data

Dictionary entry is defined using the following criteria (Dr. Sheldon handout):

• Name: identifies the variable or message name
• Description: gives a brief description of the variable
• Used In: provides a reference to the functional units using this variable
• Units: indicates the unit of measure for the data contained in the variable being used
• Range: specifies the acceptable range of data values for the variable
• Data type: specifies the data type to be used when declaring the variable during coding
• Attribute: indicates whether or not the variable contains data, control information or a

data condition
• Data Store Location: references the common region where the variable must be stored
• Accuracy: dictates the degree of accuracy required for output comparisons to be made

between implementations.

If any of the above fields do not apply to a given variable, the field is marked with N/A or TBD

where the value is to be determined later.

Simulation Parameters:

Name: Line cutting (line_cutting)
Description: The method to be used when dissatisfied customers rejoin the line.
Used In: Simulation queuing option
Units: none
Range: 0 or 1
Data Type: boolean
Attribute: data condition
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Number of servers (num_servers)
Description: The number of servers fed by the queue in the simulation.
Used In: Simulation execution
Units: none
Range: 1 to 10
Data Type: int
Attribute: contains data

30

Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Interarrival stream (stream_interarrival)
Description: The random number stream used to generate arrival times.
Used In: Simulation execution
Units: minutes
Range: 0 to 10
Data Type: int
Attribute: control information
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Number of busy servers (num_busy)
Description: Keeps track of the number of busy servers for the time average statistics.
Used In: Simulation Execution
Units: none
Range: 0 to number of servers
Data Type: int
Attribute: contains data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Service stream (stream_service)
Description: The random number stream used to generate service times.
Used In: Simulation Execution
Units: minutes
Range: TBD
Data Type: int
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Satisfaction stream (stream_satisfaction)
Description: The random number stream used to generate satisfaction probabilities.
Used In: Simulation Execution
Units: none
Range: TBD
Data Type: int
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy: N/A

31

Name: Uniform distribution a (dist_a)
Description: The lower limit used to determine uniform service time.
Used In: Simulation Execution
Units: none
Range: TBD
Data Type: double
Attribute: contains data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Uniform distribution b (dist_b)
Description: The upper limit used to determine uniform service time.
Used In: Simulation Execution
Units: none
Range: TBD
Data Type: double
Attribute: contains data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Dissatisfaction probability (prob_dissatisfied)
Description: The probability that a client will not be satisfied after a service completion.
Used In: Simulation Execution
Units: none
Range: TBD
Data Type: double
Attribute: contains data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Simulation runtime (runtime)
Description: The length of time in minutes the simulation should run.
Used In: Simulation Execution
Units: minutes
Range: 0 to 1000
Data Type: double
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Mean interarrival time (mean_interarrival)
Description: The mean time used to determine arrival times.
Used In: Simulation Execution
Units: minutes
Range: TBD

32

Data Type: double
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Simulator time (sim_time)
Description: The current time of the simulation.
Used In: Simulation Execution
Units: minutes
Range:0 to simulation runtime
Data Type: double
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Random number generator (rand)
Description: An object with the random number generation utilities.
Used In: Simulation Execution
Units: none
Range: TBD
Data Type: class SimRandomNumber
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy: N/A

Name: Current play speed (sim_speed)
Description: Keeps track of the current play speed of the GUI.
Used In: Simulation Execution
Units: none
Range: TBD
Data Type: class Jslider
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy:N/A

Name: Current simulator state (sim_state)
Description: Keeps track of the current sate of the simulator (playing, paused, etc.).
Used In: Simulation Execution, Simulation Pause
Units: none
Range: TBD
Data Type: int
Attribute: control data
Data Store Location: Simulation Parameters
Accuracy: N/A

33

Simulation Statistics:

Name: Service time statistics (servicest)
Description: Keeps track of the total service time statistics of clients.
Used In: Simulation Statistics Display
Units: minutes
Range: TBD
Data Type: class SimSampst
Attribute: contains data
Data Store Location: Simulation Statistics List
Accuracy: N/A

Name: Busy server statistics (busyst)
Description: Keeps track of the number of busy servers over time.
Used In: Simulation Statistics Display
Units: minutes
Range: TBD
Data Type: class SimTimest
Attribute: contains data
Data Store Location: Simulation Statistics List
Accuracy: N/A

Name: Number of clients (num_clients)
Description: The total number of clients served.
Used In: Simulation Statistics Display
Units: none
Range: not bounded
Data Type: int
Attribute: contains data
Data Store Location: Simulation Statistics List
Accuracy: N/A

Name: Number satisfied (num_satisfied)
Description: The number clients satisfied after the first service.
Used In: Simulation Statistics Display
Units: none
Range: 0 to number of clients
Data Type: int
Attribute: contains data
Data Store Location: Simulation Statistics List
Accuracy: N/A

34

List Variables:

Name: Servers (server[num_servers])
Description: Five servers are used to service a customer
Used In: Simulation Engine and Animation
Units: N/A
Range: N/A
Data Type: array of class SimList
Attribute: control information and data condition
Data Store Location: Master List
Accuracy: N/A

Name: Queue
Description: A line of customers waiting for an available server
Used In: Simulation Engine and Animation
Units: TBD
Range: TBD
Data Type: class SimList
Attribute: contains data
Data Store Location: Master List
Accuracy: N/A

Name: Event List (event_list)
Description: Used to drive the simulation.
Used In: Simulation Engine
Units: TBD
Range: TBD
Data Type: class SimEventList
Attribute: control information
Data Store Location: Master List
Accuracy: N/A

35

APPENDIX B: Project Schedule

Each member of Yellow NEARPS was assigned separate tasks involved in the construction of the

Queuing System. This appendix covers the group members, their responsibilities and the time

schedule for each of the Queuing System’s deliverable artifacts. The Schedule includes a table

defining each of the tasks and any limitations each task may encounter. The Schedule and table

are current as of November 8, 2000. (Student names removed in Fig. A-1)

Trevor Menagh T1 T6 T7
David Doran T2
Jerome Spaulding T3 T4

T5
Brandon Carpenter T8 T9
Ying Zhu T12
Scott McCammon T10 T11

9/18 9/25 10/4 10/11 10/16 10/18 10/25 11/8 11/15 12/6 12/11

Figure A-1: Queuing System Project Schedule

 Table A-1: Schedule Tasks Key and Limitations

Tasks Limitations
T1: Project Plan N/A (Completed)
T2: SRS N/A (Completed)
T3: PDR N/A (Completed)
T4: CDR N/A (Completed)
T5: DNB Time Limitation
T6: PDR Presentation N/A (Completed)
T7: CDR Presentation N/A (Completed)
T8: Simlab Java port N/A (Completed)
T9: Core Coding Time Limitation
T10: UM Time Limitation
T11: Demo Hardware Availability, Time Limitation
T12: Test Report Time Limitation

36

APPENDIX C: Requirements Traceability Matrix

Appendix C contains the Requirements Traceability Matrix (RTM). The RTM is used to aid the

verification of requirements for the Queuing System, as outlined in the Traceability Approach

section of this document’s Introduction (Section 1.3). The blank columns in this table will be

filled during the implementation and testing phases (Module Name and Tested, respectively).

 Table C-1. Requirements Traceability Matrix.

Req. ID

System Level.

Req. ID
Sub-system
Level.

DFD
Identifier(s)

Module Name Verification
Method*

Tested

A001 1.0

A001.1 1.3 T

A001.2 1.3 T

A002 2.0

A002.1 2.3 I or A

A002.2 2.2 T or I

A002.3 2.4

A003 2.3

A003.1 2.3/1.4 A

A003.2 2.3/1.4 T or A

A003.3 2.3/1.4 T or A

A004 2.3/1.4

A004.1 2.3/1.4 A

A004.2 2.3/1.4 A or T

A005 2.0

A005.1 2.0 T or I

A005.2 2.0 A or I

A006 2.1.2

A006.1 2.1.2 T or A

A006.2 2.1.2 A or I

A007 2.1.2

A007.1 2.1.2 I or T

A007.2 2.1.2 A or T

A008 2.1.2

A008.1 2.1.2 A or T

A008.2 2.1.2 I or T

37

Req. ID

System Level.

Req. ID
Sub-system
Level.

DFD
Identifier(s)

Module Name Verification
Method*

Tested

A009 2.1.2

A009.1 2.1.2 A or I

A009.2 2.1.2 A or I

A010 2.1.2

A010.1 2.1.2 A or I

A010.2 2.1.2 A or I

A011 2.1.2

A011.1 2.1.2 T or A

A011.2 2.1.2 T or A or I

A012 2.1.2

A012.1 2.1.2 A or T

A012.2 2.1.2 T or A

A013 2.1.4

A013.1 2.1.4 T or I

A013.2 2.1.4 T or I

 * Verification Method Key: T = Testing, I = Inspection, A = Analysis

38

APPENDIX D: Identified Test Cases

The test cases in this appendix were derived from the Preliminary Design Review (PDR), the

Critical Design Review (CDR) and the Data Notebook version 1.5. The test cases are divided

into three groups. The first group of test cases are designed to test the basic functionality of the

Queuing System. The second group of tests are designed to test the functions of the GUI. The

third set of test cases are designed to test the customer requested insert and delete functions. All

test cases are described using the following fields.

• Purpose(s): The data or functionality that is verified by the test case.
• Testing Method: The actions taken to execute the test case.
• Expected Output: The output that is expected from the test case.

D.1 Queuing System Functionality Test Cases

There are two test cases that are designed to test the Queuing system’s basic functionality. The

two test cases are defined below.

Case1: Run Simulation Without Modifying Simulation Parameters

Purpose: To verify correct execution of the simulation engine and animation.

Method: Select Play button on the GUI with default Simulation Parameters.

Expected Output: The system runs for the duration of the simulation time and displays the

Simulation Statistics upon completion of the simulation.

Case 2: Modification of Simulation Parameters

Purpose: To verify that modification of Simulation Parameters does not adversely effect the

Simulation Execution.

Method: Change Simulation Parameters and select the Play button on the GUI.

Expected Output: The system runs smoothly and at the end of the simulation time, the

Simulation Statistics are displayed on the screen.

39

D.2 GUI Functionality Test Cases

The GUI Functionality Test Cases are designed to verify the correct execution of the GUI during

simulation stops, pauses, and simulation speed changes.

Case 3: Stop Simulation

Purpose: To verify that the correct GUI is displayed after the user chooses to stop the

simulation.

Method: During a simulation execution, select the Stop button on the GUI.

Expected Output: The simulation is terminated and the Simulation Statistics GUI is displayed

on the screen.

Case 4: Pause and Resume a Simulation

Purpose: To verify that the correct GUI menu is displayed when the user chooses to pause the

simulation. To verify that the simulation resumes correctly after the user chooses to resume the

simulation.

Method: During a simulation execution, select the pause button on the GUI, then select the

Resume button.

Expected Output: The simulation is paused and the Pause GUI menu is displayed. After the

simulation is resumed, the simulation continues without trouble.

D.3 Delete and Insert Functions Test Cases

The two following test cases are designed to verify that the user defined insert and delete

functions execute correctly.

Case 5: Inserting Customers into the System

Purpose: To verify that a customer can be added into the system without negatively effecting

the simulation execution.

Method: During a simulation pause, choose the insert option from the menu and fill in requested

information to insert a customer into the system.

40

Expected Output: The customer is inserted into the system at its assigned position and the

simulation runs smoothly after execution is resumed.

Case 6: Deleting Customers from the System

Purpose: To verify that a customer can be removed from the system without adversely effecting

the simulation execution.

Method: During a simulation pause, choose the delete option from the menu and fill in requested

information to insert a customer from the system.

Expected Output: The selected customer is removed from the system and the simulation runs

smoothly after the simulation execution is resumed.

