
CRITICAL DESIGN REVIEW
October 27, 1999

Washington State University

CODE BLUE, INC.

Daniel DeFolo: Team Lead
Akram Abou-Emara: Implementation and Testing
Ben Johnson: Implementation
Ann Hoang: Test and Documentation
Trystan Larey-Williams: Implementation
Marhaini Muhammad-Halimi: Documentation

AgendaAgenda

1. Requirements
2. Assumptions Update
3. Context Diagram
4. High Level DFD
5. Lower Level DFD
6. Impacted Modules
7. Functional Design (P-Specs, Data Dictionary)
8. Structural Design (Structure Charts)
9. Entity Relationship Diagram
10. Transactions
11. Traceability Approach
12. Schedule
13. Open Issues
14. Current Status
15. Action Items

RequirementsRequirements

1. The CSPN tool shall provide command prompt interface that will
be compatible with GUI.

2. Platform dependent system calls shall be identified and corrected
for each problem in order to implement similar functionality
in both UNIX and Windows 98/NT platforms.

3. The program shall support single local user (not distributed).
4. The CSPN tool shall output a file in either postscript or

CompuServe gif format
5. The CSPN tool shall output a CSPL file
6. The CSPN tool shall accept CSP files as input
7. The software development process shall employ object-oriented

strategies using C++.

AssumptionsAssumptions

1. The GUI will be written in such a way that the CSPN tool can
interface with it.

2. User is responsible for determining if all input files are valid
CSP files.

3. Extensive error detection of CSP files will not need to be
performed.

4. By using windows API calls the CSPN tool will function under
Windows 95/98/NT.

5. The CSPN tool is not a safety critical application and will not
require any high level security requirements.

6. The CGE team is responsible for determining the format of the
output file from the previous version.

CSPN Translation System

CSP input
file

SPNP.C
output file

STD out

Command Line
w/ Switches

STD in

PS or GIF
output image file

CSPN tool

GUI

Context DiagramContext Diagram

CSPN tool

GUI

High Level DFDHigh Level DFD

GUI
(User)

2
Process

Data

1
Parse User

Options/Actions

Output
Files

CSP File

3
Generate
Output

Status
Messages Options

and Switches

Options-In from GUI

Analyze
Coincidence Matrix

Low Level DFDLow Level DFD

GUI
(User)

CSP File

2.1
Scan &
Parse

2.2
Build

Symbol
Table

2.5
Compose

Coincidence
matrix

Symbol Table

Symbols

1.1
Extract

1.2
Translate

Options
in from GUI

Options
and Switches

Tokens

Status
Messages

Coincidence
Matrix &

Process List

2.4
Build

Process
List

Transition Labels
& draw control

parameters

3.2
Decode
matrix

& Proc list
SPNP.C

GIF or
Postscript File

3.1
Reduce
Matrix

3.4
Filter

3.3
Generate
dot file

2.3
Build Net

List

Net List

CSPL.C
file

Processes

Impacted ModulesImpacted Modules

1. Parser and scanner design will remain the same. The
universality of the grammar cannot be encapsulated
in a truly object-oriented class that is publicly accessible
to all modules in the program.

2. All other modules will be enhanced by:
• Implementing them as objects
• Eliminating global variables
• Changing system calls to allow execution on multiple
platforms

Functional Design(PFunctional Design(P--Spec)Spec)
1 Parse User Options/Actions
/* receives command line from GUI */

1.1 Extracts data from command line and sets appropriate flags
1.1.1 If invalid input, output error message and exit

1.2 Translate specified commands to different modes of operation

2 Process Data
2.1 Scan and Parse CSP input file

2.1.1 Use lexographic analyzer to define tokes
2.1.2 Use yacc to parse through CSP language and pull out process and transition
information

2.2 Build Symbol table
2.2.1 Generate entry for each symbol in file

2.3 Build Net List
2.3.1 Create array structure of linked lists that define the declarations, adjacency, and
nesting of CSP constructs.

2.4 Build Process List
2.4.1 Create a list or processes from the input file along with their associated dummy names
that are used in analysis and composition.

2.5 Compose Coincidence Matrix
2.5.1 Create system coincidence matrix that from the smaller matrices in the symbol table
using the net list to determine adjacency of entries.

3 Generate Output
3.1 Reduce coincidence matrix

3.1.1 Perform reduction of dummy transitions if –c switch was set on command line
3.2 Decode Coincidence Matrix and Process list

3.2.1 Combine relationships of co-matrix and actual process names into a single petri-net
specification in cspl.c file

3.3 Generate dot file
3.3.1 Create netlist of transition labels and draw control parameters

3.4 Filter
3.4.1 Perform filtering of output file if the –K switch was set on the command line. This

changes ?, !, :, and ^ characters to SPNP compliant characters

Functional Design(PFunctional Design(P--Spec Spec -- Continued)Continued)

Data DictionaryData Dictionary
Tokens =
Strings generated by the scanning process that are used to generate the symbol table.

Options and Switches =
Series of characters denoting the functionality and stages that are included in the program run. Valid
switches are -a <number> | f | d | K | i<number> | n | o<name> | p<number> | c | r | s | t | v

CSP File =
The input file containing the CSP constructs that are translated by this application.

Processes =
Process names + dummy names.

Coincidence Matrix =
Definition of the relationships between processes and transformations.

Symbols =
Atomic components of the symbol table.

Symbol Table =
Stores relationships between attributes and the system elements to which they are assigned.

Process List =
A list of actions/processes involved in a given construction.

Data Dictionary (Continued)Data Dictionary (Continued)
Net List =
Contains the underlying structure of the specification including adjacency and nesting.

Status Messages =
Strings returned to the user interface denoting the state and progress of the program.

CSPL.C file =
One of the final output files, representing the stochastic petri-net structure

SPNP.C =
CSPL.C after filtering off non-SPNP compliant characters.

GIF or Postscript File =
A final output file, defining the structure of a Postscript or GIF representation of the stochastic petri-net.

Structure ChartStructure Chart

Main

Process DataParse User
Options/Actions

Generate
Output

Build
Symbol
Table

Compose
Coincidence

matrix

Build Net
List

Build
Process ListScan & Parse

TranslateExtract Reduce
Matrix

Decode
Matrix &
Proc list

Generate
dot file Filter

Entity Relationship DiagramEntity Relationship Diagram

PS Convert

Petri Net

has a

Incidence
Matrix

has a

Reduce
Matrix

Net List

is a

Created
From

Proccess
List

has a

Created
From

User’s
Interface

CSPN.C FilePS File

Input File

Symbol
Table

Transaction AnalysisTransaction Analysis

Case 1:
Event: Operating the UNIX version of CSPN tool.
Stimulus: Feeding a correct CSPN file to the CSPN tool.
Activity: Running under verbose mode (Stand alone).
Response: producing all output files.
Effect: verifying the correctness of the UNIX version

of the CSPN tool.
Case 2:

Event: Operating the Windows version of CSPN tool.
Stimulus: Feeding a correct CSPN file to the CSPN tool.
Activity: Running under verbose mode (Stand alone).
Response:producing all output files.
Effect: verifying the correctness of the Windows

version of the CSPN tool.

Transaction AnalysisTransaction Analysis (Continued)

Case 3:
Event: Operating the UNIX version of CSPN tool.
Stimulus: Feeding an incorrect CSPN file to the CSPN

tool.
Activity: Running under verbose mode (Stand alone).
Response: producing error messages.
Effect: verifying the reliability of the UNIX version of

the CSPN tool.
Case 4:

Event: Operating the Windows version of CSPN tool.
Stimulus: Feeding an incorrect CSPN file to the CSPN

tool.
Activity: Running under verbose mode (Stand alone).
Response: producing error messages.
Effect: verifying the reliability of the Windows version of

the CSPN tool.

Transaction AnalysisTransaction Analysis (Continued)

Case 5:
Event: Operating the Windows version of CSPN tool.
Stimulus: Feeding a CSPN file to the CSPN

tool.
Activity: Running under verbose mode (With the GUI).
Response: producing outputs.
Effect: verifying the reliability and the correctness of the

GUI interface.

Traceability Traceability ApproachApproach

Requirement SRS
Section

Verification
Method

Command prompt
compatible with GUI

3.1.1.2 D

Similar functionality
across multiple
platforms

3.1.2.1 A, D

Single Local User 3.3.1 I
Output file in either
postscript or
CompuServ GIF format

3.4.4.1 D

Output a CSPL file 3.4.4.2 D
Accept CSP file as
input

3.4.4.3 D

Employ object-oriented
strategies using C++

3.4.6.1 A

KEY: T = by Test, A = by Analysis, I = by Inspection, D =by Demonstration and An =
by Analogy

Schedule with Scope/LimitationsSchedule with Scope/Limitations
9-17-99 9-24-99 10-1-99 10-8-99 10-15-99 10-22-99 10-29-99 11-5-99 11-12-99 11-19-99 11-26-99 12-3-99 12-10-99

T1

T2

T3

T4

T7

T8

T9
T10

Tasks Limitations
T1: Analyze program for partitioning. Full understanding of the data structures currently used
T2: Analyze input/output files for CSPN. Lack of access to a working version of the CSPN tool.
T3: Meet with GUI group and decide on interface. Student schedule conflict.
T4: Create SRS. N/A since it is already completed.
T5: Prepare PDR N/A since it is already completed.
T6: Prepare CDR Time limitation.
T7: Create Design Notebook. Time limitation.
T8: Actually perform port. Lack of Object oriented design mastery.
T9: Create user manual. N/A
T10: Test (prototypes). N/A

T5

T6

Open IssuesOpen Issues

1. To what degree will we determine the level of abstraction
of the classes (how vanilla will they be). For example,
the level of data encapsulation and information hiding
instituted by the classes.

2. Verifying the decision to not implement the Coincidence
Matrix with a linked list based on the analysis that the
maximum gain from such an implementation will not make
up for the complexity of the problem.

3. Still considering further enhancements to modules.

Current StatusCurrent Status

Accomplishments:
Project Plan
SRS
PDR
Started design notebook. Completed up to section 3
Partitioning/top level design

Plans:
Break down the output files and how they are used
Continue design notebook
Start on user manual
Breaking down version 3.7 of source code and sufficiently
commenting it for future use

Problems:
Trouble with reliability of hardware in EME B26

