
Introduction 1

©Ian Sommerville 2000

1. Introduction

Objectives

The objective of this chapter is to introduce the subject of software
engineering. When you have read this chapter you will:
• understand what software engineering is and why it is important,
• know the answers to key questions which provide an introduction to

software engineering,
• understand ethical and professional issues which are important for

software engineers.

Contents

1.1 FAQs about software engineering
1.2 Professional and ethical responsibility



2 Introduction

©Ian Sommerville 2000

Virtually all countries now depend on complex computer-based systems. More and
more products incorporate computers and controlling software in some form. The
software in these systems represents a large and increasing proportion of the total
system costs. Therefore, producing software in a cost-effective way is essential for
the functioning of national and international economies

Software engineering is an engineering discipline whose goal is the cost-
effective development of software systems. Software is abstract and intangible. It is
not constrained by materials, governed by physical laws or by manufacturing
processes. In some ways, this simplifies software engineering as there are no
physical limitations on the potential of software. In other ways, however, this lack
of natural constraints means that software can easily become extremely complex and
hence very difficult to understand.

 Software engineering is still a relatively young discipline. The notion of
‘software engineering’ was first proposed in 1968 at a conference held to discuss
what was then called the ‘software crisis’. This software crisis resulted directly from
the introduction of (at that time) powerful, third generation computer hardware.
Their power made hitherto unrealisable computer applications a feasible
proposition. The resulting software was orders of magnitude larger and more
complex than previous software systems.

Early experience in building these systems showed that an informal approach
to software development was not good enough. Major projects were sometimes
years late. They cost much more than originally predicted, were unreliable, difficult
to maintain and performed poorly. Software development was in crisis. Hardware
costs were tumbling whilst software costs were rising rapidly. New techniques and
methods were needed to control the complexity inherent in large software systems.

These techniques have become part of software engineering and are now
widely although not universally used. However, there are still problems in
producing complex software which meets user expectations, is delivered on time and
to budget. Many software projects still have problems and this has led to some
commentators (Pressman, 1997) suggesting that software engineering is in a state
of chronic affliction.

As our ability to produce software has increased so too has the complexity of
the software systems required. New technologies resulting from the convergence of
computers and communication systems place new demands on software engineers.
For this reason and because many companies do not apply software engineering
techniques effectively, we still have problems. Things are not as bad as the
doomsayers suggest but there is clearly room for improvement.

I think that we have made tremendous progress since 1968 and that the
development of software engineering has markedly improved our software. We have
a much better understanding of the activities involved in software development. We
have developed effective methods of software specification, design and
implementation. New notations and tools reduce the effort required to produce large
and complex systems.

Software engineers can be rightly proud of their achievements. Without
complex software we would not have explored space, would not have the Internet
and modern telecommunications, and all forms of travel would be more dangerous
and expensive. Software engineering has contributed a great deal in its short lifetime
and I am convinced that, as the discipline matures, its contributions in the 21st
century will be even greater.



Introduction 3

©Ian Sommerville 2000

1.1  FAQs about software engineering

This section is designed to answer some fundamental questions about software
engineering and also to give you some impression of my views of the discipline.
The format that I have used here is the ‘FAQ (Frequently Asked Questions) list’.
This approach is commonly used in Internet newsgroups to provide newcomers
with answers to frequently asked questions. I believe that it is a very effective way
to give a succinct introduction to the subject of software engineering.

The questions which are answered in this section are shown in Figure 1.1.

Figure 1.1
Frequently asked
questions about
software engineering

Question Answer
What is software? Computer programs and associated documentation.

Software products may developed for a particular
customer or may be developed for a general market.

What is software engineering? Software engineering is an engineering discipline
which is concerned with all aspects of software
production.

What is the difference between
software engineering and computer
science?

Computer science is concerned with theory and
fundamentals; software engineering is concerned
with the practicalities of developing and delivering
useful software.

What is the difference between
software engineering and system
engineering?

System engineering is concerned with all aspects of
computer-based systems development including
hardware, software and process engineering.
Software engineering is part of this process.

What is a software process? A set of activities whose goal is the development or
evolution of software.

What is a software process model? A simplified representation of a software process,
presented from a specific perspective.

What are the costs of software
engineering?

Roughly 60% of costs are development costs, 40%
are testing costs. For custom software, evolution
costs often exceed development costs.

What are software engineering
methods?

Structured approaches to software development
which include system models, notations, rules,
design advice and process guidance.

What is CASE (Computer-Aided
Software Engineering)?

Software systems which are intended to provide
automated support for software process activities.
CASE systems are often used for method support.

What are the attributes of good
software?

The software should deliver the required
functionality and performance to the user and should
be maintainable, dependable and usable.

What are the key challenges facing
software engineering?

Coping with legacy systems, coping with
increasing diversity and coping with demands for
reduced delivery times.



4 Introduction

©Ian Sommerville 2000

1.1.1 What is software?
Many people equate the term software with computer programs. In fact, this is too
restrictive a view. Software is not just the programs but also all associated
documentation and configuration data which is needed to make these programs
operate correctly. A software system usually consists of a number of separate
programs, configuration files which are used to set up these programs, system
documentation which describes the structure of the system and user documentation
which explains how to use the system and, for software products, web sites for
users to download recent product information.

Software engineers are concerned with developing software products i.e.
software which can be sold to a customer. There are two types of software product:

1. Generic products These are stand-alone systems which are produced by a
development organisation and sold on the open market to any customer who
is able to buy them. Sometimes they are referred to as shrink-wrapped
software. Examples of this type of product include databases, word
processors, drawing packages and project management tools.

2. Bespoke (or customised) products These are systems which are
commissioned by a particular customer. The software is developed specially
for that customer by a software contractor. Examples of this type of software
include control systems for electronic devices, systems written to support a
particular business process and air traffic control systems.

An important difference between these different types of software is that, in
generic products, the organisation which develops the software controls the software
specification. For custom products, the specification is usually developed and
controlled by the organisation who are buying the software. The software developers
must work to that specification.

1.1.2 What is software engineering?
Software engineering is an engineering discipline which is concerned with all
aspects of software production from the early stages of system specification through
to maintaining the system after it has gone into use. In this definition, there are
two key phrases:

1.  ‘engineering discipline’  Engineers make things work. They apply theories,
methods and tools where these are appropriate but they use them selectively
and always try to discover solutions to problems even when there are no
applicable theories and methods to support them. Engineers also recognise
that they must work to organisational and financial constraints so they look
for solutions within these constraints.

2. ‘all aspects of software production’  Software engineering is not just
concerned with the technical processes of software development but also with
activities such as software project management and with the development of
tools, methods and theories to support software production.

In general, software engineers adopt a systematic and organised approach to
their work as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of



Introduction 5

©Ian Sommerville 2000

circumstances and a more creative, informal approach to development may be
effective in some circumstances. Informal development is particularly appropriate
for the development of web-based e-commerce systems which requires a blend of
software and graphical design skills.

1.1.3 What’s the difference between software engineering and
computer science?
Essentially, computer science is concerned about theories and methods which
underlie computers and software systems whereas software engineering is concerned
with the practical problems of producing software. Some knowledge of computer
science is essential for software engineers in the same way that some knowledge of
physics is essential for electrical engineers.

Ideally, all of software engineering should be underpinned by theories of
computer science but in reality this is not the case. Software engineers must often
use ad hoc approaches to develop the software. Elegant theories of computer science
are cannot always be applied to real, complex  problems which require a software
solution.

1.1.4 What is the difference between software engineering and
system engineering?
System engineering or, more precisely, computer-based system engineering is
concerned with all aspects of the development and evolution of complex systems
where software plays a major role. System engineering is therefore concerned with
hardware development, policy and process design and system deployment as well as
software engineering. System engineers are involved in specifying the system,
defining its overall architecture and then integrating the different parts to create the
finished system. They are less concerned with the engineering of the system
components (hardware, software, etc.).

System engineering is an older discipline than software engineering. People
have been specifying and assembling complex industrial systems such as aircraft
and chemical plants for more than 100 years. However, as the percentage of
software in systems has increased, software engineering techniques such as use-case
modelling, configuration management, etc. are being used in the systems
engineering process. I discuss system engineering in more detail in Chapter 2.

1.1.5 What is a software process?
A software process is the set of activities and associated results which produce a
software product. These activities are mostly carried out by software engineers.
There are four fundamental process activities (covered later in the book) which are
common to all software processes. These activities are:

1. Software specification The functionality of the software and constraints on
its operation must be defined.

2. Software development The software to meet the specification must be
produced.



6 Introduction

©Ian Sommerville 2000

3. Software validation The software must be validated to ensure that it does
what the customer wants.

4. Software evolution The software must evolve to meet changing customer
needs.

Different software processes organise these activities in different ways and are
described at different levels of detail. The timing of the activities varies as does the
results of each activity. Different organisations may use different processes to
produce the same type of product. However, some processes are more suitable than
others for some types of application. If an inappropriate process is used, this will
probably reduce the quality or the usefulness of the software product to be
developed.

Software processes are discussed in more detail in Chapter 3 and the
important topic of software process improvement is covered in Chapter 25.

1.1.6 What is a software process model?
A software process model is a simplified description of a software process which is
presented from a particular perspective. Models, by their very nature, are
simplifications so a software process model is an abstraction of the actual process
which is being described. Process models may include activities which are part of
the software process, software products and the roles of people involved in software
engineering. Some examples of the types of software process model which may be
produced are:

1. A workflow model This shows the sequence of activities in the process
along with their inputs, outputs and dependencies. The activities in this
model represent human actions.

2. A dataflow or activity model This represents the process as a set of activities
each of which carries out some data transformation. It shows how the input
to the process such as a specification is transformed to an output such as a
design. The activities here may be at a lower-level than activities in a
workflow model. They may represent transformations carried out by people
or by computers.

3. A role/action model This represents the roles of the people involved in the
software process and the activities for which they are responsible.

There are a number of different general models or paradigms of software
development:

1. The waterfall approach This takes the above activities and represents them as
separate process phases such as requirements specification, software design,
implementation, testing and so on. After each stage is defined it is ‘signed-
off’ and development goes on to the following stage.

2. Evolutionary development This approach interleaves the activities of
specification, development and validation. An initial system is rapidly
developed from very abstract specifications. This is then refined with
customer input to produce a system which satisfies the customer’s needs.
The system may then be delivered. Alternatively, it may be re-implemented



Introduction 7

©Ian Sommerville 2000

using a more structured approach to produce a more robust and maintainable
system.

2. Formal transformation This approach is based on producing a formal
mathematical system specification and transforming this specification, using
mathematical methods to a program. These transformations are ‘correctness-
preserving’. This means that you can be sure that the developed program
meets its specification.

3. System assembly from reusable components This technique assumes that
parts of the system already exist. The system development process focuses
on integrating these parts rather than developing them from scratch. I discuss
software reuse in Chapter 14.

I return to these generic process models in Chapter 3.

1.1.7 What are the costs of software engineering?
There is no simple answer to this question as the precise distribution of costs across
the software process depends on the process used and the type of software which is
being developed. If we take the total cost of developing a complex software system
as 100 cost units, the distribution of these cost units is likely to be something like
that shown in Figure 1.2.

This cost distribution holds where the costs of specification, design,
implementation and integration are measured separately. Notice that system
integration and testing is the most expensive development activity. Figure 1.2
suggests that this is about 40% of the total development costs but for some critical
systems it is likely to be nearer 50% of the total system costs.

If the software is developed using an evolutionary approach, there is no hard
line between specification, design and development. Figure 1.2 would have to be
modified for this type of development as shown in Figure 1.3. Specification costs
are reduced because only a high-level specification is produced before development
in this approach. Specification, design, implementation, integration and testing are
carried out in parallel within a development activity. However, there is still a need
for a separate system testing activity once the initial implementation is complete.

On top of development costs, costs are also incurred in changing the software
after it has gone into use. For many software systems which have a long lifetime,
these costs are likely to exceed the development costs by a factor of 3 or 4 (Figure
1.4).

Specification Design Development Integration and testing

25 50 75 1000

Figure 1.2
Development cost
distribution

Figure 1.3 Costs
of evolutionary
development

Specification Evolutionary development System testing

25 50 75 1000



8 Introduction

©Ian Sommerville 2000

The above cost distribution holds for customised software which is specified
by a customer and developed by a contractor. For software products which are
(mostly) sold for PCs, the cost profile is likely to be different. These products are
usually developed from an outline specification using an evolutionary development
approach. Specification costs are relatively low. However, because they are intended
for use on a range of different configurations, they must be extensively tested.
Figure 1.5 shows the type of cost profile that might be expected for these products.

The evolution costs for generic software products are particularly hard to
estimate. In many cases, there is little formal evolution of a product. Once a
version of the product has been released, work starts on the next release and, for
marketing reasons, this is likely to be presented as a new (but compatible) product
rather than a modified version of a product which the user has already bought.
Therefore, the evolution costs are not assessed separately as they are in customised
software but are simply the development costs for the next version of the system.

The cost model for E-commerce web-based systems is likely to be different
from both of these. These systems usually use off-the-shelf software for
information management and have high user interface development costs. At the
time of writing, these systems have only just come into use. I don’t have any
reliable figures on their development costs.

1.1.8 What are software engineering methods?
A software engineering method is a structured approach to software development
whose aim is to facilitate the production of high-quality software in a cost-effective
way. Methods such as Structured Analysis (DeMarco, 1978) and JSD (Jackson,
1983) were first developed in the 1970s. These methods attempted to identify the
basic functional components of a system and function-oriented methods are still
widely used. In the 1980s and 1990s, these function-oriented methods were
supplemented by object-oriented methods such as those proposed by Booch (Booch,
1994) and Rumbaugh (Rumbaugh, Blaha et al., 1991). These different approaches
have now been integrated into a single unified approach built around the Unified
Modeling Language (UML) (Fowler and Scott, 1997) (Booch, Rumbaugh et al.,
1999; Rumbaugh, Jacobson et al., 1999; Rumbaugh, Jacobson et al., 1999).

All methods are based on the idea of developing models of a system which
may be represented graphically and using these models as a system specification or
design. Methods should include a number of different components (Figure 1.6).

There is no ideal method and different methods have different areas where they
are applicable. For example, object-oriented methods are often appropriate for
interactive systems but not for systems with stringent real-time requirements.

System evolution

25 50 75 1000

System development

Figure 1.4
Evolution costs

Specification Development System testing

25 50 75 1000
Figure 1.5 Product
development costs



Introduction 9

©Ian Sommerville 2000

1.1.9 What is CASE?
The acronym CASE stands for Computer-Aided Software Engineering. It covers a
wide range of different types of program which are used to support software process
activities such as requirements analysis, system modelling, debugging and testing.
All methods now come with associated CASE technology such as editors for the
notations used in the method, analysis modules which check the system model
according to the method rules and report generators to help create system
documentation. The CASE tools may also include a code generator which
automatically generates source code from the system model and some process
guidance which gives advice to the software engineer on what to do next.

This type of CASE tool, aimed at supporting analysis and design, is
sometimes called an upper-CASE tool because it supports early phases of the
software process. By contrast, CASE tools which are designed to support
implementation and testing such as debuggers, program analysis systems, test case
generators and program editors are sometimes called lower-CASE tools.

1.1.10 What are the attributes of good software?
As well as the services which it provides, software products have a number of other
associated attributes which reflect the quality of that software. These attributes are
not directly concerned with what the software does, Rather, they reflect its
behaviour while it is executing and the structure and organisation of the source
program and associated documentation. Examples of these attributes (sometimes
called non-functional attributes) are the software’s response time to a user query and
the understandability of the program code.

The specific set of attributes which you might expect from a software system
obviously depends on its application. Therefore, a banking system must be secure,
an interactive game must be responsive, a telephone switching system must be
reliable, etc. These can be generalised into the set of attributes shown in Figure 1.7
which I believe are the essential characteristics of a well-designed software system.

Figure 1.6 Method
components

Component Description Example
System model
descriptions

Descriptions of the system models which
should be developed and the notation used to
define these models.

Object models, data-
flow models, state
machine models, etc.

Rules Constraints which always apply to system
models.

Every entity in a
system model must
have a unique name.

Recommendations Heuristics which characterise good design
practice in this method. Following these
recommendations should lead to a well-
organised system model.

No object should have
more than 7 sub-
objects associated
with it.

Process guidance Descriptions of the activities which may be
followed to develop the system models and
the organisation of these activities

Object attributes
should be documented
before defining the
operations associated
with an object.



10 Introduction

©Ian Sommerville 2000

The techniques discussed in this book focus on two of these attributes
namely maintainability and dependability. The majority of software engineering
methods, tools and techniques are intended to help produce software with these
characteristics. Software performance improvement is usually dependent on very
specific domain knowledge and usability is a major, separate topic in its own right.
However, I do discuss usability in Chapter 15.

1.1.11 What are the key challenges facing software engineering?
Software engineering in the 21st century faces three key challenges:

1. The legacy challenge The majority of software systems which are in use
today were developed many years ago yet they perform critical business
functions. The legacy challenge is the challenge of maintaining and updating
this software in such a way that excessive costs are avoided and essential
business services continue to be delivered.

2. The heterogeneity challenge Increasingly, systems are required to operate as
distributed systems across networks that include different types of computer
and with different kinds of support systems. The heterogeneity challenge is
the challenge of developing techniques to build dependable software which is
flexible enough to cope with this heterogeneity.

3. The delivery challenge Many traditional software engineering techniques are
time-consuming. The time they take is required to achieve software quality.
However, businesses today must be responsive and change very rapidly.
Their supporting software must change equally rapidly. The delivery
challenge is the challenge of shortening delivery times for large and complex
systems without compromising system quality.

Product characteristic Description
Maintainability Software should be written in such a way that it

may evolve to meet the changing needs of
customers. This is a critical attribute because
software change is an inevitable consequence of a
changing business environment.

Dependability Software dependability includes a range of
characteristics including reliability, security and
safety. Dependable software should not cause
physical or economic damage in the event of
system failure.

Efficiency Software should not make wasteful use of system
resources such as memory and processor cycles.
Efficiency therefore includes responsiveness,
processing time, memory utilisation, etc.

Usability Software must be usable, without undue effort, by
the type of users for which it is designed. This
means that it should have an appropriate user
interface and adequate documentation.

Figure 1.7
Essential attributes
of good software



Introduction 11

©Ian Sommerville 2000

Of course, these are not independent. For example, it may be necessary to
make rapid changes to a legacy system to make it accessible across a network. To
address these challenges we will need new tools and techniques as well as innovative
ways of combining and using existing software engineering methods.

1.2 Professional and ethical responsibility

Like other engineers, software engineers must accept that their job involves wider
responsibilities than simply the application of technical skills. Their work is carried
out within a legal and social framework. Software engineering is obviously bounded
by local, national and international laws. Software engineers must behave in an
ethical and morally responsible way if they are to be respected as professionals.

It goes without saying that engineers should uphold normal standards of
honesty and integrity. They should not use their skills and abilities to behave in a
dishonest way or in a way that will bring disrepute to the software engineering
profession. However, there are areas where standards of acceptable behaviour are not
bounded by laws but by the more tenuous notion of professional responsibility.
Some of these are:

1. Confidentiality Engineers should normally respect the confidentiality of their
employers or clients irrespective of whether or not a formal confidentiality
agreement has been signed.

2. Competence Engineers should not misrepresent their level of competence.
They should not knowingly accept work which is outwith their competence.

3. Intellectual property rights Engineers should be aware of local laws
governing the use of intellectual property such as patents, copyright, etc.
They should be careful to ensure that the intellectual property of employers
and clients is protected.

4. Computer misuse Software engineers should not use their technical skills to
misuse other people’s computers. Computer misuse ranges from relatively
trivial (game playing on an employer’s machine, say) to extremely serious
(dissemination of viruses).

In this respect, professional societies and institutions have an important role
to play. Organisations such as the ACM, the IEEE (Institute of Electrical and
Electronic Engineers) and the British Computer Society publish a code of
professional conduct or code of ethics. Members of these organisations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behaviour.

The ACM and the IEEE have cooperated to produce a joint code of ethics and
professional practice. This code exists in both a short form, shown in Figure 1.8,
and a longer form (Gotterbarn, Miller et al., 1999) which adds detail and substance
to the shorter version. The rationale behind this code is summarised in the first two
paragraphs of the longer form:

Computers have a central and growing role in commerce, industry,
government, medicine, education, entertainment and society at large. Software
engineers are those who contribute by direct participation or by teaching, to the



12 Introduction

©Ian Sommerville 2000

analysis, specification, design, development, certification, maintenance and
testing of software systems. Because of their roles in developing software
systems, software engineers have significant opportunities to do good or cause
harm, to enable others to do good or cause harm, or to influence others to do
good or cause harm. To ensure, as much as possible, that their efforts will be
used for good, software engineers must commit themselves to making software
engineering a beneficial and respected profession. In accordance with that
commitment, software engineers shall adhere to the following Code of Ethics
and Professional Practice.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of the
profession. The Principles identify the ethically responsible relationships in
which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are
illustrations of some of the obligations included in these relationships. These
obligations are founded in the software engineer’s humanity, in special care
owed to people affected by the work of software engineers, and the unique
elements of the practice of software engineering. The Code prescribes these as
obligations of anyone claiming to be or aspiring to be a software engineer.

In any situation where different people have different views and objectives
you are likely to be faced with ethical dilemmas. For example, if you disagree, in
principle, with the policies of more senior management in the company, how
should you react? Clearly, this depends on the particular individuals and the nature
of the disagreement. Is it best to argue a case for your position from within the
organisation or to resign in principle? If you feel that there are problems with a
software project, when do you reveal these to management? If you discuss these
while they are just a suspicion, you may be over-reacting to a situation; if you
leave it too late, it may be impossible to resolve the difficulties.

Such ethical dilemmas face all of us in our professional lives and,
fortunately, in most cases they are either relatively minor or can be resolved
without too much difficulty. Where they cannot be resolved, the engineer is faced
with, perhaps, another problem. The principled action may be to resign from their
job but this may well affect others such as their partner or their children.

A particularly difficult situation for professional engineers arises when their
employer acts in an unethical way. Say a company is responsible for developing a
safety-critical system and because of time-pressure falsifies the safety validation
records. Is the engineer’s responsibility to maintain confidentiality or to alert the
customer or publicise, in some way, that the delivered system may be unsafe?

The problem here is that there are no absolutes when it comes to safety.
Although the system may not have been validated according to pre-defined criteria,
these criteria may be too strict. The system may actually operate safely throughout
its lifetime. It is also the case that, even when properly validated, the system may
fail and cause an accident. Early disclosure of problems may result in damage to the
employer and other employees; failure to disclose problems may result in damage to
others.



Introduction 13

©Ian Sommerville 2000

You must make up your own mind in these matters. In this case, the
potential for damage, the extent of the damage and the people affected by the damage
should influence the decision. If the situation is very dangerous, it may be justified

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and
Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of
the abstraction; the clauses that are included in the full version give
examples and details of how these aspirations change the way we act
as software engineering professionals. Without the aspirations, the
details can become legalistic and tedious; without the details, the
aspirations can become high sounding but empty; together, the
aspirations and the details form a cohesive code.

Software engineers shall commit themselves to making the analysis,
specification, design, development, testing and maintenance of software
a beneficial and respected profession. In accordance with their
commitment to the health, safety and welfare of the public, software
engineers shall adhere to the following Eight Principles:

1. PUBLIC - Software engineers shall act consistently with the public
interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner
that is in the best interests of their client and employer consistent with
the public interest.

3. PRODUCT - Software engineers shall ensure that their products and
related modifications meet the highest professional standards
possible.

4. JUDGMENT - Software engineers shall maintain integrity and
independence in their professional judgment.

5. MANAGEMENT - Software engineering managers and leaders shall
subscribe to and promote an ethical approach to the management of
software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and
reputation of the profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of
their colleagues.

8. SELF - Software engineers shall participate in lifelong learning
regarding the practice of their profession and shall promote an ethical
approach to the practice of the profession.

Figure 1.8
ACM/IEEE Code of
Ethics (©IEEE/ACM
1999)



14 Introduction

©Ian Sommerville 2000

to publicise it using the national press (say). However, you should always try to
resolve the situation while respecting the rights of your employer.

Another ethical issue is participation in the development of military and
nuclear systems. Some people feel strongly about these issues and do not wish to
participate in any systems development associated with military systems. Others
will work on military systems but not on weapons systems. Yet others feel that
national defence is an overriding principle and have no ethical objections to working
on weapons systems. The appropriate ethical position here depends entirely on the
views of the individuals who are involved.

 In this situation it is important that both employers and employees should
make their views known to each other in advance. Where an organisation is
involved in military or nuclear work, they should be able to specify that employees
must be willing to accept any work assignment. Equally, if an employee is taken
on and makes clear that they do not wish to work on such systems, employers
should not put pressure on them to do so at some later date.

The general area of ethics and professional responsibility is one which has
received increasing attention over the past few years. It can be considered from a
philosophical standpoint where the basic principles of ethics are considered and
software engineering ethics are discussed with reference to these basic principles.
This is the approach taken by (Laudon, 1995) and to a lesser extent by Huff and
Martin (Huff and Martin, 1995).

However, I find this approach rather abstract and difficult to relate to my
everyday experience. I much prefer the more concrete approach embodied in codes of
conduct and practice. I think that ethics are best discussed in a software engineering
context and not as a subject in their own right. In this book, therefore, I do not
include abstract ethical discussions but, where appropriate, include examples in the
exercises which can be the basis of an ethical discussion.

KEY POINTS

• Software engineering is an engineering discipline which is concerned with all
aspects of software production.

• Software products consist of developed programs and associated
documentation. Essential product attributes are maintainability, dependability,
efficiency and usability.

• The software process consists of activities which are involved in developing
software products. Basic activities are software specification, development,
validation and evolution.

• Methods are organised ways of producing software. They include suggestions
for the process to be followed, the notations to be used, rules governing the
system descriptions which are produced and design guidelines.

• CASE tools are software systems which are designed to support routine
activities in the software process such as editing design diagrams, checking
diagram consistency and keeping track of program tests which have been run.

• Software engineers have responsibilities to the engineering profession and
society. They should not simply be concerned with technical issues.



Introduction 15

©Ian Sommerville 2000

• Professional societies publish codes of conduct which set out the standards of
behaviour expected of their members.

FURTHER READING

Software Engineering: An Engineering Approach A general text that includes a
number of useful case studies ( J. F. Peters and W. Pedrycz, 2000, John Wiley and
Sons).

‘Software Engineering Code of Ethics is Approved’. An article that discusses the
background to the development of the ACM/IEEE Code of Ethics and that includes
both the short and long form of the Code (Comm. ACM, D. Gotterbarn, K. Miller
and S. Rogerson, October 1999).

Software Engineering: A Practitioner’s Approach A general textbook that surveys a
wide variety of software engineering topics. (R. S. Pressman, McGraw Hill, 1997).

Ethics and Computing: Living Responsibly in a Computerized World. A good
overview of the topic along with a number of more specialised papers (K. W.
Bowyer, IEEE Computer Society Press, 1996).

Professional Issues in Software Engineering. This is an excellent book discussing
legal and professional issues as well as ethics. (F. Bott, A. Coleman, J. Eaton and
D. Rowland, 1995, UCL Press).

‘No Silver Bullet: Essence and Accidents of Software Engineering’ In spite of its
age, this paper is a good general introduction to the problems of software
engineering. The essential message of the paper hasn’t changed in the last 13 years.
(F. P. Brooks, IEEE Computer, 20 (4), April 1987).

EXERCISES

1.1 By making reference to the distribution of software costs discussed in section
1.1.6, explain why it is appropriate to consider software to be more than the
programs which can be executed by end-users of a system.

1.2 What are the four important attributes which all software products should
have? Suggest four other attributes which may be significant.

1.3 What is the difference between a software process model and a software
process? Suggest 2 ways in which a software process model might be helpful
in identifying possible process improvements.

1.4 Explain why system testing costs are particularly high for generic software
products which are sold to a very wide market.

1.5 Software engineering methods only became widely used when CASE
technology became available to support them. Suggest 5 types of method
support which can be provided by CASE tools.



16 Introduction

©Ian Sommerville 2000

1.6 Apart from the challenges of legacy systems, heterogeneity and rapid delivery,
identify other problems and challenges that software engineering is likely to
face in the 21st century.

1.7 Discuss whether professional engineers should be certified in the same way as
doctors or lawyers.

1.8 For each of the clauses in the ACM/IEEE Code of Ethics should in Figure
1.8, suggest an appropriate example that illustrates that clause.


