
1998 - Frederick T. Sheldon

CS 330 Software Engineering I

Instructor:

Frederick T. Sheldon

Computer Science Department
The University of Colorado at Colorado Springs

Introduction to Software Engineering

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 2
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

AGENDA

• Definitions of Software Engineering & Terminology

• Introduce the Concepts of Software Product and Release

• System Engineering & Project Management

• Requirements & Specification

• Software Design

• Dependable Systems

• Verification & Validation

• CASE & Software Engineering Environments

• Management

• Evolution

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 3
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

DEFINITION OF SOFTWARE ENGINEERING

SE is concerned with the theories, methods and tools which are needed to develop the
software for computer systems (e.g., aerospace, avionics, telecommunications,
government, health care, etc.)

Different from other engineering disciplines because it is not constrained by materials
governed by physical laws or by “manufacturing” processes.

Software Engineers model parts of the real world in software. Models are large and
complex so they must be made visible in documents (e.g., requirements, design
specifications, test reports, user manuals, etc.)

The goal is to produce practical software solutions in a cost effective way. Products
that are reliable, robust, useable, flexible, maintainable, etc.)

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 4
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE ENGINEERING BASIC TERMINOLOGY

Requirement. (1) A condition or capability needed by a user to solve a problem or
achieve an objective. (2) A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard, specification, or
other formally imposed document. The set of all requirements forms the basis for
subsequent development of the system or system component. See also requirements
analysis, requirements phase, requirements specification.

Requirements specification. A specification that sets forth the requirements
for a system or system component; for example, a software configuration item.
Typically included are functional requirements, performance requirements,
interface requirements, design requirements, and development standards.

Specification language. A language, often a machine-processable combination of
natural and formal language, used to specify the requirements, design,
behavior, or other characteristics of a system or system component. See also
design language, requirements specification language.

Design. (1) The process of defining the software architecture, components,
modules, interfaces, test approach, and data for a software system to satisfy specified
requirements. (2) The result of the design process.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 5
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE ENGINEERING BASIC TERMINOLOGY (CONTINUED)

Design analysis. (1) The evaluation of a design to determine correctness with
respect to stated requirements, conformance to design standards, system
efficiency, and other criteria. (2) The evaluation of alternative design approaches.

Implementation requirement. Any requirement that impacts or constrains the
implementation of a software design; for example, design descriptions, software
development standards, programming language requirements, software quality
assurance standards.

Implementation. (1) A realization of an abstraction in more concrete terms; in
particular, in terms of software, or both. (2) A machine executable form of a
program, or a form of a program that can be translated automatically to machine
executable form. (3) The process of translating a design into code and debugging
the code.

Walk-through. A process in which a designer or programmer leads one or more
other members of the development team through a segment of design or code that
he or she has written, while the other members ask questions and make comments
about technique, style, possible errors, violation of development standards, and
other problems. Contrast with inspection.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 6
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE ENGINEERING BASIC TERMINOLOGY (CONTINUED)

Inspection. (1) A formal evaluation technique in which software requirements,
design, or code are examined in detail by a person or group other than the author to
detect faults, violations of development standards, and other problems. Contrast
with walk-through. (2) A phase of quality control that by means of examination,
observation or measurement determines the conformance of materials. (3) A phase of
quality control that by means of examination, observation or measurement determines
the conformance of materials, supplies, components, parts, appurtenances, systems,
processes or structures to predetermined quality requirements.

Testing / Debugging. Testing is the process of exercising or evaluating a system
or system component by manual or automated means to verify that it satisfies
specified requirements or to identify differences between expected and actual results.
Debugging is the process of locating, analyzing, and correcting suspected faults.

Integration / Integration testing. Integration is the process of combining
software elements, hardware elements, or both into overall system. Integration
testing is an orderly progression of testing in which software elements, hardware
or both are combined and tested until the entire system has been integrated.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 7
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE ENGINEERING BASIC TERMINOLOGY (CONTINUED)

Validation involves checking that the program as implemented meets the
expectations of the software customer in such a way to ensure compliance with
software requirements. See also verification.

Verification. (1) The process of determining whether or not the products of a given
phase of the software development cycle fulfill the requirements established
during the previous phase. See also validation. (2) Formal proof of program
correctness. See proof of correctness. (3) The act of reviewing, inspecting,
testing, checking, auditing, or otherwise establishment and documenting whether or
not items, processes, services, or documents conform to specified requirements.
(ANSI/ASQC A3-1978).

Independent verification and validation. (1) Verification and validation of a
software product by an organization that is both technically and managerially
separate from the organization responsible for developing the product. (2)
Verification and validation of a software product by individuals or groups other
than those who performed the original design, but, who may be from the same
organization. The degree of independence must be a function of the importance of
the software.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 8
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE ENGINEERING BASIC TERMINOLOGY (CONTINUED)

Certification. (1) A written guarantee that a system or computer program
complies with its specified requirements. (2) A written authorization that states that
a computer system is secure and is permitted to operate in a defined environment
with or producing sensitive information. (3) The formal demonstration of system
acceptability to obtain authorization for its operational use. (4) The process of
confirming that a system, software subsystem, or computer program is capable
of satisfying its specified requirements in an operational environment. Certification
usually takes place in the field under actual conditions, and is utilized to evaluate not
only the software itself, but also the specifications to which the software was
constructed. Certification extends the process of verification and validation to an
actual or simulated operational environment. (5) The procedure and action by a duly
authorized body of determining, verifying and attesting in writing to the qualifications
of personnel, processes, procedures, or items in accordance with applicable
requirements (ANSI/ASQC A3-1978).

Operation and maintenance phase. The period of time in the software life-
cycle during which a software product is employed in its operational
environment, monitored for satisfactory performance, and modified as necessary to
correct problems or to respond to changing requirements.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 9
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE PRODUCTS 1

Delivered to a customer with the documentation which describes how to install
and use the system (may be packaged with hardware).

COTS - are commercial-off-the-shelf (generic) stand-alone systems which are
sold on the open market to any customer.

Customized - systems commissioned by a particular customer and delivered by a
particular contractor.

Product attributes include:

❇ Maintainability - how adaptable is the software to the changing needs of the
customer.

❇ Dependability - how reliable, secure and safe (fault-tolerant) so that no
physical or economic damage will occur in the event of a failure.

❇ Efficiency - how well does the system utilize the system resources.

❇ Useability - includes... learnability, speed of operation, robustness,
recoverability, and adapatability (flexible to satisfy >1 work models).

1 Product Metrics. Product metrics measure aspects relating to quality, customer satisfaction, and difficulty to produce, but "may not reveal anything about how the
software has evolved into its current state." These indicators include: size - LOC, fault density/intensity, documentation, test sufficiency, prediction accuracy, and
customer satisfaction.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 10
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE PROCESS

Four fundamental process activities:

❇ Software specification ❇ Software validation

❇ Software development ❇ Software evolution

Process consists of: Activities Things that are done
Products Inputs and Outputs
Sequencing Relationships among the

activities and products

Present
Phase

Next
Phase

Previous
Phase Adequate basis for

subsequent phases

Compliance with
previous phase
requirements and
products Conformance to

the standards of this phase

Verification and Validation Check

...and how does sequencing work?

What is a software process...

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 11
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

2167A PROCESS MODEL FOR DELIVERY OF CUSTOM HW & SW

System
Require-
ments
Analysis

System
Design

Software
Requirements
Analysis

Preliminary
Design

Detailed
Design

Hardware
Requirements
Analysis

Preliminary
Design

Detailed
Design

Coding and
CSU Testing

CSC Integration
and Testing

CSCI
Testing

HWCI
Testing

Fabrication

Functional
Baseline

Allocated
Baseline

Development Configuration

Product
Baseline

Hardware (HWCI) Development

SDR
SSR

PDR

CDR

PDR

TRR

Testing
And
Evaluation

Production
and
Deployment

System
Integration
And Testing

Software (CSCI) Development

FQR

FCAPCA

FCAPCA

CDR

Reviews

SRR - System Requirements
 Review
SDR - System Design Review
SSR - Software Specification
 Review
PDR - Preliminary Design
 Review
CDR - Critical Design Review
TRR - Test Readiness Review
FCA - Functional Configuration
 Audit
PCA - Physical Configuration
 Audit
FQR - Formal Qualification
 Review

SRR
†

†

† - May be multiple reviews and may be integrated with hardware reviews

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 12
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE PROCESS: WATERFALL MODEL 2

Analysis

Analysis

Design

Implement Test and
Integrate

Measure
Software
Reliability

Retirement

Reliability
Too Low

Repair

Software
Reliability
Knowledge
Development

Data
Collection

Data
Collection

Confirm the
Accuracy of
Predictions

Modeling
Improvement

Operations
and

Maintenance

Concept
Exploration

Requirements

2 Reliability measurement happens in conjunction with testing and integration, before the software is released into operations and maintenance. Reliability-model
development is fed by activities in the requirements, design, repair, and operations and maintenance phases. During reliability-model development, you plan how to use
the selected model, set a reliability objective, and initiate activities to support the level of sensitivity you need for data collection (calendar time, wall-clock time, or CPU
execution time, for example). Reliability data collected from fielded software can be useful for evaluating the accuracy of predictions and recalibrating the reliability model.
The reliability model, which incorporates project-specific constraints, tolerances, and sensitivities, should retain this information so that it yields more accurate measures
when it is reused on future projects [Sheldon 92].

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 13
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE PROCESS: SPIRAL MODEL

❇ Objective setting ❇ Development and validation

❇ Risk assessment and reduction ❇ Planning

Prototype
1

Prototype
2

Prototype
3

Operational
Prototype

Risk
Analysis

Requirements
and

Life Cycle Plan
Concept of
Operation

Software
Requirements

Software
Product
Design

Plan Next Phases

Design Validation
and Verification

Integration and
Test Plan

Development
Plan

Requirements
Validation

Commitment
PartitionReview

Risk
AnalysisRisk

Analysis
Risk

Analy-
sis

Progress Through Steps

Cumulative
Cost

Determine Objectives,
Alternatives,
and Constraints

Evaluate Alternatives;
Identify and Resolve
Risks

Develop, Verify Next
Level Product

Implementation

Integration
and Test

Acceptance
Test

Unit
Test

Detailed
Design

Code

Simulations, Models,
Benchmarks

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 14
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE PROCESS: STACKED SPIRAL MODEL

Risk Management

1) Objectives and constraints 3) Results or outcomes of strategies

2) Risk identification and risk resolution strategies 4) Plans for the next phase and commitment

Risk
Analy-
sis Prototype

1

Requirements
Validation

Software
Requirement

Development
Plan

Requirements Plan
Life-Cycle Plan Concept of

Operation

Prototype
1

Prototype
2

Prototype
3

Requirements
Validation

Development
Plan

Requirements Plan
Life-Cycle Plan Concept of

Operation

Risk
AnalysisRisk

Analysis

Benchmarks

Detailed
Design

CodeUnit
Test

Integration
and Test

Acceptance
Test

Implementation

Integration
and Test

Plan

Design
Validation &
Verification

Operational
Prototype

Risk
Analysis

Progress
Through

Steps

Determine
Objective,

Alternatives,
Constraints

Commitment

Partition

Cumulative
Cost

Evaluate Alternatives
Identify, Resolve Risks

Operational
System

Simulations,
Models, and
Benchmarks

Prototype
3

Risk
AnalysisRisk

Analysis

Prototype
2

Software
Product
Design

Prototyping
Environment

ReviewTestbed/Fielded
 Prototypes

Risk
Analy-
sis

Software
Requirement

Plan
Next Phase

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 15
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SYSTEM VERSUS SOFTWARE V&V

Is the software doing what it
is supposed to do?

Software
Validation

Software
Verification

What the system is supposed to do.

Software development
What the software is
supposed to do.

Requirements
Definition

Is the system doing what it
is supposed to do?

System Development

Software Validation
Testing

System
Definition

System
Validation

Coding and
Component

Testing

Software Design

Software
Requirements

Generation

Integration and
System Testing

Hardware Software
Integration

System Validation
Testing

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 16
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE ENGINEERING INSTITUTE CAPABILITY MATURITY MODEL

Risk

Optimizing

Managed

Defined

Repeatable

Initial

• Focus on process improvement
• Data gathering is automated and used to identify weakest process elements
• Numerical evidence used to justify application of technology to critical tasks
• Rigorous defect-cause analysis and detect prevention
• Focus on process optimization to reduce errors

• Still human-intensive process
• Maintain organization at optimizing
 level

(Quantitative)
• Measured process: estimates/actuals, error-cause analysis
• Minimum set of quality and productivity measurements established
• Process database established & resources to analyze & maintain its data
• Focus on technology management and insertion

• Changing technology
• Problem analysis
• Problem prevention

(Quantitative)
• Process defined and institutionalized
• Software Engineering Process Group established to direct improvements
• Focus on Software design skills, design tracking
• Focus on various types of traceability

• Process measurement
• Process analysis
• Quantitative quality plans

(Intuitive)
• Process dependent on individuals
• Established basic project controls with strength in doing similar work
• Process faces major risk when presented with new challenges
• Lacks orderly framework for improvement
• Focus on collecting various types of "trend" data
• Focus on management and tight project control

(Ad hoc/chaotic process)
• No formal procedures, cost estimates, project plans
• No management mechanism to ensure procedures are followed, tools not
 well integrated, and change control is lax
• Senior management does not understand key issues

• Training
• Technical practices (reviews,
 testing)
• Process focus (standards, process
 groups)

• Project management
• Project planning
• Configuration management
• Software quality assurance

Productivity
& quality

Risk

Level Characteristics Key Challenges Result

5

4

3

2

1

To make orderly improvement, development and maintenance organizations should view their process as one that can be controlled,
measured, and improved. This requires that they follow a traditional quality-improvement program such as that described by W. E.
Deming. For software, this involves the following six steps:

1. Understand the current status of their process.
2. Develop a vision of the desired process.
3. Establish a list of required process-improvement actions in priority order.
4. Produce a plan to accomplish these actions.
5. Commit the resources and execute the plans.
6. Start over at step 1.

The SEI has developed a framework to characterize the software process across five maturity levels. By establishing their organization's
position in this framework, software professionals and their managers can readily identify areas where improvement actions will be most
fruitful. Many software organizations have found that this framework provides an orderly set of process improvement goals and a helpful
yardstick for tracking progress.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 17
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

COMPUTER BASED SYSTEMS ENGINEERING

A system is a collection of interrelated components that work together to achieve
some objective.

Complex relationships among system components involve emergent properties
such as:

1) Deadlock, liveness, and safety

2) Reliability and performance

3) Usability

Understands the environment within which the system will be operating

1) Domain knowledge (e.g., Air traffic control)

2) For example embedded real-time systems (see next slide)

4) Reasoning about system models

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 18
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

EMBEDDED REAL-TIME SYSTEM ENVIRONMENT

 The lag time or response time of the controller is determined by the (physical)
 nature of the processes in the plant.
 The primary goal is to ensure the correct behavior of the plant.
 This is achieved by designing a controller that will interact with the plant in such a
 way that the correct functioning of the plant is ensured.

Measured variables

Control SignalsController Plant
(Software) (Environment)

Disturbances

The "open-loop" behavior of the plant (without the controller) is usually
unsatisfactory in some important respect.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 19
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

REASONING ABOUT SYSTEM MODELS

System Simulation [SS]

Environment Simulation [ES]

Hardware

Simulation-based
Analysis

Software

Refinement by changing
scenarios and verifying a given
candidate architecture (i.e., system
model).

Conceptual Model

Physical Model

Controls activities which sense and affect the
dynamics of the functional description.

E.g., subsystems, modules, channels,
physical links, storage components....

• Generate external events, change the truth values of
 conditions, update variables and other data elements.
• Trigger state changes in controllers, activate/deactivate
 activities, and possibly cascading activities.

Behavioral Model
• Visible part of the system,
• Reactive and dynamic (i.e.,
 states, transitions, events,
 conditions, and time).

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 20
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

FRAMEWORK FOR REASONING ABOUT SYSTEM MODELS

Various views of the system are needed to describe its intended and actual operation [Harel 86].
These views are relevant at each stage of the system development.

The functional view shows the system as a set of entities performing relevant tasks. Usually the
description of the tasks is abstract.

The structural view shows how the system is put together: the components, interfaces, and flow
between them. This view also shows the environment and its interfaces, and information flows
between it and the system. Ideally the structural view is an elaboration of the functional view.

The behavioral view shows the way the system will respond to specific inputs: what states it will
adopt, what outputs it will produce, what boundary conditions exist on the validity of inputs and
states. This includes a description of the environment that produces the inputs and consumes the
outputs.

Action-Semantics View describes the domain of inputs, range of the outputs, and the meaning of
the input-output transformation during each state transition (including side effects, and
accuracy). Action-semantics aids in validation of the implementation (as per requirements).

Views of
the

System

Specification Design Implementation

Functional

Structural

Behavioral

Action-Semantic

Testing

X

X

X X X

X

X

XX

X

Stages of development

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 21
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SYSTEMS ENGINEERING PROCESS

Distinctions from Software Engineering Process

1) Interdisciplinary involvement

2) Reduced scope for iterations between phases

3) Usability

System requirements definition: functions, properties, characteristics

System design: partition requirements, identify sub-systems and assign
requirements, specify sub-systems functionality, define sub-system interfaces

Sub-system development: design and implementation

System integration: incrementally add new sub-systems into the system at large

System installation must address: environment (platform, OS), human resistance,
coexistence with other systems / versions, physical installation problems

System evolution: evaluate proposed changes, decide to fix or replace, etc.

System decommissioning: taking the system out of service
CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 22
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

PROJECT MANAGEMENT

Motivation: Software is intangible
No standard production process
Typically software is over budget and behind schedule (late)

Activities:

1) Project costing, planning and scheduling

2) Risk analysis and resolution

3) Project monitoring and reviews

4) Personnel selection and evaluation

5) Report writing and presentation

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 23
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

REQUIREMENTS AND SPECIFICATION

Requirements engineering

Requirements analysis

System models

Requirements definition and specification

Software prototyping

Formal specification

Algebraic specification

Model-based specification

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 24
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

REQUIREMENTS ENGINEERING

Four principle stages in this process:

1) Feasibility study 3) Requirements definition

2) Requirements analysis 4) Requirements specification

Problem
analysis

Product
description

Relatively
complete
understanding
of
requirements

• Delineating constraints
• Refining constraints
• Trade-off between conflicting constraints
• Understanding the problem
• Expanding information

Consistent and
complete
statement of
software
requirements

• Congealing
• Resolve conflicting views
• Eliminate inconsistencies
• Eliminate ambiguities
• Eliminate overlapping requirements

Seed idea

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 25
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

REQUIREMENTS ENGINEERING ISSUES

First phase of large-scale software system development.

Requirements must be written at different levels of detail for different readers.

Organized for presentation to customers, users and engineers!

Requirements validation “ensures” that the system will meet the customers
needs:

1) Verifiability (is the requirement as stated testable?)

2) Traceable (is the origin of the requirements clearly stated?)

3) Comprehensible (is the requirement properly understood by procurers or end-users?)

4) Adaptable (can the requirement be changed without large-scale effects?)

Requirements always change / evolve: Some are enduring and others are volatile
(e.g., mutable [due to environmental changes], emergent [due to customer
understandings], consequential [organizational processes are changed] and
compatible [with other business systems or processes]).

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 26
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

REQUIREMENTS ANALYSIS

Is an iterative process which involves domain understanding, requirements
collection, classification, structuring, prioritization and validation.

Viewpoints may be based on sources or sinks of data, different models of the
system expressed using different notations or external interaction with the
system.

Methods include a set of activities, associated notations, rules for governing the
use of notations, guidelines for defining good practice and standard forms or
reports used to document the analysis (e.g., viewpoint-oriented method is based
on data and control requirements for services delivered to a particular
viewpoint).

Important to define the boundaries between a system and its environment.
Consequently, as part of the analysis process, the system’s environment or
context is studied.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 27
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SYSTEM MODELS

An abstract view of a system which ignores some system details.
Complementary system models can be developed which present different
information about the system.

Data-flow diagrams model the data processing. The system is usually modeled
as a set of data transformations with functions acting on the data.

Semantic data models describe the logical structure of the data.

Object models:

1) Describe logical entities, classification and aggregation

2) Combine data with processing models

3) Describe interfaces in an abstract way

3) End users find hard to understand

Data dictionary is an important tool for maintaining information about the system
entities throughout the lifetime of a project. Supports any kind of system model.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 28
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

ITERATIVE REFINEMENT OF SYSTEM MODELS

Specify → Model → Evaluation → Feedback and refinement

An Example: CSP → Petri nets → Markovian analysis → Annotate the
specification

Evaluate

Model 0.0 Model n.0

Best Design

Model
Development

Evaluate

Model 1.0

Validate Validate Validate

Prototyping

Refinement
 n

Refinement
 1

User
Needs

Simulation
Mathematical (closed form stochastic analysis)

Testbed

Iteratively add capabilities and
enhancements with concomitant evaluation

Requirements
Specification

Design
Specification

Evaluate

Adding details

Further analysis
of details

CSP specification level

Stochastic Petri net level

Markovian analysis

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 29
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

 APPROACH
SPECIFICATION AND ANALYSIS FOR DEPENDABLE SYSTEMS

Unified
Design
Model

Increasing

User System Designer

Building Block Model (Top Level)
Functional Specification
Design Implementation Model

Analytical Model
(Petri Nets, Data
Flow, Markov)

Analytical Analysis
 Behavior
 Real-time Performance
 Reliability

Simulation of
candidate software
architectures

Simulation Analysis
 Behavior
 Real-time Performance
 Reliability

Framework –Specification, Design, and Refinement

Functional Specification -> Design Implementation Model -> Simulation

level of fidelity

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 30
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

APPROACH OBJECTIVES

Overall goal is to identify strengths and weaknesses of a set of candidate
software architectures.

Convert a formal description of the system into the information needed for
simulation.

Converting a formal description of a system into the information needed for a
simulation

Develop a model which can predict system behavior as a function of observable
parameters.

• Performance analysis - worst case latencies, system overhead as a function of workload,

recovery performance, etc.

• Reliability analysis - probability of system failure / mission time.

Carefully enumerate modeling assumptions.

Estimate and measure model parameters.

Solve the model for specific values of the parameters.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 31
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

DESIGN IMPLEMENTATION MODELING FRAMEWORK

Performance
Model

Select initial HW
Configuration (top-Level)

Choose Candidate
Architecture(s)

Choose Candidate
Architecture(s)

 Rules for decom position
 Parallel / se quential / pipeline components
 Process ing / communication workload

 Preliminary resource a llocation
 Number of pro cessors required
 Speedup ov er sequential
 Sensitivity to proc spd, comm bandwidth,

 workloads, and number of processors

Architectural Descriptions
 Processing speed / Comm bandwidth
 Number of pro cessors / Comm links
 Processing overhead (predicted)
 Fault tol erant mechanisms

Non-functional
Requirements

Non-functional
Requirements

Reliability
Model

Functional
Specification

Design
Implementation

Model

Functional
Specification

Design
Implementation

Model

Based on the DAHPHRS LaRC study†

Framework –Specification, Design, and Refinement
Build-Up –Integration and Experimentation

λ 's

Refine workload
characterization
(Extract key discrete events)

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 32
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

EXAMPLE:
HOW THE GCS SIMULATION AND SPECIFICATION EVOLVED

GCS: Guidance and Control Software

Start with an external view of the target vehicle system.

GCS is decomposed in a subsystem block diagram.

Simulation model is abstracted and specified using a simulation tool (e.g.,
SES/Workbench).

Processing rate schedule is developed from timing analysis results

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 33
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

EXAMPLE TARGET SYSTEM: ON-BOARD NAVIGATIONAL SOFTWARE
VIKING MARS LANDER

X
Z

Y

v
v

v

X p

Z p

Yp

Phase 3

Xv

Z v

Yv

Phase 4
Xv

Zv

Yv
Drop
height

X vZ v

Y v

Engines begin warmupPhase 1

X v

Z v

Y v

Parachute decent

Phase 2

Xv
Z v

Y v

Chute release
(terminal decent begins)

Guidance and Control Software:

1. Provide guidance and engine control of the vehicle
 during its terminal phase of descent onto a surface.

2. Communicate sensory information about the vehicle
 and its descent to some other receiving device.

Xv

Phase 5 Zv
Yv

Touch
down

X p

Z p

Yp

Typical Terminal Decent Trajectory

Maintains
decent with
engines on

Free-falls
to surface

When the engines are hot and the chute has been
released, the GCS performs attitude correction
maneuvering to follow a controlled acceleration
decent until a predetermined Velosity-Altitude
Contour.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 34
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

EXAMPLE: GCS LEVEL 1 AND LEVEL 2 SPECIFICATION

1
INIT_GCS

Initialization
Data

GUIDANCE_STATE

RUN_PARAMETERS

SENSOR_DATA

CONTROL and TELEMETRY
OUTPUTS

Level 1 Specification
3.1 PROCESS 0.GCS

Level 2 Specification
4.1 PROCESS 2.RUN_GCS

ASP GSP TSP ASRP TDLRSP TDSP

RUN_PARAMETERS

SENSOR_OUTPUT

SENSOR_DATA

GUIDANCE_STATE

CRCP AECLP RECLP

CP
CONTROL and TELEMETRY

OUTPUTS
Packet

GP

2
RUN_GCS

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 35
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

REQUIREMENTS DEFINITION AND SPECIFICATION

Definition is for users and procurement and is organized / written in a natural
language, tables and diagrams.

Rationale provides understanding of the consequences with respect to changes

Must be clear and verifiable.

Requirements specifications communicate a precise and unambiguous description
of system functionality.

Non-functional requirements - may constrain both the software process and the
software product.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 36
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE PROTOTYPING

Developed to give the end user a concrete impression of the system capabilities

Establishes and validates system requirements.

May be Throw-away or Evolutionary....

System structure in a evolutionary prototype becomes corrupted by constant
change. Changes and/or updates become increasingly difficult.

Initially, develop the parts you understand least or best depending on the type of
prototype approach used: Throw-away or Evolutionary (respectively).

Rapid development is important (leave out some functionality and details, relax
the non-functional constraints).

Very useful for such application fragments as Graphical User Interface (GUI
pronounced “goo-ee”).

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 37
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

FORMAL SPECIFICATION

Compliment informal specification techniques by removing areas of doubt (since
they are precise and unambiguous).

Forces an analysis of system requirements at an early stage.

Unlikely to be cost effective in foreseeable future for the typical interactive
application.

Most applicable in the development of safety critical systems and standards.

$$$ Specification Program

Informal
requirements

What does this program do?

Does this program satisfy
this specification?

SpecifierCustomer

Implementer

Client

Verifier

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 38
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

FORMAL SPECIFICATION SUPPORTS ANALYSIS

Convert a formal description of a system into the information needed for
simulation to predict system behavior as a function of observable parameters.

How do the
externals impact
the performance
and reliability?

Functional
Specification of

a Software
System

Hardware

Network

External
constraints
on the
system

Observe the
effects of each.

Topology

Fault tolerance

Scheduling/OS

Communications

Partitioning &
resource allocation

1. What are the critical elements of the description which are of interest?

2. If a stochastic simulation (discrete event) can be used to model the
system then can it also be used to validate performance & reliability goals?

3. What features of the system should be simulated and what pieces must
be provided by the specifier?

4. What levels of granularity can be defined with respect to different
performance and reliability requirements?

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 39
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

FORMAL SPECIFICATION
SUPPORTS HIGH ASSURANCE SYSTEM DEVELOPMENT

Informal requirements -> formally specified -> abstract model -> real world

Informal
Requirements

Formal
Specification

Real World

The cloud symbolizes the customer's informally
stated requirements and the oval symbolizes a
formal specification of them. This mapping from
informal to formal is typically achieved through an
iterative process not subject to proof.

The cloud symbolizes the real world and the oval
symbolizes an abstract model of it. The formal
specification language encodes this abstraction to
describe for example, properties of real arithmetic
in a way that resolves the fact that not all real
numbers can be represented in a computer.

Abstract Model

∀ x P (x) ⇒ Q (x)

"The Weapon System shall
be able kill tanks from a
distance of 50nm...."

Engineering
requirements that
depend on system
models

Structural and
behavioral
requirements
that are easily
formulated
using logic

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 40
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

ALGEBRAIC SPECIFICATION

Is a particularly appropriate technique when interfaces between software systems
must be specified.

Involves designing the operations on an abstract data type or object and
specifying them in terms of their interrelationships.

Consists of 2 formal parts: A signature part (operations and their parameters are
defined); and an axiom part (relationships between the operations are defined).

Formal specifications are (should be) associated with informal descriptions to
make the formal semantics more understandable.

Complex formal specifications are constructed from simple building blocks.
Specifications can be developed from simpler specifications by instantiating a
generic specification, incremental specification development and specification
enrichment.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 41
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

MODEL-BASED SPECIFICATION

Relies on building a model of the system using mathematical entities such as sets
which have a formal semantics. Z (pronounced “zed”) is based on typed sets.

Z specifications consist of a mathematical model of the system state and a
definition of operations on that state.

A Z specification is presented as a number of schemas, where a schema
introduces some typed names and defines predicates over these names. Schema
in Z may be distinguished from surrounding text by graphical highlighting.

Schemas are combined and used in other schemas. The effect of including a
schema A in schema B is that B inherits the names and predicates of A.

Operations may be specified in Z by defining their effect on the system state. It
is normal to specify operations incrementally and then combine the specification
fragments to produce the complete specification.

Z functions are sets of pairs where the domain of the function is the set of valid
inputs. The range is the set of associated outputs. If ordering is important,
sequences can be used for ordering (sets are unordered).

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 42
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE DESIGN

Software design principles - activities and decomposition objectives.

Architectural design - deriving an overall structural model of the system.

Object-oriented design - a means of designing with information hiding.

Function-oriented design - identify functions which transform there inputs to
create their outputs.

Real-time systems design - hardware and software co-design, where correctness
depends on both timeliness and integrity of outputs.

User interface design - a user centered cognitive process.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 43
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE DESIGN PRINCIPLES

Design is a creative and innovative process (good judgment and flair are
required)

Main activities:
Architectural design - subsystems identified, defined and documented
System specification - subsystem services and constraints
Interface design - define common subsystem boundaries
Component design - services allocated to components
Data structure design - detailed elaboration of supporting structures
Algorithm design - detailed elaboration

Functional decomposition involves modeling the system as a set of interacting
functional units. Object-oriented decomposition models the system as a set of
objects where an object is an entity with state and functions to inspect and
modify that state.

Function-oriented and object oriented design are complementary rather than
opposing design strategies. Different perspectives may be applied at different
levels of abstraction.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 44
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE DESIGN: COHESION

Cohesion is a measure of how closely the parts of a component relate to each
other.

1) Coincidental cohesion - unrelated parts bundled together!

2) Logical association - related components bundled together (e.g., input
and error handling).

3) Temporal cohesion - all elements are activated at a single time.

4) Procedural cohesion - elements in a component make up a single control
sequence.

5) Communication cohesion - All elements of a component operate on the
same input -> output.

6) Sequential cohesion - Output from one element in the component serves
as input for another element.

7) Functional cohesion - each component part is necessary for the
execution of a single function.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 45
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE DESIGN: COUPLING AND MAINTAINABILITY

Coupling is a measure of the strength of component interconnections. Designers
should aim to produce strongly cohesive and weakly coupled design.

1) Tightly coupled modules use shared variables or exchange control information (common and
control coupling).

2) Loose coupling is achieved by ensuring that details of the data representation are held within a
component.

3) Component interface with other components through a parameter list.

4) If shared information is necessary, the sharing should be limited to those components which
are need access to the information.

5) Globally accessible information should be avoided when ever possible.

Maintainability is an important design quality attribute. Maximizing cohesion
and minimizing the coupling between modules / components makes them easier
to change. Understandability and adapatability are also important for
maintainability.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 46
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

ARCHITECTURAL DESIGN

Deriving an overall structural model of the system which identifies sub-systems
and their relationships. Architects may also design a control model for the
system and decompose sub-systems into modules.

Large systems are usually heterogeneous and incorporate different models are
different levels of abstraction.

Decomposition includes: 1) repository models, 2) client-server and 3) abstract
machine (or layered) models.

Control models use centralized control and event models.

Modular decomposition models include data-flow and object models.

Domain specific architectural models are abstractions over an application
domain. They may be generic models which are constructed bottom up from
existing systems or reference models which are idealized, abstract models of the
domain.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 47
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

OBJECT-ORIENTED DESIGN

A means of designing with information hiding. Information hiding allows the
information to be changed without other extensive system modifications.

An object is an entity which has a private state. It will have constructor and
inspection functions allowing its state to be inspected and modified. The object
provides services (operations using state information) to other objects.

Object identification is a major problem (consider the nouns [objectives] and
verbs [operations]. Otherwise identify tangible entities using behavioral and/or
scenario analysis.

Object interfaces must be defined precisely (use of an OO programming
language)

A hierarchy chart showing objects and their sub-objects is developed.

An object interaction network may be created to show which objects call on the
services of which other objects.

Objects may be implemented sequentially or concurrently.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 48
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

FUNCTION-ORIENTED DESIGN

Relies on identifying functions which transform their inputs to outputs and share
some global system state.

Business / transaction processing systems are naturally functional.

Process identifies transformations and decomposes those functions into sub-
functions describing the operation and interface of each including flow of control.

Data flow diagrams (DFDs) are a means of documenting end-to-end flow.
Structure charts represent hierarchical organization. Control can be documented
using PDL.

DFDs can be implemented directly as a set of cooperating sequential processes.
Each transform in the DFD is a separate process (which may realized as a
separate procedure in the sequential program.

Often a heterogeneous (functional / object-oriented) approach is used.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 49
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

REAL-TIME SYSTEMS DESIGN

Such systems are responsive / reactive in relationship with external events.
Correctness is a function of both logical and timing accuracy.

Delay partitioning of a design into hardware and software until as late as possible
in the design process.

Architectural design involves organizing the system as a set of interacting,
concurrent processes.

Associate a process with each class of sensor or actuator device. Other
coordination processes may also be required.

A real-time executive is responsible for process and resource management (e.g.,
a scheduler/dispatcher decides which process to run based on their priority).

Monitoring and control systems periodically poll the sensors to acquire a
snapshot of the systems environment and issue commands to the actuators.

Data acquisition systems are developed around the consumer/producer model.
CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 50
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

PHILOSOPHIES AND GENERAL PROPERTIES OF
REAL-TIME SYSTEMS

Event Driven

Resource Limited

Dynamic schedule

Time Driven

Resource
Adequate

Static Schedule

Asynchronous

Synchronous

Based on the requirements
of a given system there is
generally a strong need for

(1) reproducible determinism,

(2) determinism that only
guarantees meeting
deadlines, and

(3) priority based solutions
up to a very general means
of providing time-value or
benefit accrual based
mechanisms.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 51
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

USER INTERFACE DESIGN

A user-centered process to develop an interface in which humans interact.
Facilities to help users with the system and recover from their mistakes.

Menu systems provide a low learning overhead.

Graphical and digital information is combined and displayed to the user. Color
must be used sparingly (many people are color blind).

Two kinds of help are “Help! I’m in trouble” and “Help! I need information.”

Error messages should not suggest the user is to blame. They should offer
suggestions on how to repair the error.

User documentation should include beginner’s and reference manuals. Separate
documents for the system administrators should be provided.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 52
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

DEPENDABLE SYSTEMS

Software reliability - most important dynamic characteristic (cost of failure)
1) Software reliability metrics and specification.

2) Statistical testing.

3) Reliability growth modeling.

Programming for reliability
1) Fault avoidance and fault-tolerance.

2) Exception handling and defensive programming (against corrupted data or links).

Software reuse
1) Software with and for reuse.

2) Generator based reuse.

3) Application system portability.

Safety critical software
1) Primary and secondary safety critical software categories.

2) Hazard analysis is a key activity in the safety specification process.

3) Safety proofs show that an identified hazard can never occur.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 53
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

TESTING, VERIFICATION AND VALIDATION

The testing process
1) Unit/module, sub-system, system testing and finally acceptance testing

Test planning and strategies
1) Requirements traceability, tested items, testing schedule and recording procedures.

2) Hardware and software testing requirements and constraints

3) Top-down / bottom-up testing, thread testing, stress testing and back-to-back testing.

Defect testing
1) Black-box / white-box testing

2) Interface testing.

Static verification
1) Program inspections and mathematically based verification

2) Static analysis tools (e.g., Cyclomatic complexity).

3) Cleanroom software development.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 54
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

COMPUTER-AIDED SOFTWARE ENGINEERING

CASE classification - According to functionality, activities and task size
supported.

Integrated CASE - Five levels of integration (platform, data, presentation,
control and process integration).

The CASE life-cycle - Six stages: procurement, tailoring, introduction, usage,
evolution, and obsolescence.

CASE workbenches - An integrated set of tools intended to support a coherent
software process activity (e.g., design or management). Used for programming,
analysis and design, testing, etc.

Software Engineering Environments - Provides support for a wide range of
software process activities. Distinguish it from other CASE systems which
provide less comprehensive support. ECMA PCTE is widely accepted as a
framework defining Software Engineering Environment services and interfaces.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 55
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

SOFTWARE ENGINEERING ENVIRONMENT INSTANCE

Life Cycle
Database

Testing, V&V,
Quality

Assurance Tools

Project Mgmt
Tools

Configuration
Mgmt Tools

Framework
Administration

Tools

Post Deployment
Software Support

Tools

General
Support ToolsPrototypingTools

Design Tools

Coding Tools

Requirements
Definition Tools

Integrated Life Cycle Toolset

Multiple User Roles

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 56
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

MANAGEMENT

Managing people

1) Software management is principally concerned with people.

2) Small cohesive development groups and good communication is promoted.

Software cost estimation

1) Based on factors that affect productivity and quality (and possibly risk management).

2) COCOMO costing model accounts for project, product, HW and personnel attributes.

Quality management

1) Process quality assurance, reviews standards.

2) Documentation standards, software metrics and product quality metrics.

Process improvement

1) Process and product quality are tightly related.

2) Process analysis, modeling and measurement.

3) SEI process maturity model.

3) Proposed process classifications: informal, managed, methodological & improving.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 57
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

INPUTS/OUTPUTS OF PROCESS MANAGEMENT

Control

Output

Schedules
Budget

Critical Capabilities (&Tools)
Requirements Size and Volatility

Cost
Size
Time spent
Quality
Measures

Input
Build the System

with
Software Integrity

Personnel

Number of People
Experience
Vendor Reliability

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 58
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

OVERVIEW OF PROCESS MANAGEMENT METHOD

• Statement of Work
• Reporting requirements
 from senior management

Example Measures

- Distribution of defects
- Productivity of tasks
- Plans vs actuals
- Resource allocation

Design
Revisions

Design

Refinement of
Integration

Plan

Software

Problems with
early versions

Design Defects

Requirements

Process metrics with feedback for control

Define &
Design

Build, Test
&

Integrate

Manage
Process/product
Metrics database

Quantitatively Managed Process with Feedback

A top-level approach for metric application enables feedback control of the development process.

Optimizing: Measure Effectiveness of Techniques, Tools, Methods and the improvement of one
process over another.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 59
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

PINPOINTING AND MANAGING PROCESS AND PRODUCT METRICS

Pinpoint How, When and Where to Apply Metrics for a . . .

Design Method
Inspection

Criteria

Test Plans &
Target

Environment

Critical
Capabilities
and
Require-
ments

Requirements have:
Complexity
Completeness
Level of detail

Design has:
Complexity
Completeness
Level of detail

Process and
Product measures
i.e., Reliability

Quality
Robustness
Performance
measures

Prototype
and/or
Pilot Project
Software
Product

Tested
Modules

System
Design &
Schedule

Plan
Define
Design

Implement
(code and
unit test)

Integrate

. . . Quantitatively Managed Process With Feedback

This example suggest the details of inputs, outputs and control for each activity in a defined process.
Because the activities are delineated and distinguished from one another, the products from each
activity can be measured and assessed.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 60
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

EVOLUTION

Software maintenance

1) Corrective, adaptive and perfective types.

2) Depends on a process, documentation, program evolution dynamics.

3) Maintenance costs are usually the greatest (e.g., 60%) cost component.

4) Maintainability measurement is an important issue.

Configuration management

1) Planning, policies and tools to support change management.

2) Version and release management.

3) System building.

Software Re-engineering

1) Source code translation and program restructuring.

2) Data re-engineering may be needed due to inconsistent data management.

3) Reverse engineering derives the systems design and specification from its source code.

CS 330 Software Engineering I University of Colorado at Colorado Springs - Page 61
Instructor: F. T. Sheldon, Ph.D. 1998 F.T. Sheldon

INSTRUCTORS PROFESSIONAL BACKGROUND

Masters Thesis: A New Model for

Predicting Software Reliability

(See IEEE Software July 1991)

Schools Attended:

 Saint Johns University

 University of Minnesota - College of Biological Sciences

 BS MicB - 1977

 University of Minnesota - Institute of Technology

 BS CS - 1983

 University of Texas at Arlington - School of Engineering

 MS CS - 1988

 PhD - 1996

1983 1988
1984

1997

MS CSE
Job in Texas

TodayBS CS NASA Fellowship

PhD Disertation: Specification and

Analysis of Stochastic Properties for

Concurrent Systems Expressed Using

CSP

Some Employers:

 University of Minnesota - Medical School

 University of Minnesota - Institute of Technology

 Minnesota Department of Transportation

 Texas Instruments - Defense Systems Electronics Group

 General Dynamics - Fort Worth Division

 University of Texas at Arlington

 University of Colorado

TESAS INSTRUMENTS GENERAL DYNAMICS PHD DISERTATION

1993 1996

Assistant Perfessor
UCCS

