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1 Introduction
This manual is a reference specification intended to provide the necessary information to enable a
user to understand how to run the CSPN software tool.  There is a ReadMe, Source-lst, Makefile
and two basic examples included with the source files.  There are additional components intended
for use with CSPN, which are the property of other researchers and/or organizations.  See the
Source-lst for third party software components that are needed to make the CSPN tool fully
featured (most are freely distributed [except SPNP]1.  CSPN for all intensive purposes runs on
Unix.  At the time of this writing a PC version was being considered.

1.1 Intended Audience
The intended audience includes the beginner who has had introductory courses in software
design/analysis and software engineering.  This manual briefly covers some of the language and
symbol conventions commonly used in the software design area.  For more information, the
reader is directed to the referenced documents in the bibliography.

1.2 Applicability
This software userÕs manual version 1.0 covers version 3.0 of the CSP-to-Stochastic-Petri-Net
(CSPN) tool, which runs under Solaris 2.5.1.2

1.3 Purpose
The purpose of this software userÕs manual is to:

•  Explain to beginners how to use the CSPN tool to convert specifications into Stochastic
Petri-net (SPN),

•  Provide information with respect to the prior version of CSPN in regards to
enhancements,

•  Provide background material with respect to stochastic modeling and analysis,

•  Enumerate the current set of features (old and new) including menus and possible
execution scenarios,

•  Describe the basic P-CSP language primitives and formally define the P-CSP grammar
(using Backus-Naur Form, BNF),3

•  Exemplify the automated process which is supported by CSPN,

•  Exemplify model creation using P-CSP.

1.4 Document Usage Description

This manual provides a tutorial on how to use CSPN.  Chapter 2 provides a general
                                                
1 SPNP is stochastic Petri Net Package and is available from Professor Kishor Trivedi (kst@ee.duke.edu).
2 CSP stands for Communicating Sequential Processes [Hoare 85].  This tool is written in ANSII C, and will run on most
versions of Unix (it was developed under Solaris 2.5.1, and has been run on DEC’s OSF/1 Unix.  CSPN is planned to run on
the Wintel (in process) and Macintosh platforms.
3 P-CSP is the Parsable CSP-based specification language used by CSPN for formal specification based stochastic
analysis and design.
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overview of how to run the CSPN tool.  Chapter 3 goes into detail on the CSP-based language
primitives and how to map from CSP to Petri nets using canonical translation rules.  Chapter 4
covers some CSPN mechanics to familiarize the user with how the translation process works.
An example run of the CSPN tool is covered in Chapter 5, to demonstrate some of the
capabilities of CSPN.  Following Chapter 5, we have listed some reference documents for those
interested in further study in this area.  Appendix A lists the available parameter options that the
user can use to perform analysis and design of the specification.

1.5 Conventions
The symbols and conventions used in this manual are described in Appendix B, CSP-Based
Grammar and Constructs, and Appendix C, CSP to Petri Net Translations.

1.6 Problem Reporting Instructions
Forward any comments or suggested changes to Dr. Frederick T. Sheldon via e-mail:
sheldon@cs.uccs.edu or via regular mail: University of Colorado at Colorado Springs, Dept. of
Computer Science, Attn: Dr. Frederick T. Sheldon, P.O. Box 7150, Colorado Springs, CO 80933-
7150.

2 Using CSPN
In this section, we will cover

•  An overview of the CSPN tool (Section 2.1),
•  The translation phases of using the tool (Section 2.2),
•  How to run the tool (Section 2.3), and
•  The data structures that the tool uses (Section 2.4).

2.1 CSPN Tool Overview
The common steps used in the methodology for specification and analysis of system modeling
are listed in Table 1.  The CSPN tool augments this process by automating some of these steps.

 TABLE 1.  METHODOLOGY: STEPS FOR SPECIFICATION AND ANALYSIS

 Step  Description of steps used in the approach.

 1.  Abstract the critical elements of the requirement specification and formulate a CSP specification
for the system under study.

 2.  Translate between CSP and Stochastic Petri nets.

 3.  Assign performance and reliability parameters among subsystem components.

 4.  Analyze the Petri nets for stochastic properties [using SPNP] (validate performance and reliability
goals using stochastic system models).

 5.  Decide what features of the system should be changed to improve the system's reliability (and/or
other stochastic properties, e.g., performance).

 6.  Augmentation:  relate stochastic properties back to top level (CSP) specifications (e.g., failure
rates, service rates, error handling).

 7.  Understand the effect these non-functional requirements have on cost.

The core augmentation to existing approaches is provided by the CSP-based grammar and
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canonical CSP-to-Petri net translation rules for process composition and decomposition.  The
translation rules are codified in the CSPN tool.  In brief, the mechanism consists of decomposing
individual CSP constructions into canonical Petri net structures (see Appendix C).  The elemental
structures are linked together in a hierarchical fashion according to their adjacency and nesting
within the CSP specification (see Figures 4-7).  Once CSPN has created this network of linked
structures, it traverses the net and expands the process descriptions, which are represented as
sub-Petri nets, into larger and larger nets (see Figures 6-7).  Also, as CSPN decomposes the CSP
constructions, it identifies and records service and failure rate annotations, which are later
incorporated in the SPNP specification file.  When CSPN encounters failure annotations (and the
"-f" command line option is set), it creates supplemental failure transitions.  After the
preliminary structure of the Petri net is complete, CSPN must reconcile synchronization points
because CSP input/output actions must rendezvous at a particular point which is translated into
a transition that is named by the message that is sent/received.  There are two different
synchronization translations possible (blocking and non-blocking, see Figure C-4).  CSPN finally
generates the Petri net graphic specification and an SPNP Petri net specification file named
"<fn>_spnp.c" (fn is the name of the input file).  All of this process occurs at various levels of
user controllable interaction, as will be described later in this document.  In essence, the approach
provides for systematic and automatic translation and subsequent augmentation (e.g., failure
rates, service rates, and deadlines) of the resultant Petri nets for assessing different candidate
design specifications:

•  Formally (as provided by the grammar) relating stochastic parameters back to the
specification level;  

•  And analyzing the stochastic Petri nets using the SPNP tool [2-6, 18].

The CSPN tool is currently textual based, but future work will provide a graphical interface.
The initial specification and parameterization work must be completed using a text editor.
Viewing the Petri net's distribution of places and transitions as a graph, after a translation, is
accomplished by setting the "-d" (for dot) on the command line.

2.2 Translation Phases of the CSPN Tool
There are four basic activities (parts) involved in the context of Figure 1 (bottom half).  The first
part (1) involves the specification phase.  The second part (2-7) involves running the CSPN tool
which will invoke any of the set of available command line options defined in Table 2, and the de-
/composition algorithms (translation codes).  The third part (8-10) is interacting with CSPN to
direct how the SPNP analysis is run (setting the SPNP run parameters) and to parameterize the
elements of the translation (e.g., assign rates and probabilities to the Petri Net transitions) (see
Appendix A).  The fourth and last phase (11-12) concerns the structural and stochastic analysis
of the Petri net.  Structural analysis involves viewing the distribution of places and transitions of
the graphical representation of the Petri net.  The stochastic analysis involves running SPNP to
derive dependability and performance results based on the prior phase of parameterizing the
model and relating the results to the graph and back to the original specification.  The SPNP
specification file may be edited to finely tune the characteristics of the SPNP specification prior
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to running the stochastic analysis.  Once SPNP is run, the results can be considered in the
process of conducting further analysis.  
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Figure 1.  Translation phases of CSPN (top: general phases, bottom: detailed activities).

In viewing Figure 1 (bottom half), note that the following eight steps occur during the
translation process: (1) Scanning and Parsing  (action rules embedded in the parser enable CSPN
to capture the semantics of the specification),  (2) Decomposition (allocating/scoring a
coincidence matrix for each CSP element and the recording of any annotated service rates and
probabilities),  (3) Composition  (combining elemental coincidence matrices and building their
requisite process lists),  (4) Synchronization (resolution or combining of message links),  (5)
Failure annotations  (if active, an appropriately annotated process is augmented with a failure
transition), (6) Resolving recursion (assumes tail recursion and involves finding and linking loop-
back arcs as well as breaking tail recursive loops), (7) Synthesis phase (takes the system
coincidence matrix and creates the SPNP Petri net specification file during an interactive session
with the user), and (8) Filter (removes special characters inherited from the CSP specification
that are not valid in an SPNP specification) and graphics (creates a digraph specification net list
that is later compiled using dot to produce an embedded postscript graphic).  In general, Figure 1
shows the various translation phases and the use of SPNP as it applies to this approach.
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 TABLE 2.  LISTING OF THE CSPN COMMAND LINE OPTIONS.

  Option Description
  -a<number> Rate for return to initial marking from absorbing markings (default is 0.000000).
  -d Set to generate a "dot" graphics file.  Dot uses this digraph specification file to generate the

graphical representation of the Petri net.
  -f Used to generate failure transitions into the filename_spnp.c file.  This option enables

detection of failure annotations and causes interactive inputs with the "-o" option specified.
  -F Set to invoke the filter which will replace the 3 special characters (?,!,:) in the

filename_spnp.c with SPNP compliant characters (_i_, _o_, and _ respectively).
Otherwise, SPNP will not compile the input file.  Valid only when the "-o" option is used.

  -j Set to generate a "vgj" graphics file.  VGJ uses this digraph specification file to generate the
graphical representation of the Petri net.

  -i<number> Number of iterations used by SPNP (default is 2000).
  -n Set to enable a network list file.  This file shows how CSPN has interpreted the structural

aspects of the CSP specification.
  -o<name> To generate the SPNP input specification file (filename_spnp.c) this option    must   be

specified ("name" is optional and the default used is the tool name "cspn").
  -p<number> Set floating point precision used by SPNP (default is 0.000001).
  -P Set to enable selection of priorities for individual transitions (the default is none).
  -r Use the default reward functions in the output (allow interactive choice).
  -s Use the default service rates for timed transitions.  If no service rate is specified as an

annotation, then CSPN will use 0.1.
  -t Set to generate a symbol table file.  This file will contain all the data recorded for each

element (process names, constructions, variables, channels, ...) of the process specification.
  -v Used to set the verbose mode and is only valid when the "-o" option is specified.  An

interactive menu is invoked which allows the user to set SPNP run parameters.

2.3 Running the CSPN tool
Running CSPN (i.e., $> csp <options> specification-file) and using the various command line
options enables the numerous features and functionalities.  For example, if the user is in the
process of correcting the syntax of the CSP specification, then it would not be necessary to
specify any of these options, only the input file.  Also, if the user just wants to understand how
the CSP specification looks in terms of the structural characteristics (i.e., investigating inherent
weaknesses in communications, race hazards etc.) then adding the "-d" or "-j" option would
enable only the production of the graph.  The "-F" option invokes a filter and is necessary only
when the user plans to run an SPNP analysis.  The "-f" option is a nice feature because it enables
the analyst to assume a failure free environment by simply ignoring any embedded fail
annotations that may exist in the CSP specification (without "-f" CSPN ignores failure
annotations).  Omitting failure annotations from the P-CSP specification has the same affect.
The option "-s" streamlines the process of generating the SPNP input specification by assigning
default service rates to timed transitions without querying the user to provide such.  As
mentioned above, the "-o" option generates a file for SPNP analysis.  It is best if a file name is
given with this option (i.e., "-o filename").  This settles the problem of overwriting previous files
generated using the default name that is assigned by CSPN when no name is provided.  The "-i",
"-a" and "-p" options are used to parameterize the SPNP run by setting the iteration number,
absorbing rate (for recycling back to the initial marking), and precision for floating point
operations, respectively.  The "-P" option is only valid when "-o" is used and enables the user to
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assign priorities to any of the transitions.  The "-d", "-j", "-n" and "-t" options are useful when
something unexpected happens after running CSPN, such as a run time error.  The user may wish
to rerun the translation and view the internal data structures that are generated during the
translation process.  

2.4 CSPN user interactive mode
The cspn tool allows the user to adjust CSPL file description values for File parameters,
transition priority values, transition service rates and CSPL reward function from the default
values used by the tool. The user interactive mode is invoked when the -o (output file generation)
switch is used in conjunction with a any of the following switches: -v (verbose mode for changing
CSPL parameter values) -e (allows the user to adjust the transition priority values) -s (allows the
user to adjust the transition service rate values) -r (allows the user to adjust the CSPL reward
functions generation) any one or a combination of any of these switches will invoke the
interactive user function. When this function is invoked, a menu is presented to the user with 4
choices: 1) The user may run the tool with different values than the default ones, 2) the user may
change default values and save them to a user defined value file, 3) the user may run the tool using
a previously created user defined value file, or 4) the user may edit the tool values based on the
values of a previously created user defined value file. The user is allowed to keep up to twenty
user defined value files in the working directory. An over write process of files begins when file
21 is created (the user is warned of the impending overwrite and offered the option to exit the
tool at this point) allowable file names are fn_def.0 through fn_def.999 where fn is the P-CSP
input specification file name. Only the values for those command line switches that were used for
the current tool execution are presented to the user for value adjustment. As far as how the values
are changed, this is still the same as your original design with one addition, when in verbose mode
(-v switch) I have added a help selection for each parameter in the different parameter choice
selection menus. When selected (help that is) a message giving a short description of the
parameter and the parameter value choices is displayed (these are the same as the parameter
descriptions in the CSPL um appendices).

2.5 CSPLTOPS
The cspltops tool allows for a PN graph to be created based on a CSPL model description. This
allows the user to compare the PN graph created by the CSPN tool with the CSPL file it also
created graphically by the user. The cspltops tool has three command line switches: -v verbose
mode - this allows the user to watch the net list created by the tool scroll up the screen while it is
being generated, -h help - displays command line usage of the tool and a brief description of the
command line switches, and -d display - allows the user to display the PN graph using ghost
script, ghost view or page view through a user selection menu. When the -d switch is used the
tool can only be exited by selecting the exit choice from the user display selection menu (or you
could use the old ctrl-C).

The use of cspltops by the CSPN tool is invoked using the -x switch, it can only be used
when the -o switch is also set on the command line (we need to create the CSPL file i.e. fn_spn.c
before we can read it using cspltops). CSPN calls the cspltops tool using a command line switch -
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d so that the user can view the resulting PN graph without having to exit the CSPN tool and
invoking a graphical viewer on their own.

2.6 CSPN Data Structures
Internally, there are four basic data structures employed by CSPN: (1) a symbol table which
maintains attributes assigned to all system elements (actions, processes, communications and
constructions);  (2) process lists which consist of all the names of the associated
actions/processes involved in a particular construction;  (3) a network of linked lists which
capture the structure of the specification (adjacency and nesting); and (4) a coincidence matrix
which maintains the graphical distributions of places, transitions and their connectivity.  

The coincidence matrix (or co-matrix) is the Petri net.  Each element and composition from
the CSP specification has a co-matrix maintained in the symbol table.  The construction of the n-
by-m co-matrix is defined in terms of the transitions (i.e., CSP-process names become transition
names).  Transitions are associated with rows (from top to bottom).  Places are associated with
columns (numbered from left to right starting from zero).  A non-zero element in the matrix A
represents an arc which links a transition to a place.  Elements (aij) can have one of three values
(zero, +1 or -1): aij = +1 indicates an arc from the transition of row i to the place of column j;  aij
= -1 indicates an arc to the transition of row i from the place of column j.  The process list stores
the transition names in their proper order.  The numbering of places is ordered, but their
semantics are defined in terms of the transitions.  

3 The CSP-based Language (P-CSP) Primitives
Systems are built from processes.  The simplest process is an action (an assignment, input or
output).  SKIP and STOP are two special processes: they both perform no action (i.e., engage in
no event), but SKIP terminates while STOP does not terminate (engages in infinite internal
actions) causing a deadlock.  Larger processes are built by combining smaller processes.  PAR (or

||), SEQ (or ;), NDC (or ), DC (or ), and MU.x{} (or µX•  P) are the constructors that can be
used for this purpose.  The complete CSP-based grammar is provided as a yacc (viz., BNF)
specification in [20, 21].

An example declarative construction would be: PROCESS My_example = SEQ{P(), Q(),
R()}; where the process "My_example" is declared as a sequential composition of three process
calls (P, Q, R).  A process call is one of the main elements used to denote processes.  Processes
can have internal structures which are defined in a PROCESS declaration and used later much like
a function call in a typical programming language (e.g., My_example()).  The simple rule to
remember is that when a process call is made inside a declarative construction (i.e., between
"PROCESS =" and ";") it need not be pre-declared (i.e., the process can defined on-the-fly rather
than being pre-declared).  However, when a process is pre-declared, it must subsequently be used
as a "process call."  In the example below, P1() and all the other elements in similar format,
having "()" appended to their name, are process calls.  Process calls in the main body of the
specification (last line of this example) must be pre-declared:
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Example_System =
PROCESS My_example = SEQ{P1(), P2(), P3()};
PROCESS Your_example = PAR{Q1(), Q2(), My_example()};
PROCESS Monitor = NDC{SKIP, R1, R2()};

Mu.X{ NDC{ My_example(), Your_example()}}.  --Dashes are prefixed to comments

Pre-declaring a process is a way of abstracting away the internal details of the process
function.  Translation of a pre-declared process call expands all of its internal structure in creating
a "sub-Petri net."  In this way, larger processes are formed from the composition of smaller
processes.  A statement list is a sequential list of n ≥ 1 statement(s).  A statement can be an

event (or trigger) which causes a process to engage in an action (e.g., a → P).  This process is
defined as an implication.  Input and output of messages require a channel.  Channels provide
unbuffered, unidirectional point-to-point communication of values between two concurrent
processes (similar to Ada rendezvous).  A guarded process combines one or more processes, each
of which is conditional on an input, a Boolean expression, or both.  An expression can be integer,
Boolean or relational (Boolean expressions must consist of Boolean variables prefixed with "@").
Operands can be integers, variables, integer expressions, or relational expressions (distinct from
Boolean).  A partial BNF specification of the P-CSP grammar can be found in the Appendix.

3.1 Stochastic Petri Nets
The Petri net in its simplest form is a directed bipartite graph, where the two types of nodes are
known as places (circles) and transitions (bars).  In this approach, places represent events, while
transitions represent actions.  Other researchers have based their system models on conditions
and events (where their events are similar to P-CSP's actions or processes).  However, in this
approach, modeling is based on the notion in CSP of event-action pairings.  

A Stochastic Petri net (SPN) is simply a Petri net which has been extended to permit
stochastic analysis.  These extensions embed the model into a timed environment by associating a
time to each of the transitions in the net.  The most general extensions allow the usage of
stochastic times (rates) and probabilities.  The underlying stochastic process is captured by the
"extended reachability graph" (ERG), a reachability graph with additional stochastic information
on the arcs.  The ERG has been shown to be reducible to a Continuous Time Markov Chain
(CTMC), provided that the exponential distribution is associated with the Petri net transitions.
Since SPNs permit a probability distribution to be associated with transitions (to express delays
or failure rates), they are very suitable for modeling system performance and reliability.
Stochastic Petri net markings correspond to the states of an equivalent stochastic process.  The
transition rate from state Mi to Mj (of the equivalent stochastic process) is given by qij = λi1 +

λi2 + . . .+λim  where λik is the delay in firing a transition tk which takes the Petri net from

marking Mi to Mj (when several transitions enable the firing from Mi to Mj).  See [1, 6, 9-10, 14-

15, 22] for more details on Petri nets, SPNs, Markov, and Markov Reward processes.
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3.2 SPNP and the      C     -based     S    tochastic     P    etri net     L    anguage (CSPL)
The SPNP package allows the user to perform steady state, transient, cumulative transient, and
sensitivity analysis of SRNs [23].  The language used for describing stochastic Petri nets for
SPNP (Stochastic Petri Net Package) is CSPL.  It is a super set of the C language   

and provides the full expressive power
of C.  Predefined functions are available to
define SPNP objects.  A single CSPL file is
sufficient to describe any legal SRN because
the SPNP user can input (at run-time): the
number of places and transitions, the arcs
among them, and any other required parameter.
The numerical parameters used in the
specification of rates and probabilities are
incorporated in the same CSPL file.  An
example of the CSPL file structure is shown in
Figure 2.

The function parameters allows the user
to customize how the package will perform the
analysis by setting specific call parameters in
the sub-functions iopt() and fopt().  Several
parameters establishing a specific behavior can
be selected [3].  The function net permits the
user to completely define the structure and
parameters of an SRN model.  The basic
functions that can be used inside the net
include: place() for naming all the places,
trans() for naming all the transitions, iarc() for
defining a transition's input arc, oarc() for the
output arcs, and init() which defines the initial
marking.  Probabilistic behavior may be
specified using probval(); the timing of events
can be specified by assigning rates to the
transitions in rateval().  More advanced
functions include harc() for making inhibitor
arcs while the functions miarc(), moarc(), and
mharc() define multiple cardinality input,
output and inhibitor arcs (these more advanced
functions are not synthesized by CSPN during
the translation process).

parameters(){
 iopt(IOP_PR_MARK_ORDER, VAL_CANONIC);
 iopt(IOP_PR_MERG_MARK, VAL_YES);
 iopt(IOP_PR_FULL_MARK, VAL_NO);
 iopt(IOP_PR_RSET, VAL_NO);
 iopt(IOP_PR_RGRAPH, VAL_NO);
 iopt(IOP_PR_MC, VAL_NO);
 iopt(IOP_PR_MC_ORDER, VAL_FROMTO);
 iopt(IOP_PR_PROB, VAL_NO);
 iopt(IOP_MC, VAL_CTMC);
 iopt(IOP_OK_ABSMARK, VAL_NO);
 iopt(IOP_OK_VANLOOP, VAL_NO);
 iopt(IOP_OK_TRANS_M0, VAL_YES);
 iopt(IOP_METHOD, VAL_SSSOR);
 iopt(IOP_CUMULATIVE, VAL_YES);
 iopt(IOP_SENSITIVITY, VAL_NO);
 iopt(IOP_ITERATIONS, 2000);
 iopt(IOP_DEBUG, VAL_NO);
 iopt(IOP_USENAME, VAL_NO);
 fopt(FOP_ABS_RET_M0, 0.000000);
 fopt(FOP_PRECISION, 0.000001);
}
net(){
 /* Definition of places */
 place("p0");
 init ("p0",1);
 place("p1");
 place("p2"); ...

  /* Definition of transitions */
 trans("dt1");
 trans("InTransit");
 trans("Togate_o_arrive");
 trans("dt_arrive"); ...

 /* Definition of rates */
 probval("dt1",1.0);
 rateval("InTransit",20.00000000);
 rateval("Togate_o_arrive",19.00000000);
 probval("dt_arrive",1.0);
 rateval("AtIntersection",18.00000000); ...

 /* Definition of input arcs */
 iarc("dt1", "p0");
 iarc("InTransit", "p1");
 iarc("Togate_o_arrive", "p2");  ...

 /* Definition of output arcs */
 oarc("dt1", "p1");
 oarc("dt1", "p8");
 oarc("InTransit", "p2"); ...
}
assert() {
  return(RES_NOERR);
}
ac_init() {
  fprintf(stderr,"\n<<<Run title goes here>>>");
  fprintf(stderr,"\nGenerating SRN data ...\n\n");
  pr_net_info();
}
ac_reach() {
  fprintf(stderr,"\nThe reachability graph is being
  fprintf(stderr,"generated ...\n\n");
  pr_rg_info();
}
/* - reward_type definitions go here --------------
ac_final(){
 int i;
 time value( 0.1 );
 pr_mc_info();
 pr_std_average();
 pr_std_cum_average();
}

Figure 2. SPNP input file structure.
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3.3 Mapping CSP to Petri nets using canonical translation rules
An initial set of rules for translating CSP specifications into Petri nets (Petri nets) is defined in
[7, 10, and 16-17].  The translations between CSP and Petri nets are based on the fact that in
CSP, processes execute actions, which in turn may enable other actions, and, in this way, CSP
processes move from one action to another.  Activities that enable a process to be activated can
be viewed as conditions (or events) which are represented by places, while the actions
themselves are viewed as transitions.  Some example translations are shown in Figure 3 (under
each of the Petri net constructions is the P-CSP specification).

b

c e

a d

F. Parallel actions
synchronize on b

(a♦ b♦ c) || {b}  (d♦ b♦ e)

E. Non- and deterministic
choices run in parallel
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a b

From environment

a b
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D. Deterministic
choice

(a  b)

cba b

µX.(b    c ♦ X)

B. Nondeterministic
choice w/ recursion

a    b

A. Nondeterministic
choice to  proc a or b

a b

a   b

C. Parallel actions
are transitions

NDC{ a, b}

DC{
   a AND
     {ch1 ? msg1},
   b AND
     {ch2 ? msg2 }
}

PAR{
   NDC{a, b},
   DC{a AND
             {ch1 ? msg1},
           b AND
             {ch2 ? msg2 }
   }
    (a,b)
}

PAR{

    {a♦ b♦ c},

    {d ♦ b♦ e}(b)
}

Mu.X{
  NDC{

      b, c♦ X
  }
}

PAR{ a, b}

Figure 3.  Example of some representative CSP → Petri net translation rules (see next figure).

The CSP to Petri net translations were designed to facilitate the automatic decomposition
of the CSP constructs into Petri net sub-components and subsequent re-composition of the
subnet components into a complete system Petri net.  The Petri net translation from a given CSP
construction (i.e., specification) need not be unique because ultimately, when we combine the
subnets, we must introduce dummy places and dummy transitions to maintain the complete Petri
netÕs bipartite nature.  And, once the complete system net is obtained, the structure itself may be
reduced (e.g., by combining adjacent dummy transitions or collapsing such places and transitions
into their predecessor/successor transitions) to something that is trace equivalent to the CSP
specification.  This in itself is all that is necessary to define a complete set of markings and hence
an equivalent Markov process.

Petri nets are inherently non-deterministic and asynchronous while CSP is inherently
deterministic and synchronous (though an explicit definition of non-deterministic choice exists in
CSP).  Since the purpose is stochastic analysis, we depend on the non-deterministic nature of the
Petri nets to conduct the stochastic analysis.  This implies that the determinism of CSP is also
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translated into the non-determinism of Petri nets.  However, the resolution of structure within
the translation is standardized and deterministic, while the probabilistic transitioning is only
applied to the appropriate nondeterministic choice composition operator of CSP.  In any event,
the goal is to demonstrate the feasibility of translating from CSP and Petri nets by decomposing a
CSP specification into its component parts (processes, channels, constructors, etc.), and this is
done by choosing one standard (canonical) translation path from among equivalents.  Section 4
provides some mechanisms and conventions, which have been defined, for the canonical
translations.

4 Some CSPN Mechanics
This section provides some of the CSPN implementation details.  The canonical translation rules
are codified in CSPN.  The set of details provided give the basic framework for CSPN.

4.1 Coincidence Matrix Expansion
When the P-CSP specification is parsed, each construct (e.g., PAR, SEQ, etc.) of the
specification is separated into its component elements (process names, channels, variables) and
represented as a sub-Petri net.  The sequential construction shown in Figure 4 illustrates how the
co-matrix is used to represent, in this case, a SEQ composition as a Petri net.  Figure 5 shows the
same translation for the parallel (i.e., PAR) construct.  

Combining the component co-matrices to produce a complete system Petri net is a
process of co-matrix expansion.  The expansion is constrained in two dimensions to preserve the
algebraic structure associated with (1) adjacency and (2) nesting.  Figures 6 and 7 give an
illustration of the expansion process.

The test shown in Figure 6 is designed to determine, based on the location of the
transition to be expanded, which method of expansion to use.  In Figure 7, an expansion is
performed using method 3.  Inserting SEQ1 expands the co-matrix SEQ0 (analogous to co-matrix
A in Figure 6).  SEQ1 consists of two processes, P1 and P2 (and is analogous to co-matrix B in
Figure 6).  The expansion must replace the transition SEQ1 by the two process names P1 and P2.
The final combined result retains the SEQ0 name.  

P

Q

R

p1

p2

p3

p4

CSP:...     P;Q;R

P-CSP:...   SEQ{P,Q,R};

T       p1  p2  p3  p4
R    P  +   -
A    Q      +   -
N    R          +   -
S

+ indicates an arc
input from  place
p3 to transition R.

- indicates an arc
output to  place p4
from transition R.

Figure 4.  SEQ construct with co-matrix and Petri net representations



12

p1

p2

p3

p4

p5

p6

p7

P

Q

R

dt1

dt2

CSP:...     P;Q||R

P-CSP:...   PAR{SEQ{P,Q}R};

T          p1  p2  p3  p4  p5  p6  p7
R    dt1   +   -           -
A    P         +   -
N    Q             +   -
S    R                     +   -
     dt2               +       +   -

Figure 5.  PAR and SEQ construct with co-matrix and Petri net representations.

B

A

{use Method 3
     expansion}

else

B

A

{use Method 2 expansion}
else
   if

B
A

{use Method 1 expansion}if

Expand Comatrix A using B

Figure 6.  Choosing a combining method 1, 2 or 3 for expansion depends on locality.
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6 x 7

1      2      3     4      5      6     7

P 1

P 2

P 3

P 5

P 6

P 4

5 x 6

1      2      3     4      5      6S E Q0

P 1

P 2

P 3

SEQ1

P 4

2 x 3

1      2      3S E Q1

P 5

P 6

Us i n g  e x p a n s i o n  m e t h o d  3

Com b i n e d

-    +

-    +

-    +

-    +

-    +

-    +

-    +

-    +

-    +

-    +

-    +

-    +

-    +

Th e ex p an si on  m et h od p r ov i des
a m ean s t o com b i n e t w o co- m at r i c i es.

S EQ{ P 1 ,  P 2 ,  P 3 ,  S EQ{ P 5 ,  P 6 } ,  P 4 }

Figure 7.  Identifying the transition to expand into a larger Petri net

Note, the term SEQ is a key word (used for sequential composition of processes), and is
considered itself to be a process.  CSPN treats each occurrence of this type as a unique process
by appending a unique value to the name (e.g., 0 is appended to the first occurrence of SEQ to
give SEQ0, and the next occurrence of SEQ will have "1" appended).  In this way, CSPN tracks
each occurrence of a given type of keyword (i.e., SEQ, PAR, NDC, DC, STOP and SKIP).

4.2 CSP represented as a network structure
A network of linked lists is used to capture the algebraic structure in two dimensions (1)
adjacency (among declared processes or within a process) and (2) nesting within processes.  Two
examples are provided in Figure 8.  The first one emphasizes adjacency and the other emphasizes
nesting.  

There are two main network arrays used (1) SYS[] Ñ each SYS[i] points to a process
defined in a PROCESS declaration and (2) NET[] Ñ each NET[i] points to a "process" element
as defined by the P-CSP grammar (e.g., process call, constructor like PAR, NDC, etc.).  Figure 9
gives some details of the three major C data structures employed by CSPN:  (1) Symbol table
entry (as described above) as well as (2) NET_NODE and (3) NODE structures, which together
provide the building blocks for the network.  
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SysSimpleEx =
  PROCESS Eg1 =
    SEQ{SEQ{SEQ{P1(),P2(),PAR{P11(),P12()}},P3(),P4()},P5(),P6()},SEQ{P7(),P8()};
  PROCESS Eg2 =
    SEQ{ P9(), P10() };
  PAR{ Eg1(), Eg2() }.

Adjacency among declared processes

Process Hierarchy for SysSimpleEx

Nesting

PAR2

SysSim pl eEx

d t3

Eg 1

Eg 2

d t4

SYS[ 0 ]

NET [0 ]

PAR2

NET [1 ]

SEQ1

Eg 1

SEQ2

P5

P6

SEQ1

SYS[ 1 ]

NET [0 ]

NET [1 ]

SEQ5

Eg 2

P9

P1 0

SEQ5

SYS[ 2 ]

NET [0 ]

NET [1 ]

SEQ4

SEQ2

SEQ3
P3

P4

NET [2 ]

SEQ3

P1

P2

PAR1

NET [3 ]

PAR1

d t1
P1 1

P1 2

NET [4 ]

SEQ4

P7

P8

P4

NET [5 ] d t2

PAR1

T rai nXin g

d t1

T rai n

Gat e

Ar riv e

De pa rt

d t2

SYS[ 0 ]

NET [0 ]

PAR1

NET [1 ]

SEQ1

T rai n

In T ran sit

T og at e! Arri ve

d t ! Ar riv e

At In t erse ct io n

T og at e ! Dep art

d t !De pa rt

SEQ1

SYS[ 1 ]

NET [0 ]

NET [1 ]

SEQ2

Gat e

Clo sed

T og at e ?De pa rt

d t? Dep ar t

Op en

T og at e ?Ar riv e

d t? Arr ive

SEQ2

SYS[ 2 ]

NET [0 ]

NET [1 ]

Two Dimension Process Hierarchy

Nesting

Adjacency
within a
process

TrainXing =
  PROCESS Train =
    SEQ{InTransit(),{Togate!arrive},AtIntersection(),{Togate!depart}};
  PROCESS Gate =
     SEQ{{Togate?arrive},Closed(),{Togate?depart},Open()};
  PAR{
    Train(), Gate() {arrive, depart}}.

Figure 8.  Process hierarchy for system "SysSimpleEx" with exaggerated nesting
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typedef struct nodedef {
{ char *n_name;  Pointer to the node/symbol name

  char *n_fail;  NULL if no fail rate/prob specified
  short israte;  Boolean: legal values are (-1, 0, 1)

  short n_type;  Node type consistent w/ symbols
  short uid;  System level unique identifier

  struct nodedef *link; Pointer to next node, if any
  } NODE;

typedef NODE *nodeptr; Pointer to a NODE strucutre

NODE structure (pnode or lnode instance)

typedef struct entrydef { Symbol Table entry definition
  char *name;  Symbol name pointer
  short type;  Symbol type (values 0 through 23)
  short uid;  Unique identification number (pid)
  char *frate;  Failure Rate in ASCII pointer
  char *fprob;  Failure Probability in ASCII pointer
  char *p_pl;  Process list pointer
  short rsize;  Number of rows in PR Matrix
  short csize;  Number of cols in PR Matrix
  p_matrix p_prm;  Process Relation (PR) Matrix pointer
  struct entrydef *next; Link to next ENTRY
} ENTRY;

typedef ENTRY *entryptr;

ENTRY structure (symbol table entry)

NET_NODE structure (pnodes declaration instance)
typedef struct netdef
{ char *net_name;  Pointer to the node/symbol name
  short numNodes;  Number of pnodes in this linked list
  short numSibs[NETSIZE]; Number of siblings within each pnode

  nodeptr net[NETSIZE]; Rootptr's to Process Nodes
  } NET_NODE;

typedef NET_NODE *netNodeptr; Pointer to net_node structure

netNodeptr sys[SYSSIZE]; Rootptr's to "PROCESS_DEC" net nodes

NDC

SEQ2 SEQ3 P1SEQ1

SEQ3 P3 P4SEQ2

P5 P6SEQ3

P7 P8NDC

EX1

P2

EX1 16

EX2  4

Sy1 3

EX1

P9 P10PAR1

Sys[0..2]

Net[0..1]

Net[0..4]

Net[0..1]

NDC EX1 EX2

NET_NODE NODE's

NET_NODE

. . .array of pointers to nodes

NET_NODE

Sy1 =
  PROCESS EX1 =
   SEQ{SEQ{SEQ{P1(),P2()},P(),P4()},P5(),P6()}
    NDC{P7(),P8()};
  PROCESS EX2 =
    PAR{P9(),P10};

NDC{EX1(),EX3()}.

Figure 9.  An example of the entry, net_node, and node data structures.

5 An Example: The Computer Bus Arbiter System.
In this example, we will take a P-CSP design specification for a computer bus arbiter and perform
an analysis on it as described in Table 1, using the CSPN tool.  The first step of the analysis
results in the P-CSP specification in Figure 10.  

5.1 Formulate a CSP System Description.
The system we are modeling has two processors and one arbiter using a shared bus.  The
processors are message synchronized with the arbiter for bus control.  All three processes are
running in parallel operation.  In this scenario, the two processors are trying to perform a read or
a write operation and must gain exclusive control of the bus to accomplish their task.

The message channels and operations used in the specification are as defined below:
•  Request - request access channel uses messages uniquely identified to each

processor.
•  Grant - access granted channel uses messages uniquely identified to each processor.
•  Read - read operation, each operation is uniquely identified to each processor.
•  Write - write operation, each operation is uniquely identified to each processor.
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•  Rel_Bus - return bus control to arbiter, signal channel uses messages uniquely
identified to each processor.

•  Update_PM - update private memory operation, each operation is uniquely identified
to each processor.

The processor processes P1 and P2 are implemented as follows: (1) the process starts by
requesting bus access.  (2) The process then waits until it receives a message from the arbiter
granting access.  (3) The process then performs a read or write operation, based on a non-
deterministic choice.  (4) When the read or write operation is complete, the process sends a
message to the arbiter indicating that it is done and is ready to release the bus.  (5) The process
finishes by updating its private processor memory and returning to step 1.

The bus arbiter process is implemented as follows: (1) based on a deterministic choice, the
process waits for a request for bus access from one of the processors.  (2) The process grants
access to that processor.  (3) The process then waits for the processor to finishes and returns to
step 1.

5.2 Translate the P-CSP specification to a stochastic Petri net.
Using a text editor, we create a design specification file like the one in Figure 10, a file, which we
will name ÒarbÓ in this example.  To use the CSPN tool on this file, we type Òcsp arbÓ at the
prompt on the computer screen.  CSPN generates a postscript file named Òarb.psÓ, which is the
Petri net shown in Figure 11.  Note how the two processor process flows are rather symmetric,
with the bus arbiter process in the middle negotiating between the two-processor processes
through the use of messages.

5.3 Assign performance and reliability parameters.
We can now assign performance parameters, if necessary.  To use user-defined values, we run the
CSPN tool again but in the verbose mode, i.e. we run Òcsp Ðo Ðv arbÓ.  A menu will appear with
the following options:

•  Save user default values to arb_def.0
•  Change default values without saving
•  Use user defined defaults
•  Edit and use user defined defaults

If we wanted to perform a detailed analysis, we can choose the last option and define our
own defaults.  The last option will save our values under the file name Òarb_def.xÓ, where the
Ò.xÓ extension will be a value from 0 to 9.  This allows the user to define several different sets of
default values.  After we have created a default-values file, we can choose to use one of these files
by choosing the third option above.  If we are just experimenting and do not want to save any of
the values from our current run, then we would choose the second option above.
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5.4 Analyze the Petri net for stochastic properties.
In this step, we see how its component parts affect the overall system performance.  If one part
is operating within tolerance but is operating at one extreme of its tolerance, does the overall
system still work within its performance tolerance?  Does the system even run to completion?

Looking at the Petri net in Figure 11, we can see the main bottleneck in this design is the
common bus.  Depending on the speed and synchronization requirements of the microprocessor
processes P1 and P2, this system design may not meet its overall performance requirements.
This design was used in early personal computer design. As performance requirements and
capabilities increased, special buses like a dedicated graphics bus were required to deliver large
quantities of data to peripherals without bringing down the performance of the system.

5.5 Perform reliability analysis.
From the last step, we can see that the single point of failure is the common bus.  If the
performance of the bus degrades or if the bus complete fails, the overall system reading and
writing capability is greatly affected.  We can look at the impact by changing the performance
parameters of our model and analyze the effects.  From that analysis, we can determine if the
system performance requirements are met or if the system must be modified (e.g., add an
additional bus).

Another critical area of system performance is the command messaging traffic.  If the system
loses the messages between the arbiter and microprocessor processes that grants access to and
release the bus, the system comes to a halt.  Again, we can analyze that using the CSPN tool.  If
required, we could at adding timeouts to the messaging system to avoid lost messages.

5.6 Augment the original P-CSP specification.
Based on results of our analysis, we can add the changes to the system specification listed in
Figure 10.  In this simple example, adding an additional bus requires only some minor text editing.

5.7 Look at cost impacts of changes.
The cost impacts of changing the specification and the system design can be significant, even in a
minor design like our example.  The earlier in the design process that the changes are made,
usually the less expensive is the impact.  Adding another data bus or changing the messaging
scheme, when the system is in production or beyond, can require significant re-engineering,
system testing, and documentation changes.  Through the use of the CSPN tool, we can
determine how the change will impact system performance and then compare that improvement
against the cost to implement the change.  The results from the CSPN analysis can help justify to
management the need for the change and the additional cost.
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Arbiter =

  PROCESS P1 =
     Mu.Z1 {
        SEQ  {
           {Request ! req1},
           {Grant ? grant1},
           NDC  {
              Read1( ),
              Write1( )
            },
        {Rel_Bus ! rel1},
        Update_PM1( )
        }
     };

  PROCESS P2 =
     Mu.Z2 {
        SEQ  {
           {Request ! req2},
           {Grant?grant2},
           NDC  {
              Read2( ),
              Write2( )
            },
        {Rel_Bus ! rel2},
        Update_PM2( )
        }
     };

  PROCESS bus =
     Mu.Y {
        DC   {
           Request ? req1 {
               Grant ! grant1,
               Rel_Bus ? rel1
           },
           Request ? req2 {
               Grant ! grant2,
               Rel_Bus ? rel2
           },
        }
     };

  Mu.X  {
     PAR  {
        P1( ),
        P2( ),
        bus( )    (req1, grant1, rel1,
                      req2, grant2, rel2)
     }
  }.

Figure 10.  The Computer
Bus Arbiter P-CSP design

specification.

Update_PM1dt:MuZ1

p01

dt:MuX

p00

p26

Update_PM2dt3dt4

p03 p14 p02 p28 p15 p39 p27

Request !req1

p05 p04 p29

dt:MuY dt:MuZ2 Request !req2 dt5

p16 p17 p34 p18

Grant?grant1 Request?req1 Request?req2 Grant !grant2 Grant?grant2

p06 p30 p35 p19

dt:grant1 Grant!grant1 dt:grant2

p07 p32 p31 p36 p20

sdt1 sdt2 Release_Bus?rel1 Release_Bus?rel2 sdt4 sdt3

p08 p09 p33 p37 p22 p21

Read1 Write1 dt:rel1 dt:rel2 Write2 Read2

p10 p13 p38 p23

dt1 dt2

p11 p24

Rel_Bus!rel1 Rel_Bus!rel2

p12 p25

Figure 11.  Petri Net for Computer Bus Arbiter.
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APPENDIX A: Available Parameter Options
 Table A-1. Parameter Options Available for Generating SPNP files.

Parameter Description & Choices
IOP_PR_MARK_ORDER Specifies the order in which the markings are printed.

VAL_CANONIC - markings are printed in the order they are found, in a breadth-first
search starting from the initial markings, and increasing order of enabled transition
indices.  It is the most natural order and it is particularly helpful when debugging
the SRN.
VAL_LEXICAL - markings are printed in increasing order, where markings are
compared as words in a vocabulary, the possible number of tokens being the
alphabet, and the order of the ÒletterÓ in a ÒwordÓ being given by the order of the
non-empty places in the marking.  This order may be useful when searching for a
particular marking in a large Ò.rgÓ file, although an editor with search capabilities
used with the VAL_CANONICAL order is usually adequate for the purpose.
VAL_MATRIX - markings are printed in the same order as the states of the two
Markov chains built internally: the DTMC corresponding to the vanishing
markings, and the CTMC corresponding to the tangible markings. This corresponds
to the following ordering: vanishing, tangible non-absorbing, and tangible
absorbing, each of these group ordered in canonical order.

Choices: VAL_CANONICAL (default); VAL_LEXICAL; VAL_MATRIX
IOP_PR_MERG_MARK Specifies whether the tangible and vanishing markings should be printed together, or

two separate lists should be printed.

Choices: VAL_YES; VAL_NO (default)
IOP_PR_FULL_MARK Specifies whether the markings are printed in long format (a full matrix indicating,

for each marking, the number of tokens in each place, possibly zero), or short format
(for each marking, a list of the number of tokens in the non-empty places).
VAL_YES - looks good only when the SRN has a small number of places.

Choices: VAL_YES (default); VAL_NO
IOP_PR_RSET Specifies whether the reachability set is to be printed.

VAL_TANGIBLE - specifies that only the tangible markings are to be printed; it
cannot be used for IOP_PR_RGRAPH

Choices: VAL_YES; VAL_NO (default); VAL_TANGIBLE
IOP_PR_RGRAPH Specifies whether the reachability graph is to be printed.

Choices: VAL_YES; VAL_NO (default)
IOP_PR_MC Specifies whether the ".mc" file is generated or not.

Choices: VAL_YES; VAL_NO (default)
IOP_PR_MC_ORDER VAL_FROMTO - specifies that the transition rate matrix is printed in the ".mc" file.

VAL_TOFROM - specifies that the transpose of the transition rate matrix is printed
in the ".mc" file.

Choices: VAL_FROMTO (default); VAL_TOFROM
IOP_PR_PROB Specifies whether the ".prb" file is generated.

Choices: VAL_YES; VAL_NO (default)
IOP_MC Specifies the solution approach.

VAL_CTMC - transforms the SRN into a CTMC.
VAL_DTMC - uses an alternative approach, where vanishing markings are not
eliminated and a DTMC is solved instead.

Choices: VAL_CTMC (default); VAL_DTMC
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Parameter Description & Choices
IOP_OK_ABSMARK Specifies whether absorbing markings are acceptable or not.

VAL_YES - the program will signal such occurrences, but will continue to execute.
VAL_NO - the program will stop if such an occurrence is encountered.

Choices: VAL_YES; VAL_NO (default)
IOP_OK_VANLOOP Specifies whether transient vanishing loops are acceptable or not.

VAL_YES - the program will signal such occurrences, but will continue to execute.
VAL_NO - the program will stop if such an occurrence is encountered.

Choices: VAL_YES; VAL_NO (default)
IOP_OK_TRANS_M0 Specifies whether a transient initial marking is acceptable or not.

VAL_YES - the program will signal such occurrences, but will continue to execute.
VAL_NO - the program will stop if such an occurrence is encountered.

Choices: VAL_YES; VAL_NO (default)
IOP_METHOD Allows the user to set the numerical solution method for the Markov chain.

VAL_SSSOR - Steady State SOR.
VAL_GASEI - Steady State Gauss-Seidel.
VAL_TSUNIF - Transient Solution using Uniformation.
VAL_SSPOWER - power method for steady state solution. This is slow, but
guaranteed to converge.

Choices: VAL_SSSOR (default); VAL_GASEI; VAL_TSUNIF; VAL_FOXUNIF;
VAL_POWER

IOP_CUMULATIVE Specifies whether cumulative probabilities should be computed.

Choices: VAL_YES (default); VAL_NO
IOP_SENSITIVITY Specifies whether sensitivity analysis should be performed.

Choices: VAL_YES (default); VAL_NO
IOP_ITERATIONS Specifies the maximum number of iterations allowed for the numerical solution.

Choices: non-negative int  Ð  2000 (default)   
IOP_DEBUG Causes the output (on the "stderr" stream) of the markings as they are generated, and

of the transitions enabled in them. It is extremely useful when debugging a SRN.

Choices: VAL_YES; VAL_NO (default)
IOP_USENAME Specifies whether the names must be used to indicate the places and transitions

involved when printing the reachability set and graph instead of the index. Using
names generates a large ".rg" file and prevents its subsequent parsing, but is useful
when debugging a SRN.

Choices: VAL_YES; VAL_NO (default)
FOP_ABS_RET_M0 Specifies the value of the rate from each absorbing marking back to the initial

marking. If this rate is positive, these markings will not correspond to absorbing
states in the CTMC. This is useful to model a situation that would otherwise
require a large number of transitions to model this "restart". Of course the numerical
results will depend on the value specified for this option.

Choices: non-negative double  Ð  0.000000 (default)
FOP_PRECISION Specifies the minimum precision required for the numerical solution. The numerical

solution will stop either if the precision is reached, or if the maximum number of
iterations is reached. Both the reached precision and the actual number of iterations
are always output in the ".prb" file, so you can (and should) check how well the
numerical algorithm performed.
Choices: non-negative double  Ð  0.000001 (default)
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APPENDIX B: CSP-Based Grammar and Constructs
 Table B-1. CSP-Based Grammar (using the lex and yacc specification conventions).

Lex Regular Expressions:
delimiter           [ \t]
eol                    [\n]
white_space     {delimiter}+
letter                 [A-Za-z_]
digit                  [0-9]
identifier          {letter}({letter}|{digit})*
integer             {digit}+
real number     {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?
comment          "--".*$

Yacc Grammar Specification:
Start symbol = "system"
1. system: Identifier Equals
                 processdeclist processlist1 Dot;
2. processdec: PROCESS Identifier Equals
                       processlist1 Semicolon;
3. processdeclist: | processdeclist processdec;
4. process:
    STOP
  | LeftBrace stmtlist RightBrace
  | PAR LeftBrace processlist2 synclist RightBrace
  | SEQ LeftBrace processlist1 RightBrace
  | NDC LeftBrace processlist3 RightBrace
  | DC LeftBrace guardedproclst RightBrace
  | MU Dot Identifier LeftBrace processlist1 RightBrace
  | processcall;
5. failable:
                FAIL LeftParen rEquals Real RightParen
              | FAIL LeftParen pEquals Real RightParen;
5.1 probable: PROB LeftParen pEquals
                      Real RightParen;
5.2 servable: SERV LeftParen rEquals
                      Real RightParen;
6. biprocess:
                 process
               | process Colon failable
               | process Colon probable
               | process Colon servable;
7. processlist1:
                 biprocess
               | processlist1 Comma biprocess;
8. processlist2:
                biprocess Comma biprocess
              | processlist2 Comma biprocess;
8.5. processlist3:
                biprocess Comma biprocess
              | processlist3 Comma biprocess;
9. synclist: | LeftParen anyvarlist RightParen;
10. anyvar: booleanvar | variable;
11. anyvarlist: anyvar | anyvarlist Comma anyvar;

12. stmtlist: stmt | stmtlist Comma stmt;
13. stmt:
                  implication
                | expression
                | input **looks like {channel ? variable}
                | output **looks like {channel ! variable}
                | SKIP;
14. implication:
                  stmt Arrow consequent
                | variable Arrow consequent
                | biprocess;
14.5 consequent:
                 variable
               | biprocess;
15. processcall: Identifier LeftParen RightParen;
16. assignment is covered by expression in integer;
17. input: channel InSym variable;
18. output: channel OutSym operand;
19. guardedprocess: guard biprocess;
20. guardedproclst:
                   guardedprocess
                 | guardedproclst Comma guardedprocess;
21. guard:
                   input
                 | booleanexpr AND input
                 | booleanexpr AND SKIP;
22. recursive definition (not needed but defined in
      process definition)
23. channel: Identifier;
24. variable: Identifier;
25. booleanvar: AtSym Identifier;
26. expression:
                 integerexpr
               | booleanexpr
               | relationalexpr;
27. booleanexpr:
                 booleanvar
               | TRUE
               | FALSE
               | booleanexpr AND booleanexpr
               | booleanexpr OR booleanexpr
               | NOT booleanexpr
               | booleanvar VarAsgn booleanexpr;
28. relationalexpr:
                 operand LESym operand
               | operand LTSym operand
               | operand EQSym operand
               | operand NESym operand
               | operand GESym operand
               | operand GTSym operand;
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 Table B-1. CSP-based grammar (cont.)
29. integerexpr:
                  operand Plus operand
                | operand Minus operand
                | operand Star operand
                | operand Slash operand
                | operand VarAsgn operand
                | Minus operand;

30. operand:
                  Integer
                | variable
                | integerexpr
                | relationalexpr;

Under      Construction     (or     otherwise)  :
31. monadic operand:   (never used)
32. dyadic operand:      (never used)
33. integer:                   (defined in lexer)
34. digits:                     (defined in lexer)
35. digit:                      (defined in lexer)
36. declaration:            (currently undefined)
37. type:                       (currently undefined)
38. selection:                (currently undefined)
39. conditional:             (currently undefined)
40. option:                    (currently undefined)
41. loop:                       (currently undefined)
42. relational operator: (currently undefined)
43. timer:                     (currently undefined)
44. hide:                       (currently undefined)

 

 Table B-2.  CSP Constructs.
Placeholders are used to help the user know that an element must be provided.

ÒaÓ variable place holder.
ÒPÓ Process place holder.
Ò_Ó Either variable or Process is permissible.

1. STOP -- Never terminates (like deadlock).
2. SKIP -- Does nothing then terminates.
3. PAR{_, _}  -- Two elements (at least) are supplied.
4. PAR{_, _ (messages)} -- Two elements (at least) are supplied (and at least one message).
5. SEQ{_} -- One element (at least) is supplied.
6. NDC{_, _} -- Two elements (at least) are supplied.
7. DC{gP, gP} -- gP = Òguard processÓ
8. Mu.X{_} -- One element (at least) is supplied (X is any identifier).
9. guard: -- input | booleanexpr AND input | booleanexpr AND SKIP
10. statement (stmt): -- Is a process: implication | expression | input | output | SKIP
11. Implication: -- Is a process: stmt -> consequent | variable -> consequent
12. Consequent: -- variable | process
13. Input: -- Channel ? variable (variable is usually message, an identifier)
14. Output: -- Channel ! operand (operand is usually a message, an identifier)
15. Operand: -- variable | integerexpr | relationalexpr
16. variable: -- an identifier (usually a lower case alpha).
17. process: -- Must be declared (usually a higher case alphanumeric: ÒP()Ó).

-- ÒP()Ó is known as a process call based on a pre-defined process.
-- Items 1 through 8 are all processes (by default).
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APPENDIX C: CSP to Petri Net Translations

dt2

a b

dt1

a b

a   b PAR{a(),b()}

Parallel Composition

Classic CSP: P-CSP:

STOP

Performs no
action and never
terminates!

STOP

STOP STOP

or

SKIP

SKIP (not defined in CSP)

SKIPPerforms
no action
and
terminates.

Classic CSP: P-CSP: P-CSP:

or

µX.(b ♦  X) Mu.X{b()}

b

Recursion

Classic CSP: P-CSP:

X

Figure C-1.  Translations for (top) STOP / SKIP, (center) recursion and (bottom) PAR.



25

from environment

dt2

a b

dt1

from environment

from environmentfrom environment

a b

DC{a(),b()}a  b

Deterministic choice composition

Classic CSP: P-CSP:

dt2

a

b

a♦ b

Same in P-CSP

a

c

τ

(a♦ b♦ c)\b)

Sequential composition and hiding

Classic CSP: P-CSP:

Not implemented in P-CSP

Classic CSP:a♦ b

a

b

a b

sdt1 sdt2

dt1

a   b NDC{a(),b()}

a b

Nondeterministic choice composition

Classic CSP: P-CSP:

Figure C-2.  Translations for (top) DC, (center) NDC and (bottom) arrow and hiding.
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cb

X

Second step

b

X

dt2

{c()->X}

First stepµX.(b  c♦ X)

cb

Mu.X{NDC{b(),{c()->X}}P-CSP:
Recursive composition (with reduction)

Classic CSP:

cb

dummy

µX.((b   c)♦  X)

cb

X

dt1

Mu.X{NDC{b(),c()}}

cb

Recursive composition

Classic CSP: P-CSP:

The two recursive translations shown here (top and bottom) are the same translations as
those shown in Figure 13 except those shown here are reduced.  In the top figure, there
are two fewer transtions and one less place.  In the bottom figure, there are also two
fewer transitions and two fewer places.

Figure C-3. The translation of a recursive compositions in a reduced format.
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Train Gate

Synchronization
Event

Chnl  !  arri v e Chnl  ? arri v e

dt:arri v e

pi

pi+1

pj

pj+1

Classic CSP:
Train=
(InTransit);
(Chnl!arrive ♦ AtIntersect);
(Chnl!depart ♦ Train);

Gate=
(Chnl?arrive ♦ Close);
(Chnl?depart ♦ Open ♦ Gate);

Synchronization using input and output actions

Pictured at right

Synchronization is syntactically the same for both CSP and P-CSP.  There are 2 possible
translations that could be used. In the Petri net fragments shown, the train sends and the
gate is receives.  The actual synchronizing action (dt:arrive) is an immediate transition
and its firing is necessary before either process can proceed. In the bottom of the figure
the sending process (Train) is not blocked and can proceed (this 2nd type of
synchronization is not used by the CSPN tool).

Train Gate

Asynchronous
Communication

Event

Chnl  !  arri v e Open

Classic CSP:
Train=
(InTransit);
(Chnl!arrive ♦ AtIntersect);
(Chnl!depart ♦ Train);

Gate=
(Chnl?arrive ♦ Close);
(Chnl?depart ♦ Open ♦ Gate);

Pictured at right

Nonblocking Synchronization using input and output actions

Chnl  ? arri v e

pk

AtInters ect i on

pi

pi+1

pj

pj+1

Figure C-4. The translations show both blocked and non-blocked send synchronization.
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b

a d

c e

(a♦ b♦ c)||{b}(d♦ b♦ e)

dt2

dt1

a d

c e

dt:b

PAR{SEQ{a(),c()},
    SEQ{d(),e()}{b}};

Parallel and sequential composition

Classic CSP: P-CSP:

dt6

dt3

b c

dt2

a dt5

b c

dt4

a

dt1

b c

ab c

a

a♦ (b  c)||(b  c)♦ a

PAR{{a♦ NDC{b(),c()}},
    {NDC{b(),c()}♦ a}};

Parallel and Nondeterministic choice composition

Classic CSP: P-CSP:

Above: a( ) must ac tually
be ch!b, and d( ) must
ac tually be ch?b to be
cor rect using CSPN

Figure C-5.  Combined translations for parallel, sequential and nondeterministic choice.
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APPENDIX D: Description of CSPN Program Files

File Name Description
cmd_line.c Establishes the command line interface and flags control.

csp.l Scanner/lexer needed for lexographic analyzer used to define tokens.  This file
establishes what characters make up words, numbers, white space, etc.

csp.y Parser which determines the language and grammar (also main, and most
open/close of auxiliary files.

cspl.h Header file needed specifically by the lexer.

cspltops.h Header file needed by cspltops.c.

cspltops.c Menuing and main program.

cspy.h Header file needed specifically by the parser.

expn_cspy.c When the “net” structure of the CSP is completed, a process of composition
and expansion occurs to generate the complete Petri net structure.

genDot.h Generates a dot program readable input file.

itoa.c Small file containing a integer-to-ascii routine.

net.c Algorithms used to construct, display and traverse an array structure of linked
lists which define the structure (declarations, adjacency, and nesting) of CSP.

petri_cspy.c Used to decode the process list and coincidence-matrix, to build the net() part of
the fn_spnp.c output.

prlist.c Contains code to define, display and manipulate the process lists, which are the
names of CSP processes as defined in the input file as well as dummy names.

prmatrix.c Contains code to define, display and manipulate the coincidence-matrices.

reduce_matrix.c Algorithms to reduce the number of dummy transitions and places after all the
smaller pieces are assembled.

saferMalloc.c Very short file which devises a safer way to allocate memory which exits more
gracefulls.

scoring.c Routines that mark the atomic coincidence-matrices, which define the structure
of each individual CSP construct.

spnp_end.c File used to generate the CSPL file from the total “system” coincidence-matrix.

symbol_cspy.h Header file needed by symbol_cspy.c.

symbol_cspy.c Routines to create, display, manipulate and update the symbol table of CSP
process names (including [dummy] transitions and places).


