
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 1

Formal Specification

⊗ Techniques for the
unambiguous specification of
software

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 2

Objectives

⊗ To explain the place of formal software
specification in the software process.

⊗ To explain when formal specification is cost-
effective.

⊗ To describe a process model based on the
transformation of formal specifications to an
executable system.

⊗ To introduce a simple approach to formal
specification based on pre and post conditions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 3

Topics covered

⊗ Formal specification on trial

⊗ Transformational development

⊗ Specifying functional abstractions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 4

Specification in the software process

⊗ Specification and design are inextricably
intermingled.

⊗ Architectural design is essential to structure a
specification.

⊗ Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 5

Specification and design

Architectural
design

Requirements
specification

Requirements
definition

Software
specification

High-level
design

Increasing contractor involvement

Decreasing client involvement

Specification

Design

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 6

Specification in the software process

Requirements
specification

Formal
specification

System
modelling

Architectural
design

Requirements
definition

High-level
design

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 7

Formal specification on trial

⊗ Formal techniques are not widely used in
industrial software development

⊗ Given the relevance of mathematics in other
engineering disciplines, why is this the case?

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 8

Why aren't formal methods used?

⊗ Inherent management conservatism. It is hard
to demonstrate the advantages of formal
specification in an objective way

⊗ Many software engineers lack the training in
discrete math necessary for formal specification

⊗ System customers may be unwilling to fund
specification activities

⊗ Some classes of software (particularly
interactive systems and concurrent systems)
are difficult to specify using current techniques

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 9

Why aren't formal methods used?

⊗ There is widespread ignorance of the
applicability of formal specifications

⊗ There is little tool support available for formal
notations

⊗ Some computer scientists who are familiar with
formal methods lack knowledge of the
real-world problems to which these may be
applied and therefore oversell the technique

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 10

Advantages of formal specification

⊗ It provides insights into the software
requirements and the design.

⊗ Formal specifications may be analyzed
mathematically and the consistency and
completeness of the specification demonstrated. It
may be possible to prove that the implementation
corresponds to the specification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 11

Advantages of formal specifications

⊗ Formal specifications may be used to guide the
tester of the component in identifying appropriate
test cases

⊗ Formal specifications may be processed using
software tools. It may be possible to animate the
specification to provide a software prototype

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 12

Seven myths of formal methods

⊗ Perfect software results from formal methods
• Nonsense - the formal specification is a model of the

real-world and may incorporate misunderstandings, errors
and omissions.

⊗ Formal methods means program proving
• Formally specifying a system is valuable without formal

program verification as it forces a detailed analysis early in
the development process.

⊗ Formal methods can only be justified for
safety-critical systems.
• Industrial experience suggests that the development costs

for all classes of system are reduced by using formal
specification.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 13

Seven myths of formal methods

⊗ Formal methods are for mathematicians
• Nonsense - only simple math is needed.

⊗ Formal methods increase development costs
• Not proven. However, formal methods definitely push

development costs towards the front-end of the life cycle.

⊗ Clients cannot understand formal specifications
• They can if they are paraphrased in natural language.

⊗ Formal methods have only been used for trivial
systems
• There are now many published examples of experience

with formal methods for non-trivial software systems.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 14

The verdict!

⊗ The reasons put forward for not using formal
specifications and methods are weak

⊗ However, there are good reasons why these
methods are not used
• The move to interactive systems. Formal specification techniques

cannot cope effectively with graphical user interface specification

• Successful software engineering. Investing in other software
engineering techniques may be more cost-effective

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 15

Use of formal methods

⊗ These methods are unlikely to be widely used ion
the foreseeable future. Nor are they likely to be
cost-effective for most classes of system

⊗ They will become the normal approach to the
development of safety critical systems and
standards

⊗ This changes the expenditure profile through the
software process

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 16

Development costs with formal
specification

Specification

Design and
Implementation

Validation

Specification

Design and
Implementation

Validation

Cost

Without formal
specification

With formal
specification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 17

Transformational development

R2R1
Formal

specification
R3

Executable
program

P1 P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 18

Specifying functional abstractions

⊗ The simplest specification is function
specification. There is no need to be concerned
with global state (assuming no side-effects)

⊗ The formal specification is expressed as input
and output predicates (pre and post conditions)

⊗ Predicates are logical expressions which are
always either true or false

⊗ Predicate operators include the usual logical
operators and quantifiers such as for-all and
exists

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 19

Examples of predicates

All variables referenced are of type INTEGER

1. The value of variable A is greater than the value of B and the
value of variable C is greater than D

A > B and C > D

2. This predicate illustrates the use of the exists quantifier. The predicate is true if there are values
 of i, j and k between M and N such that i2 = j2 + k2. Thus, if M is 1 and N is 5, the predicate is true as
32 + 42 = 52. If M is 6 and N is 9, the predicate is false. There are no values of i, j and k between
 6 and 9 which satisfy the condition.

exists i, j, k in M..N: i2 = j2 + k2

3. This predicate illustrates the use of the universal quantifier for_all. It concerns the values of an
 array called Squares. It is true if the first ten values in the array take a value which is the square
 of an integer between 1 and 10.

for_all i in 1..10, exists j in 1..10: Squares (i) = j2

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 20

Specification with pre and post
conditions

⊗ Set out the pre-conditions
• A statement about the function parameters stating what is

invariably true before the function is executed

⊗ Set out the post-conditions
• A statement about the function parameters stating what is

invariably true after the function has executed

⊗ The difference between the pre and post
conditions is due to the application of the
function to its parameters. Together the pre and
post conditions are a function specification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 21

Specification development

⊗ Establish the bounds of the input parameters.
Specify this as a predicate

⊗ Specify a predicate defining the condition which
must hold on the result of the function if it
computes correctly

⊗ Establish what changes are made to the input
parameters by the function and specify these
as a predicate

⊗ Combine the predicates into pre and post
conditions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 22

The specification of a search

function Search (X: in INTEGER_ARRAY ; Key: INTEGER)
 return INTEGER ;

Pre: exists i in X'FIRST..X'LAST: X(i) = Key
Post: X” (Search (X, Key)) = Key and X = X”

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 23

Search pre-conditions

⊗ One of the array elements must match the key

⊗ Use the exists quantifier to specify that an
element must exist which matches the key
• exists i in X’FIRST..X’LAST: X (i) = Key

⊗ Assume FIRST and LAST refer to the upper
and lower bounds of the array

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 24

Search post-conditions

⊗ The result of Search should be the value of the
array index which refers to the element
containing the key
• X”(Search (X, Key)) = Key

⊗ The array after the operation is referenced by
'priming' the array name

⊗ The array should not be changed by the Search
function
• X = X”

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 25

Specification with error predicate

function Search (X: in INTEGER_ARRAY ; Key: INTEGER)
 return INTEGER ;
Pre: exists i in X'FIRST..X'LAST: X (i) = Key
Post: X” (Search (X, Key)) = Key and X = X”
Error: Search (X, Key) = X'LAST + 1

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 26

Formal specification approaches

⊗ Algebraic approach
• The system is described in terms of interface operations and their

relationships

⊗ Model-based approach
• A model of the system acts as a specification. This model is

constructed using well-understood mathematical entities such as
sets and sequences

⊗ These are covered in the following two chapters

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 27

Formal specification languages

Sequential Concurrent
Algebraic Larch (Guttag et al., 1985),

OBJ (Futatsugi et al., 1985)
Lotos (Bolognesi and
Brinksma, 1987),

Model-based Z (Spivey, 1989)
VDM (Jones, 1980)

CSP (Hoare, 1985)
Petri Nets (Peterson, 1981)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 28

Key points

⊗ Formal system specification complements
informal specification techniques

⊗ Formal specifications are precise and
unambiguous. They remove areas of doubt in a
specification

⊗ Formal specification forces an analysis of the
system requirements at an early stage. Correcting
errors at this stage is cheaper than modifying a
delivered system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 9 Slide 29

Key points

⊗ Formal specification techniques are not cost-
effective for the development of interactive
systems. They are most applicable in the
development of safety-critical systems and
standards.

⊗ Functions can be specified by setting out pre and
post conditions for the function.However, this
approach does not scale up to large or medium-
sized systems.

