
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 1

Defect testing

⊗ Establishing the presence of
system defects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 2

Objectives

⊗ To describe approaches to testing which are geared
to find program defects

⊗ To show how test case design guidelines can be
used to design program tests

⊗ To explain the use of program structure analysis in
testing

⊗ To discuss the problems of interface testing

⊗ To suggest design guidelines for interface testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 3

Topics covered

⊗ Approaches to defect testing

⊗ Black-box testing

⊗ Structural testing

⊗ Interface testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 4

Defect testing

⊗ The objective of defect testing is to discover
defects in programs

⊗ A successful defect test is a test which causes a
program to behave in an anomalous way

⊗ Tests show the presence not the absence of defects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 5

⊗ Only exhaustive testing can show a program is
free from defects. However, exhaustive testing
is impossible

⊗ Tests should exercise a system's capabilities
rather than its components

⊗ Testing old capabilities is more important than
testing new capabilities

⊗ Testing typical situations is more important than
boundary value cases

Testing priorities

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 6

⊗ Test data Inputs which have been devised to
test the system

⊗ Test cases Inputs to test the system and the
predicted outputs from these inputs if the
system operates according to its specification

Test data and test cases

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 7

The defect testing process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 8

Defect testing approaches

Interface
testing

Functional
testing

Structural
testing

Sub-systemSystem Unit and
module

Testing
team

Development
team

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 9

Testing effectiveness

⊗ In an experiment, black-box testing was found to
be more effective than structural testing in
discovering defects

⊗ Static code reviewing was less expensive and
more effective in discovering program faults

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 10

Black-box testing

⊗ Approach to testing where the program is
considered as a ‘black-box’

⊗ The program test cases are based on the system
specification

⊗ Test planning can begin early in the software
process

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 11

Black-box testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 12

Equivalence partitioning

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 13

⊗ Partition system inputs and outputs into
‘equivalence sets’
• If input is a 5-digit integer between 10,000 and 99,999,

equivalence partitions are <10,000, 10,000-99, 999 and >
99, 999

⊗ Choose test cases at the boundary of these
sets
• 00000, 09999, 10000, 99999, 100001

Equivalence partitioning

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 14

Equivalence partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 15

Search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
 Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
T’FIRST <= T’LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and

 not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 16

⊗ Inputs which conform to the pre-conditions

⊗ Inputs where a pre-condition does not hold

⊗ Inputs where the key element is a member of
the array

⊗ Inputs where the key element is not a member
of the array

Search routine - input partitions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 17

Testing guidelines (arrays)

⊗ Test software with arrays which have only a single
value

⊗ Use arrays of different sizes in different tests

⊗ Derive tests so that the first, middle and last
elements of the array are accessed

⊗ Test with arrays of zero length (if allowed by
programming language)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 18

Search routine - input partitions

Array Element
Single value In array
Single value Not in array
More than 1 value First element in array
More than 1 value Last element in array
More than 1 value Middle element in array
More than 1 value Not in array

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 19

Search routine - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 6
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 20

⊗ Sometime called white-box testing

⊗ Derivation of test cases according to program
structure. Knowledge of the program is used to
identify additional test cases

⊗ Objective is to exercise all program statements
(not all path combinations)

Structural testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 21

White-box testing

Component
code

Test
outputs

Test data

DerivesTests

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 22

Binary search (Ada)
procedure Binary_search (Key: ELEM ; T: ELEM_ARRAY ;
 Found: in out BOOLEAN ; L: in out ELEM_INDEX) is

- Preconditions
-- T’FIRST < =T’LAST and
-- forall i: T’FIRST..T’LAST-1, T (i) <= T(i+1)

 Bott : ELEM_INDEX := T’FIRST ;
 Top : ELEM_INDEX := T’LAST ;
 Mid : ELEM_INDEX;
begin
 L := (T’FIRST + T’LAST) / 2;
 Found := T(L) = Key;
 while Bott <= Top and not Found loop
 Mid := (Top + Bott) mod 2;
 i f T(Mid) = Key then
 Found := true;
 L := Mid;
 elsi f T(Mid) < Key then
 Bott := Mid + 1;
 e lse
 Top := Mid - 1;
 end if;

end loop;
end Binary_search;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 23

Binary search (C++)

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 24

⊗ Pre-conditions satisfied, key element in array

⊗ Pre-conditions satisfied, key element not in
array

⊗ Pre-conditions unsatisfied, key element in array

⊗ Pre-conditions unsatisfied, key element not in
array

⊗ Input array has a single value

⊗ Input array has an even number of values

⊗ Input array has an odd number of values

Binary search - equiv. partitions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 25

Binary search equiv. partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 26

Binary search - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 27

⊗ Describes the program control flow

⊗ Used as a basis for computing the cyclomatic
complexity

⊗ Complexity = Number of edges - Number of
nodes +1

Program flow graphs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 28

Flow graph representations

if-then-else loop-while case-of

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 29

Binary search flow graph

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 30

⊗ 1, 2, 3, 4, 12, 13

⊗ 1, 2,3, 5, 6, 11, 2, 12, 13

⊗ 1, 2, 3, 5, 7, 8, 10, 11, 2, 12, 13

⊗ 1, 2, 3, 5, 7, 9, 10, 11, 2, 12, 13

⊗ Test cases should be derived so that all of these
paths are executed

⊗ A dynamic program analyser may be used to
check that paths have been executed

Independent paths

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 31

⊗ The number of tests to test all control
statements equals the cyclomatic complexity

⊗ Cyclomatic complexity equals number of
conditions in a program

⊗ Useful if used with care. Does not imply
adequacy

⊗ Does not take into account data-driven
programs

Cyclomatic complexity

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 32

Control and data-driven programs

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 33

⊗ Takes place when modules or sub-systems are
integrated to create larger systems

⊗ Objectives are to detect faults due to interface
errors or invalid assumptions about interfaces

⊗ Particularly important for object-oriented
development as objects are defined by their
interfaces

Interface testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 34

Interfaces types

⊗ Parameter interfaces
• Data passed from one procedure to another

⊗ Shared memory interfaces
• Block of memory is shared between procedures

⊗ Procedural interfaces
• Sub-system encapsulates a set of procedures to be called by other

sub-systems

⊗ Message passing interfaces
• Sub-systems request services from other sub-systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 35

Interface testing

Test
cases

BA

C

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 36

Interface errors

⊗ Interface misuse
• A calling component calls another component and makes an error

in its use of its interface e.g. parameters in the wrong order

⊗ Interface misunderstanding
• A calling component embeds assumptions about the behaviour of

the called component which are incorrect

⊗ Timing errors
• The called and the calling component operate at different speeds

and out-of-date information is accessed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 37

Interface testing guidelines

⊗ Design tests so that parameters to a called
procedure are at the extreme ends of their ranges

⊗ Always test pointer parameters with null pointers

⊗ Design tests which cause the component to fail

⊗ Use stress testing in message passing systems

⊗ In shared memory systems, vary the order in
which components are activated

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 38

Key points

⊗ Test parts of a system which are commonly used
rather than those which are rarely executed

⊗ Equivalence partitions are sets of test cases where
the program should behave in an equivalent way

⊗ Black-box testing is based on the system
specification

⊗ Structural testing identifies test cases which cause
all paths through the program to be executed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 39

Key points

⊗ Test coverage measures ensure that all statements
have been executed at least once. However, it is
not possible to exercise all path combinations

⊗ Interface defects arise because of specification
misreading, misunderstanding, errors or invalid
timing assumptions

