Defect testing

0 Establishing the presence of

system defects
Objectives

0 To describe approaches to testing which are geared
to find program defects

0 To show how test case design guidelines can be
used to design program tests

0 Toexplainthe use of program structure analysisin
testing

0 To discuss the problems of interface testing

0 To suggest design guidelines for interface testing

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 2

Topics covered

Approaches to defect testing
Black-box testing
Structural testing

O
O
O
0 Interfacetesting

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 3

Defect testing

0 The objective of defect testing isto discover
defects in programs

0 A successful defect test isatest which causesa
program to behave in an anomal ous way

0 Tests show the presence not the absence of defects

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 4

Testing priorities

0 Only exhaustive testing can show a program is
free from defects. However, exhaustive testing
Isimpossible

0 Tests should exercise a system's capabilities
rather than its components

0 Testing old capabilitiesis more important than
testing new capabilities

0 Testing typical Situationsis more important than
boundary value cases

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 5

Test data and test cases

0 Testdata Inputswhich have been devised to
test the system

0 Test cases Inputsto test the system and the
predicted outputs from these inputs if the
system operates according to its specification

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 6

The defect testing process

Test Test Test Test
cases data results reports

Design test Prepare test Run program Compare result
cases data with test data to test cases
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 7

Defect testing approaches

Testing
team

Structural
testing

Interface
testing

Functional
testing

Unit and

System Sub-system ol

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 8

Testing effectiveness

0 Inan experiment, black-box testing was found to
be more effective than structural testing in
discovering defects

0 Static code reviewing was less expensive and
more effective in discovering program faults

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 9

Black-box testing

0 Approach to testing where the program is
considered as a ‘ black-box’

0 The program test cases are based on the system
specification

0 Test planning can begin early in the software
process

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 10

Black-box testing

Inputs causing
anomalous
Input test data behaviour

Outputs which reveal
the presence of
defects

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 11

Equivalence partitioning

0 Replace with portrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 12

Equivalence partitioning

0 Partition system inputs and outputs into
‘equivalence sets

+ If inputisab5-digit integer between 10,000 and 99,999,
equivalence partitions are <10,000, 10,000-99, 999 and >
99, 999

0 Choose test cases at the boundary of these
sets
- 00000, 09999, 10000, 99999, 100001

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 13

Equivaence partitions

v v w

Less than 4 Between 4 and 10 More than 1

Number of input values

9999 100000

WOOO 50000 99395
| Less than 10000| Between 10000 and 999j9 More than 99999 '

Input values

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 14

Search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
Found :in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
TFIRST <= T'LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and
not (exists i, TFIRST >=i <= T'LAST, T (i) = Key))
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 15

Search routine - input partitions

Inputs which conform to the pre-conditions
Inputs where a pre-condition does not hold

Inputs where the key element isamember of
the array

0 Inputs where the key element is not a member
of the array

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 16

Testing guidelines (arrays)

0 Test software with arrays which have only asingle
vaue

0 Usearraysof different sizesin different tests

0 Derivetests so that the first, middle and last
elements of the array are accessed

0 Test with arrays of zero length (if allowed by
programming language)

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 17

Search routine - input partitions

Array Element

Single value In array

Single value Not in array

More than 1 value First element in array
More than 1 value Last element in array
More than 1 value Middle element in array
More than 1 value Not in array

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 18

Search routine - test cases

Input array (T) Key (Key)| Output (Found, L)
17 17 true, 1

17 0 false, ??

17, 29, 21, 23 17 true, 1

41, 18, 9, 31, 30, 16, 45 45 true, 6

17, 18, 21, 23, 29, 41, 38 23 true, 4

21, 23, 29, 33, 38 25 false, ??

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 19

Structural testing

0 Sometime called white-box testing

0 Derivation of test cases according to program
structure. Knowledge of the program is used to
identify additional test cases

0 Objectiveisto exercise all program statements
(not all path combinations)

©lan Sommerville 1995

Software Engineering, 5th edition. Chapter 23 Slide 20

White-box testing

Test data
Tests Derives
Component Test
code outputs

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 21

Binary search (Ada)

procedure Binary_search (Key: ELEM ; T: ELEM_ARRAY ;
Found: in out BOOLEAN ; L: in out ELEM_INDEX) is
- Preconditions
- TFIRST < =T'LAST and
-- forall i: TFIRST..T'LAST-1, T (i) <= T(i+1)
Bott : ELEM_INDEX := T'FIRST ;
Top : ELEM_INDEX := T'LAST ;
Mid : ELEM_INDEX;
begin
L:=(TFIRST + TLAST)/ 2;
Found :=T(L) =Key;
while Bott <= Top and not Found loop
Mid := (Top + Bott) mod 2;
if T(Mid) = Key then

Found := true;
L := Mid;
elsif T(Mid) < Key then
Bott := Mid + 1;
else
Top :=Mid - 1;
end if;
end loop;

end Binary_search;

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 22

Binary search (C++)

0 Replace with portrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 23

Binary search - equiv. partitions

0 Pre-conditions satisfied, key element in array

0 Pre-conditions satisfied, key element not in
array

0 Pre-conditions unsatisfied, key element in array

0 Pre-conditions unsatisfied, key element not in
array

O Input array hasasinglevaue

0 Input array has an even number of values

0 Input array has an odd number of values

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 24

Binary search equiv. partitions

Equivalence class boundaries

Y YYY Y

Elements < Mid Elements > Mid

Mid-point

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 25

Binary search - test cases

Input array (T) Key (Key)| Output (Found, L)
17 17 true, 1

17 0 false, ??

17, 21, 23, 29 17 true, 1

9, 16, 18, 30, 31, 41, 45 45 true, 7

17, 18, 21, 23, 29, 38, 41 23 true, 4

17, 18, 21, 23, 29, 33, 38 21 true, 3

12, 18, 21, 23, 32 23 true, 4

21, 23, 29, 33, 38 25 false, ??

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 26

Program flow graphs

0 Describes the program control flow
0 Used asabasisfor computing the cyclomatic

complexity
0 Complexity = Number of edges - Number of
nodes +1
Flow graph representations
if-then-else loop-while case-of

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 28

Binary search flow graph

0 Replace with portrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 29

|ndependent paths

1,2,3,4,12,13
1,235,611, 2,12, 13
1,2,357,8,10,11, 2,12, 13
1,2,357,910,11, 2,12, 13

Test cases should be derived so that al of these
paths are executed

0 A dynamic program analyser may be used to
check that paths have been executed

O 0o o o od

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 30

Cyclomatic complexity

0 The number of teststo test dl control
statements equal s the cyclomatic complexity

0 Cyclomatic complexity equal s number of
conditionsin a program

0 Useful if used with care. Does not imply

adequacy
0 Does not take into account data-driven
programs
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 31

Control and data-driven programs

0 Replace with portrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 32

|nterface testing

0 Takes place when modules or sub-systems are
integrated to create larger systems

0 Objectives are to detect faults due to interface
errors or invalid assumptions about interfaces

0 Particularly important for object-oriented
development as obj ects are defined by their

interfaces
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 33
Interfaces types

0 Parameter interfaces
» Datapassed from one procedure to another

0 Shared memory interfaces
» Block of memory is shared between procedures

0 Procedura interfaces

* Sub-system encapaulates aset of proceduresto be cdled by ather
sub-systems

0 Message passing interfaces
* Sub-systems requed services from ather sub-systems

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 34

|nterface testing

Test
cases

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 35

Interface errors

0 Interface misuse

* A callingcomponert calls another component and makes an error
inits use of itsinterfacee.qg. parameters inthe wrong order

O Interface misunderstanding

* A callingcomponent embeds assumptions about the behaviour of
the called component which areincorrect

0 Timing errors

» Thecaled and the calling component operateat different speeds
and out-of-date informationis accessed

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 36

|nterface testing guidelines

O

I N B I

Design tests so that parametersto acalled
procedure are at the extreme ends of their ranges

Always test pointer parameters with null pointers
Design tests whi ch cause the component to fail
Use stress testing in message passing systems

In shared memory systems, vary the order in
which components are activated

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 37

Key points

O

Test parts of a system which are commonly used
rather than those which are rarely executed

Equivalence partitions are sets of test cases where
the program should behave in an equivaent way
Black-box testing is based on the system
specification

Structura testing identifies test cases which cause
all paths through the program to be executed

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 38

Key points

0 Test coverage measures ensure that al statements
have been executed at least once. However, it is
not possible to exercise all path combinations

O Interface defects arise because of specification
misreading, misunderstanding, errors or invalid
timing assumptions

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 23 Slide 39

