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Verification and Validation

⊗ Assuring that a software system
meets a user's needs
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Objectives

⊗ To introduce software verification and validation

⊗ To describe the stages of the testing process

⊗ To explain the importance of test planning

⊗ To describe various complementary testing
strategies
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Topics covered

⊗ The testing process

⊗ Test planning

⊗ Testing strategies
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⊗ Verification:
"Are we building the product right"

⊗ The software should conform to its specification

⊗ Validation:
 "Are we building the right product"

⊗ The software should do what the user really
requires

Verification vs validation
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⊗ Is a whole life-cycle process - V & V must be
applied at each stage in the software process.

⊗ Has two principal objectives
• The discovery of defects in a system

• The assessment of whether or not the system is usable in
an operational situation.

The V & V process
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⊗ Dynamic V & V  Concerned with exercising and
observing product behaviour (testing)

⊗ Static verification  Concerned with analysis of
the static system representation to discover
problems

Dynamic and static verification
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Static and dynamic V&V
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⊗ Can reveal the presence of errors NOT their
absence

⊗ A successful test is a test which discovers one
or more errors

⊗ Only validation technique for non-functional
requirements

⊗ Should be used in conjunction with static
verification

Program testing
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⊗ Statistical testing
• tests designed to reflect the frequence of user inputs. Used

for reliability estimation.

• Covered in Chapter 18 - Software reliability.

⊗ Defect testing
• Tests designed to discover system defects.

• A successful defect test is one which reveals the presence
of defects in a system.

• Covered in Chapter 23 - Defect testing

Types of testing
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⊗ Defect testing and debugging are distinct
processes

⊗ Defect testing is concerned with confirming the
presence of errors

⊗ Debugging is concerned with locating and
repairing these errors

⊗ Debugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error

Testing and debugging
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The debugging process
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⊗ Unit testing
• testing of individual components

⊗ Module testing
• testing of collections of dependent components

⊗ Sub-system testing
• testing collections of modules integrated into sub-systems

⊗ System testing
• testing the complete system prior to delivery

⊗ Acceptance testing
• testing by users to check that the system satisfies

requirements. Sometimes called alpha testing

Testing stages
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The testing process
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Object-oriented system testing

⊗ Less closely coupled systems. Objects are not
necessarily integrated into sub-systems

⊗ Cluster testing.  Test a group of cooperating
objects

⊗ Thread testing. Test a processing thread as it
weaves from object to object. Discussed later in
real-time system testing
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⊗ Describe major phases of the testing process

⊗ Describe tracability of tests to requirements

⊗ Estimate overall schedule and resource
allocation

⊗ Describe relationship with other project plans

⊗ Describe recording method for test results

Test planning and scheduling
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The test plan

⊗ The testing process

⊗ Requirements traceability

⊗ Tested items

⊗ Testing schedule

⊗ Test recording procedures

⊗ Hardware and software requirements

⊗ Constraints
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The V-model of development
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Testing strategies

⊗ Tetsing strategies are ways of approaching the
testing process

⊗ Different strategies may be applied at different
stages of the testing process

⊗ Strategies covered
• Top-down testing

• Bottom-up testing

• Thread testing

• Stress testing

• Back-to-back testing
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Incremental testing
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Top-down testing
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Top-down testing

⊗ Start with the high-levels of a system and work
your way downwards

⊗ Testing strategy which is used in conjunction with
top-down development

⊗ Finds architectural errors

⊗ May need system infrastructure before any testing
is possible

⊗ May be difficult to develop program stubs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 22

Bottom-up testing
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Bottom-up testing

⊗ Necessary for critical infrastructure components

⊗ Start with the lower levels of the system and work
upward

⊗ Needs test drivers to be implemented

⊗ Does not find major design problems until late in
the process

⊗ Appropriate for object-oriented systems
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Thread testing

⊗ Suitable for real-time and object-oriented systems

⊗ Based on testing an operation which involves a
sequence of processing steps which thread their
way through the system

⊗ Start with single event threads then go on to
multiple event threads

⊗ Complete thread testing is impossible because of
the large number of event combinations
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Process interactions
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Thread testing
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Multiple-thread testing
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⊗ Exercises the system beyond its maximum design
load. Stressing the system often causes defects to
come to light

⊗ Stressing the system test faulure behaviour..
Systems should not fail catastrophically. Stress
testing checks for unacceptable loss of service or
data

⊗ Particularly relevant to distributed systems
which can exhibit severe degradation as a
network becomes overloaded

Stress testing
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Back-to-back testing

⊗ Present the same tests to different versions of the
system and compare outputs. Differing outputs
imply potential problems

⊗ Reduces the costs of examining test results.
Automatic comparison of outputs.

⊗ Possible twhen a prototype is available or with
regression testing of a new system version
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Back-to-back testing
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Key points

⊗ Verification and validation are not the same thing

⊗ Testing is used to establish the rpesence of defects
and to show fitness for purpose

⊗ Testing activities include unit testing, module
testing, sub-system testing, integration testing and
acceptance testing

⊗ Object classes should be testing in O-O systems
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Key points

⊗ Testing should be scheduled as part of the
planning process. Adequate resources must be
made available

⊗ Test plans should be drawn up to guide the testing
process

⊗ Testing strategies include top-down testing,
bottom-up testing, stress testing, thread testing and
back-to-back testing


