
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 1

Verification and Validation

⊗ Assuring that a software system
meets a user's needs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 2

Objectives

⊗ To introduce software verification and validation

⊗ To describe the stages of the testing process

⊗ To explain the importance of test planning

⊗ To describe various complementary testing
strategies

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 3

Topics covered

⊗ The testing process

⊗ Test planning

⊗ Testing strategies

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 4

⊗ Verification:
"Are we building the product right"

⊗ The software should conform to its specification

⊗ Validation:
 "Are we building the right product"

⊗ The software should do what the user really
requires

Verification vs validation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 5

⊗ Is a whole life-cycle process - V & V must be
applied at each stage in the software process.

⊗ Has two principal objectives
• The discovery of defects in a system

• The assessment of whether or not the system is usable in
an operational situation.

The V & V process

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 6

⊗ Dynamic V & V Concerned with exercising and
observing product behaviour (testing)

⊗ Static verification Concerned with analysis of
the static system representation to discover
problems

Dynamic and static verification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 7

Static and dynamic V&V

Formal
specification

High-level
design

Requirements
specification

Detailed
design Program

Prototype Dynamic
validation

Static
verification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 8

⊗ Can reveal the presence of errors NOT their
absence

⊗ A successful test is a test which discovers one
or more errors

⊗ Only validation technique for non-functional
requirements

⊗ Should be used in conjunction with static
verification

Program testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 9

⊗ Statistical testing
• tests designed to reflect the frequence of user inputs. Used

for reliability estimation.

• Covered in Chapter 18 - Software reliability.

⊗ Defect testing
• Tests designed to discover system defects.

• A successful defect test is one which reveals the presence
of defects in a system.

• Covered in Chapter 23 - Defect testing

Types of testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 10

⊗ Defect testing and debugging are distinct
processes

⊗ Defect testing is concerned with confirming the
presence of errors

⊗ Debugging is concerned with locating and
repairing these errors

⊗ Debugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error

Testing and debugging

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 11

The debugging process

Locate
error

Design
error repair

Repair
error

Re-test
program

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 12

⊗ Unit testing
• testing of individual components

⊗ Module testing
• testing of collections of dependent components

⊗ Sub-system testing
• testing collections of modules integrated into sub-systems

⊗ System testing
• testing the complete system prior to delivery

⊗ Acceptance testing
• testing by users to check that the system satisfies

requirements. Sometimes called alpha testing

Testing stages

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 13

The testing process

Sub-system
testing

Module
testing

Unit
testing

System
testing

Acceptance
testing

Component
testing

Integration testing User
testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 14

Object-oriented system testing

⊗ Less closely coupled systems. Objects are not
necessarily integrated into sub-systems

⊗ Cluster testing. Test a group of cooperating
objects

⊗ Thread testing. Test a processing thread as it
weaves from object to object. Discussed later in
real-time system testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 15

⊗ Describe major phases of the testing process

⊗ Describe tracability of tests to requirements

⊗ Estimate overall schedule and resource
allocation

⊗ Describe relationship with other project plans

⊗ Describe recording method for test results

Test planning and scheduling

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 16

The test plan

⊗ The testing process

⊗ Requirements traceability

⊗ Tested items

⊗ Testing schedule

⊗ Test recording procedures

⊗ Hardware and software requirements

⊗ Constraints

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 17

The V-model of development

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 18

Testing strategies

⊗ Tetsing strategies are ways of approaching the
testing process

⊗ Different strategies may be applied at different
stages of the testing process

⊗ Strategies covered
• Top-down testing

• Bottom-up testing

• Thread testing

• Stress testing

• Back-to-back testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 19

Incremental testing

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence
1

Test sequence
2

Test sequence
3

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 20

Top-down testing

Level 2Level 2Level 2Level 2

Level 1 Level 1
Testing

sequence

Level 2
stubs

Level 3
stubs

. . .

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 21

Top-down testing

⊗ Start with the high-levels of a system and work
your way downwards

⊗ Testing strategy which is used in conjunction with
top-down development

⊗ Finds architectural errors

⊗ May need system infrastructure before any testing
is possible

⊗ May be difficult to develop program stubs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 22

Bottom-up testing

Level NLevel NLevel NLevel NLevel N

Level N–1 Level N–1Level N–1

Testing
sequence

Test
drivers

Test
drivers

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 23

Bottom-up testing

⊗ Necessary for critical infrastructure components

⊗ Start with the lower levels of the system and work
upward

⊗ Needs test drivers to be implemented

⊗ Does not find major design problems until late in
the process

⊗ Appropriate for object-oriented systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 24

Thread testing

⊗ Suitable for real-time and object-oriented systems

⊗ Based on testing an operation which involves a
sequence of processing steps which thread their
way through the system

⊗ Start with single event threads then go on to
multiple event threads

⊗ Complete thread testing is impossible because of
the large number of event combinations

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 25

Process interactions

P2

P1

P5

P4

I1 (P2)

O2 (P4)

O1
(P5)

I2 (P1)

I1 (P1)

I3 (P1)

P3I1 (P3) O1 (P4)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 26

Thread testing

P2P3 P4 O1
(P4)

I1
(P3)

P2P1 P5 O1
(P5)

I2
(P1)

I1
(P1)

I3
(P1)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 27

Multiple-thread testing

P2P1 P5

P4

I1 (P2)

O2 (P4)

O1 (P5)I2 (P1)

I1 (P1)

I3 (P1)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 28

⊗ Exercises the system beyond its maximum design
load. Stressing the system often causes defects to
come to light

⊗ Stressing the system test faulure behaviour..
Systems should not fail catastrophically. Stress
testing checks for unacceptable loss of service or
data

⊗ Particularly relevant to distributed systems
which can exhibit severe degradation as a
network becomes overloaded

Stress testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 29

Back-to-back testing

⊗ Present the same tests to different versions of the
system and compare outputs. Differing outputs
imply potential problems

⊗ Reduces the costs of examining test results.
Automatic comparison of outputs.

⊗ Possible twhen a prototype is available or with
regression testing of a new system version

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 30

Back-to-back testing

Test data

Program
version A

Program
version B

Results
comparator

Difference report

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 31

Key points

⊗ Verification and validation are not the same thing

⊗ Testing is used to establish the rpesence of defects
and to show fitness for purpose

⊗ Testing activities include unit testing, module
testing, sub-system testing, integration testing and
acceptance testing

⊗ Object classes should be testing in O-O systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 22 Slide 32

Key points

⊗ Testing should be scheduled as part of the
planning process. Adequate resources must be
made available

⊗ Test plans should be drawn up to guide the testing
process

⊗ Testing strategies include top-down testing,
bottom-up testing, stress testing, thread testing and
back-to-back testing

