Software Reuse

0 Building software from
reusable components.

©lan Sommerville 195 Software Engineering, 5th edition Chapter 20

Slide1

Objectives

0 To discuss the advantages and disadvantages of
software reuse

0 To describe development with and for reuse

0 To discuss the characteristics of generic reusable
components

0 To describe methods of developing portable
application systems

©lan Sommerville 1995 Software Engineering, 5th edition Chapter 20 Slide2

Topics covered

Software devel opment with reuse
Software development for reuse
Generator-based reuse
Application system portability

O o o o

©lan Sommerville 195 Software Engineering, 5th edition Chapter 20

Slide3

Reusable component types

0 Application system reuse

¢ Thewhole of an application system may bereused on a
different machine. Usually referred to as program

portability
0 Sub-system reuse

¢ Major sub-systems such as a pattern-matching system may
be reused

0 Modules or object reuse

¢ Thereusable component is acollection of functions or
procedures

0 Function reuse
¢ Thereusable component isasingle fundion

©lan Sommerville 1995 Software Engineering, 5th edition Chapter 20

Side4

Reuse practice

0 Application system reuse

¢ Widespread. It is common practice for developers of systems
(e.g. Microsoft) to make their products available on several
platforms

0 Sub-system and module reuse
e Practiced informally in that individual engineers reuse previous
work. Little systematic reuse but increasing reuse awareness
0 Function reuse

¢ Common in some application domains (e.g. engineering) where
domain-specific libraries of reusable functions have been
established. Reuse is the prindpal reason why languages such as
FORTRAN are still used

©lan Sommerville 195 Software Engineering, 5th edition Chapter 20 Slide5

Four aspects of reuse

0 Software devel opment with reuse
¢ Developing software given a base of reusable components

0 Software development for reuse

¢ How to design generic software components for reuse
0 Generator-based reuse

« Domain-specific reuse through application generation

0 Application system reuse

¢ How to write application systems so that they may be
readily ported from one platform to another

©lan Sommerville 1995 Software Engineering, 5th edition Chapter 20 Slide6

Software devel opment with reuse Further advantages

0 Attempts to maximise the use of existing 0 Systemreliability isincreased
components 0 Overal risk isreduced
0 These components may have to be adapted in 0 Effective use can be made of specidists
anew gpplication 0 Organizational standards can be embodied in
0 Fewer components need be specified, designed reusable components
and coded 0 Software development time can be reduced
0 Overdl development costs should therefore be
reduced

©lan Sommerville 195 Software Engineering, 5th edition Chapter 20 Slide7 ©lan Sommerville 1995 Software Engineering, 5th edition Chapter 20 Slide8

Development with reuse process

Incorporate

Design S Search for
system il o?r?e;rlgnt A reusable discovered
aachitecture P component: component:

©lan Sommerville 195 Software Engineering, 5th edition Chapter 20

Slide9

Requirements for reuse

0 It must be possible to find appropriate reusable
components in a component data base

0 Component reusers must be able to understand
components and must have confidence that they
will meet their needs

0 The components must have associated
documentation discussing HOW they can be
reused and the potential costs of reuse

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 10

Reuse-driven devel opment

0 Rather than reuse being considered after the

software has been specified, the specification takes
into account the existence of reusable components

0 Thisapproach is commonplace in the design of

electronic, electrica and mechanica systems.

0 If adopted for software, should significantly
increase the proportion of components reused

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20

Slide11

Reuse-driven devel opment

Modify requiremen
according to
discovered
components

Search for
reusable
components

Outline
system
requirements

Architectural
design

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 12

Specify syste

components
based on reusablg
components

Search for
reusable
components

Reuse problems

0 Difficult to quantift costs and benefits of
development with reuse

0 CASE toolsets do not support development
with reuse. They cannot be integrated with a
component library systems

0 Some software engineers prefer to rewrite
rather than reuse components

0 Current techniques for component classification,
cataloging and retrieval are immature. The cost of
finding suitable componentsis high

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 13

Software development for reuse

0 Software components are not automatically
reusable. They must be modified to make them
usable across arange of applications

0 Software development for reuse is a devel opment
process which takes existing components and
aims to generalise and document them for reuse
across arange of applications

7
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 14

Development for reuse

0 The development cost of reusable componentsis
higher than the cost of specific equivalents. This
extra reusability enhancement cost should be an
organization rather than a project cost

0 Generic components may be less
space-efficient and may have longer execution
times than their specific equivalents

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 15

Reusability enhancement

0 Name generdisation

¢ Namesin acomponent may be modified so that they are not a
direct reflection of a specific application entity

0 Operation generaisation
¢ Operations may be added to provide extra functionality and
application specific operations may be removed

0 Exception generdisation

¢ Application specific exceptions are removed and exception
management added to increase the robustness of the component

0 Component certification
¢ Component is certified as reusable

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 16

Reusability enhancement process

Initial Reusable
component component

Name Operation Exception Component
generalization generalization generalization certification

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 17

Domain-specific reuse

0 Components can mostly be reused in the
application domain for which they were originally
developed as they reflect domain concepts and
relationships

0 Domain analysisis concerned with studying
domains to discover their elementary
characteristics

0 With this knowledge, components can be
generalised for reusein that domain

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 18

Domain-spedfic reuse

0 Reusable components should encapsulate a
domain abstraction

0 Inorder to bereusable, an abstraction hasto be
complete

0 The abstraction must be parameterised (at
least to some extent) to allow for instantiation in
different systems with specific requirements

9
©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 19

The abstract data structures domain

0 Well-understood application domain

0 Important as afoundation for many types of
software system

0 Therequirements for reusable abstract data
structures have been published by several authors
(e.g. Booch)

0 A classification scheme for such components
has been invented

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 20

ADS generalisation

0 Involves adding operations to a component to
ensure domain coverage

0 Operations required include
¢ Accessoperations
¢ Constructor operations
¢ 1/O operations
¢ Comparison operations
¢ lterator operations, if the component is acollection of components

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 21

Model of areusable ADS

Exported type
names

I/O operations

Access Abstract data
operations structure

Constructor
operations

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20

Iterator
operations

Comparison
operations

0

Slide 22

Reuse guiddines

0 Implement data structures as generic
packages

0 Provide operationsto create and assign
instances

0 Provide a mechanism to indicate whether or not
operations have been successful

0 Minimise the amount of information defined in
the component specification

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 23

Reuse guiddines

0 Implement operations which can fail as
procedures and return an error indicator as an
out parameter.

0 Provide an equality operation to compare
structures.

0 Provide an iterator which allows each element
ina collection to be visited efficiently without
modification to that element

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 24

Reusable component example

0 Linked list of elements where each element
maintains a pointer to the next element in the list

0 Commonly implemented in application systems
but application-specific components are rarely
generic astheir operations reflect specific
application needs

0 Linked list operations are usually independent of
the type of element in the list

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 25

Linked list generic package

0 Seeportrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20

Slide 26

A ccess operations

-- true if the list has no elements

function Is_empty (L: LIST) return BOOLEAN ;

-- returns the number of elements in the list

function Size_of (L: LIST) return NATURAL ;

-- true if a list element is the same as E

function Contains (E: ELEMENT; L: LIST)
return BOOLEAN ;

-- returns the first list element

procedure Head (L: LIST; E: in out ELEMENT ;
Error_level: out STATUS) ;

-- removes the first list element and returns the remaining list

procedure Tail (L: LIST; Outlist: in out LIST ;
Error_level: out STATUS) ;

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 27

Constructor operations

0 Seeportrait dlides

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20

Slide 28

|/O procedures

-- print onto standard output

procedure Print_list (L: LIST; Error_level: out STATUS) ;
procedure Write_list (F: TEXT_IO.FILE_TYPE ; L: LIST;
Error_level: out STATUS) ;
procedure Read_list (F: TEXT_IO.FILE_TYPE ;
Outlist: out LIST ; Error_level: out STATUS) ;

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 29

|terator operations

procedure lterator_initialise (L: LIST; lter: in out ITERATOR;
Error_status: in out STATUS) ;

procedure Go_next (L: LIST; lter: in out ITERATOR;
Error_status: in out STATUS) ;

procedure Eval (L: List; Iter: in out ITERATOR;
Val: out ELEMENT; Error_status: in out STATUS) ;

function At_end (L: LIST; Iter: ITERATOR) return BOOLEAN ;

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 30

C++ linked list component

0 Seeportrait dlides

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20

Slide 31

L anguage-dependent reuse

0 Reuse guidelines for domain abstractions are
independent of the implementation language

0 However, some reuse guidelines may be language
independent
¢ InAda, do not pass array sizeas a parameter to reusable
components which operate on arrays. Use the built-in attribute to
determine the array size
¢ InC++, dways passthe array size as a parameter to reusable
components which operate on arrays

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 32

Component adaptation

0 Extrafunctionality may haveto be added to a
component. When this has been added, the new
component may be made available for reuse

0 Unneeded functionality may be removed from a
component to improve its performance or reduce
its space requirements

0 Theimplementation of some component
operations may have to be modified. This
suggests that the original generalisation decisions
may be incorrect

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 33

Reuse and inheritance

0 Objects are inherently reusable because they
package state and associated operations. they
can be self-contained with no externa
dependencies

0 Inheritance means that a class inherits
attributes and operations from a super-class.
Essentially, these are being reused

0 Multiple inheritance allows severa objectsto
act as abase class so attributes and operations
from severa sources are reused

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 34

A class lattice

Attributes and

inheritance down
hierarchy

Peripheral

Storage

Tane Screah Text Position
p input sensor
Dot-matrix' Laser ' Eilm ' Ink-jet '

©lan Sommerville 195

Printer

Software Engineering, 5th edition. Chapter 20 Slide 3!

operations reused by

the

Y

5

Problems with inheritance

0 Ascomponent classes are devel oped, the
inheritance | attice becomes very complex with
duplications across the lattice. Regular
rationalisation is required.

0 To understand a component, many classesin
the hierarchy may have to be examined and
understood

0 Inmany cases, it may be impossible to avoid
inheriting unneeded functionality

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 36

Generator-based reuse

0 Program generators involve the reuse of
standard patterns and algorithms

0 These are embedded in the generator and
parameterised by user commands. A program is
then automatically generated

0 Compilers are program generators where the
reusabl e patterns are object code fragments
corresponding to high-level language commands

4
©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 37

Reuse through program generation

Application Program generato
description

Application domain
knowledge

Generated progra

5
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 38

Types of program generator

0 Typesof program generator
¢ Application generators for business data processing
e Parser and lexica analyser generators for language processing
¢ Code generatorsin CASE tools
0 Generator-based reuse is very cost-effective but its
applicability islimited to arelatively small number
of application domains

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 39

Application system portability

0 Portability isaspecia case of reuse where an
entire application is reused on a different
platform

0 The portability of aprogram is a measure of the
amount of work required to make that program
work in anew environment

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 40

Aspects of system portability

0 Transportation

¢ The physical movement of the program code and
associated data from one environment to another

Thisisaless significant problem than it used to be as
electronic interchange of programs through networks avoids
mediaincompatibility

O Adaptation
¢ The changes required to make a program work in a different
environment

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 41

Application program interfaces

Libraries

Application
program

Run-time
system

| Memory and CPU'

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20

Operating
system

Slide 42

Portability dependencies

0 Machine architecture dependencies

« Dependencies on information representation and organisation
Operating system dependencies

¢ Dependencies on operating system characteristics
Run-time system problems

« Dependencies ona particular run-time support system

Library problems
¢ Dependencies on a specific set of libraries

O

O

O

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 43

Development for portability

0 Isolate parts of the system which are
dependent on the external program interfaces.
These interfaces should be implemented as a set of
abstract data types or objects

0 Define aportability interface to hide machine
architecture and operating system characteristics

0 To port the program, only the code behind the
portability interface need be rewritten

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 44

A portability interface M achine architecture dependencies

Application system 0 The program must rely on the information
representation scheme supported by a
particular machine architecture

o Common problems are:

Portability interface * Theprecision of real numbers
¢ Bit ordering in number representation

0 Can betackled by the use of abstract data
types. Different representations can be

Data Operating system Ssupported
references and /O calls

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 45 ©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 46

A portable counter component

0 Replacewith portrait dide

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20

Slide 47

Operating system dependencies

0 The program relies on the use of specific operating
system calls such as facilities to support process
management

0 The program depends on a specific file system
organisation supported by the operating system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 48

Portabl e process management

0 Replace with portrait dide

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20

Slide 49

Portability interface implementation

Application

Abstract data type interface

| Unix filestore I | Database syste]

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 50

Standards

0 Standards are an agreement across the
community which reduces the amount of
variablity in software systems

0 The development of standardsin the 1980s
means that program portability is now much
simpler than before

0 Inprinciple, as standards are further
developed, heterogeneous systems may be
developed where parts of a program may run
on completely different machines

©lan Sommerville 195 Software Engineering, 5th edition. Chapter 20 Slide 51

Existing standards

0 Programming language standards
¢ Ada, Pascal, C, C++, FORTRAN.
0 Operating system standards
¢ UNIX, MS-DOS (de-facto standard), MS Windows

0 Networking standards

¢ TCP/IP protocols, X400, X500, Sun NFS, OSl layered
model. HTML, WWW

0 Window system standards

¢ X-windows. Matif toolkit

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 52

Key points

O

©lan Sommerville 195

Software reuse involves using components
developed in some application in a different
application

Systematic reuse can reduce costs, reduce
management risk and improve software reliability

Development with reuse must be based on a
library of reusable components

Components must be generalised for reuse

Software Engineering, 5th edition. Chapter 20 Slide 53

Key points

O

©lan Sommerville 195

Abstract data types and objects are encapsulations
of reusable components

Generator-based reuse depends on using standard
domain-specific patterns

Application portability isaform of reuse where an
entire application is reused on a different platform

Portablity is achieved by developing according to
standards and isolating platform dependencies

Software Engineering, 5th edition. Chapter 20 Slide 54

