
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 1

Software Reuse

⊗ Building software from
reusable components.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 2

Objectives

⊗ To discuss the advantages and disadvantages of
software reuse

⊗ To describe development with and for reuse

⊗ To discuss the characteristics of generic reusable
components

⊗ To describe methods of developing portable
application systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 3

Topics covered

⊗ Software development with reuse

⊗ Software development for reuse

⊗ Generator-based reuse

⊗ Application system portability

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 4

Reusable component types

⊗ Application system reuse
• The whole of an application system may be reused on a

different machine. Usually referred to as program
portability

⊗ Sub-system reuse
• Major sub-systems such as a pattern-matching system may

be reused

⊗ Modules or object reuse
• The reusable component is a collection of functions or

procedures

⊗ Function reuse
• The reusable component is a single function

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 5

Reuse practice

⊗ Application system reuse
• Widespread. It is common practice for developers of systems

(e.g. Microsoft) to make their products available on several
platforms

⊗ Sub-system and module reuse
• Practiced informally in that individual engineers reuse previous

work. Little systematic reuse but increasing reuse awareness

⊗ Function reuse
• Common in some application domains (e.g. engineering) where

domain-specific libraries of reusable functions have been
established. Reuse is the principal reason why languages such as
FORTRAN are still used

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 6

Four aspects of reuse

⊗ Software development with reuse
• Developing software given a base of reusable components

⊗ Software development for reuse
• How to design generic software components for reuse

⊗ Generator-based reuse
• Domain-specific reuse through application generation

⊗ Application system reuse
• How to write application systems so that they may be

readily ported from one platform to another

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 7

Software development with reuse

⊗ Attempts to maximise the use of existing
components

⊗ These components may have to be adapted in
a new application

⊗ Fewer components need be specified, designed
and coded

⊗ Overall development costs should therefore be
reduced

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 8

Further advantages

⊗ System reliability is increased

⊗ Overall risk is reduced

⊗ Effective use can be made of specialists

⊗ Organizational standards can be embodied in
reusable components

⊗ Software development time can be reduced

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 9

Development with reuse process

Design
system

aachitecture

Specify
components

Search for
reusable

components

Incorporate
discovered

components

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 10

Requirements for reuse

⊗ It must be possible to find appropriate reusable
components in a component data base

⊗ Component reusers must be able to understand
components and must have confidence that they
will meet their needs

⊗ The components must have associated
documentation discussing HOW they can be
reused and the potential costs of reuse

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 11

Reuse-driven development

⊗ Rather than reuse being considered after the
software has been specified, the specification takes
into account the existence of reusable components

⊗ This approach is commonplace in the design of
electronic, electrical and mechanical systems.

⊗ If adopted for software, should significantly
increase the proportion of components reused

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 12

Reuse-driven development

Search for
reusable

components

Outline
system

requirements

Modify requirements
according to
discovered
components

Search for
reusable

components

Architectural
design

Specify system
components

based on reusable
components

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 13

Reuse problems

⊗ Difficult to quantift costs and benefits of
development with reuse

⊗ CASE toolsets do not support development
with reuse. They cannot be integrated with a
component library systems

⊗ Some software engineers prefer to rewrite
rather than reuse components

⊗ Current techniques for component classification,
cataloging and retrieval are immature. The cost of
finding suitable components is high

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 14

Software development for reuse

7

⊗ Software components are not automatically
reusable. They must be modified to make them
usable across a range of applications

⊗ Software development for reuse is a development
process which takes existing components and
aims to generalise and document them for reuse
across a range of applications

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 15

Development for reuse

⊗ The development cost of reusable components is
higher than the cost of specific equivalents. This
extra reusability enhancement cost should be an
organization rather than a project cost

⊗ Generic components may be less
space-efficient and may have longer execution
times than their specific equivalents

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 16

Reusability enhancement

⊗ Name generalisation
• Names in a component may be modified so that they are not a

direct reflection of a specific application entity

⊗ Operation generalisation
• Operations may be added to provide extra functionality and

application specific operations may be removed

⊗ Exception generalisation
• Application specific exceptions are removed and exception

management added to increase the robustness of the component

⊗ Component certification
• Component is certified as reusable

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 17

Reusability enhancement process

Name
generalization

Operation
generalization

Exception
generalization

Component
certification

Reusable
component

Initial
component

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 18

Domain-specific reuse

⊗ Components can mostly be reused in the
application domain for which they were originally
developed as they reflect domain concepts and
relationships

⊗ Domain analysis is concerned with studying
domains to discover their elementary
characteristics

⊗ With this knowledge, components can be
generalised for reuse in that domain

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 19

Domain-specific reuse

⊗ Reusable components should encapsulate a
domain abstraction

⊗ In order to be reusable, an abstraction has to be
complete

⊗ The abstraction must be parameterised (at
least to some extent) to allow for instantiation in
different systems with specific requirements

9
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 20

The abstract data structures domain

⊗ Well-understood application domain

⊗ Important as a foundation for many types of
software system

⊗ The requirements for reusable abstract data
structures have been published by several authors
(e.g. Booch)

⊗ A classification scheme for such components
has been invented

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 21

ADS generalisation

⊗ Involves adding operations to a component to
ensure domain coverage

⊗ Operations required include
• Access operations

• Constructor operations

• I/O operations

• Comparison operations

• Iterator operations, if the component is a collection of components

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 22

Model of a reusable ADS

Abstract data
structure

Access
operations

Iterator
operations

Exported type
names I/O operations

Constructor
operations

Comparison
operations

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 23

Reuse guidelines

⊗ Implement data structures as generic
packages

⊗ Provide operations to create and assign
instances

⊗ Provide a mechanism to indicate whether or not
operations have been successful

⊗ Minimise the amount of information defined in
the component specification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 24

Reuse guidelines

⊗ Implement operations which can fail as
procedures and return an error indicator as an
out parameter.

⊗ Provide an equality operation to compare
structures.

⊗ Provide an iterator which allows each element
ina collection to be visited efficiently without
modification to that element

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 25

Reusable component example

⊗ Linked list of elements where each element
maintains a pointer to the next element in the list

⊗ Commonly implemented in application systems
but application-specific components are rarely
generic as their operations reflect specific
application needs

⊗ Linked list operations are usually independent of
the type of element in the list

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 26

Linked list generic package

⊗ See portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 27

Access operations

-- true if the list has no elements
function Is_empty (L: LIST) return BOOLEAN ;
-- returns the number of elements in the list
function Size_of (L: LIST) return NATURAL ;
-- true if a list element is the same as E
function Contains (E: ELEMENT; L: LIST)
 return BOOLEAN ;
-- returns the first list element
procedure Head (L: LIST; E: in out ELEMENT ;
 Error_level: out STATUS) ;
-- removes the first list element and returns the remaining list
procedure Tail (L: LIST; Outlist: in out LIST ;
 Error_level: out STATUS) ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 28

Constructor operations

⊗ See portrait slides

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 29

I/O procedures

-- print onto standard output

procedure Print_list (L: LIST; Error_level: out STATUS) ;
procedure Write_list (F: TEXT_IO.FILE_TYPE ; L: LIST;
 Error_level: out STATUS) ;
 procedure Read_list (F: TEXT_IO.FILE_TYPE ;
 Outlist: out LIST ; Error_level: out STATUS) ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 30

Iterator operations

procedure Iterator_initialise (L: LIST; Iter: in out ITERATOR;
 Error_status: in out STATUS) ;
procedure Go_next (L: LIST; Iter: in out ITERATOR;
 Error_status: in out STATUS) ;
procedure Eval (L: List; Iter: in out ITERATOR;
 Val: out ELEMENT; Error_status: in out STATUS) ;
function At_end (L: LIST; Iter: ITERATOR) return BOOLEAN ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 31

C++ linked list component

⊗ See portrait slides

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 32

Language-dependent reuse

⊗ Reuse guidelines for domain abstractions are
independent of the implementation language

⊗ However, some reuse guidelines may be language
independent
• In Ada, do not pass array sizeas a parameter to reusable

components which operate on arrays. Use the built-in attribute to
determine the array size

• In C++, always pass the array size as a parameter to reusable
components which operate on arrays

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 33

Component adaptation

⊗ Extra functionality may have to be added to a
component. When this has been added, the new
component may be made available for reuse

⊗ Unneeded functionality may be removed from a
component to improve its performance or reduce
its space requirements

⊗ The implementation of some component
operations may have to be modified. This
suggests that the original generalisation decisions
may be incorrect

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 34

Reuse and inheritance

⊗ Objects are inherently reusable because they
package state and associated operations. they
can be self-contained with no external
dependencies

⊗ Inheritance means that a class inherits
attributes and operations from a super-class.
Essentially, these are being reused

⊗ Multiple inheritance allows several objects to
act as a base class so attributes and operations
from several sources are reused

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 35

A class lattice

Tape Disk Printer Screen
Text
input

Position
sensor

Dot-matrix Laser Film Ink-jet

Storage Output Input

Peripheral

Attributes and
operations reused by
inheritance down the

hierarchy

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 36

Problems with inheritance

⊗ As component classes are developed, the
inheritance lattice becomes very complex with
duplications across the lattice. Regular
rationalisation is required.

⊗ To understand a component, many classes in
the hierarchy may have to be examined and
understood

⊗ In many cases, it may be impossible to avoid
inheriting unneeded functionality

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 37

Generator-based reuse

⊗ Program generators involve the reuse of
standard patterns and algorithms

⊗ These are embedded in the generator and
parameterised by user commands. A program is
then automatically generated

⊗ Compilers are program generators where the
reusable patterns are object code fragments
corresponding to high-level language commands

4
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 38

Reuse through program generation

5

Program generator Generated programApplication
description

Application domain
knowledge Database

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 39

Types of program generator

⊗ Types of program generator
• Application generators for business data processing

• Parser and lexical analyser generators for language processing

• Code generators in CASE tools

⊗ Generator-based reuse is very cost-effective but its
applicability is limited to a relatively small number
of application domains

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 40

Application system portability

⊗ Portability is a special case of reuse where an
entire application is reused on a different
platform

⊗ The portability of a program is a measure of the
amount of work required to make that program
work in a new environment

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 41

Aspects of system portability

⊗ Transportation
• The physical movement of the program code and

associated data from one environment to another

This is a less significant problem than it used to be as
electronic interchange of programs through networks avoids
media incompatibility

⊗ Adaptation
• The changes required to make a program work in a different

environment

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 42

Application program interfaces

Application
program

Run-time
system

Operating
system

Libraries

Memory and CPU

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 43

Portability dependencies

⊗ Machine architecture dependencies
• Dependencies on information representation and organisation

⊗ Operating system dependencies
• Dependencies on operating system characteristics

⊗ Run-time system problems
• Dependencies ona particular run-time support system

⊗ Library problems
• Dependencies on a specific set of libraries

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 44

Development for portability

⊗ Isolate parts of the system which are
dependent on the external program interfaces.
These interfaces should be implemented as a set of
abstract data types or objects

⊗ Define a portability interface to hide machine
architecture and operating system characteristics

⊗ To port the program, only the code behind the
portability interface need be rewritten

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 45

A portability interface

Portability interface

Application system

Operating system
and I/O calls

Data
references

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 46

Machine architecture dependencies

⊗ The program must rely on the information
representation scheme supported by a
particular machine architecture

⊗ Common problems are:
• The precision of real numbers

• Bit ordering in number representation

⊗ Can be tackled by the use of abstract data
types. Different representations can be
supported

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 47

A portable counter component

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 48

Operating system dependencies

⊗ The program relies on the use of specific operating
system calls such as facilities to support process
management

⊗ The program depends on a specific file system
organisation supported by the operating system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 49

Portable process management

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 50

Portability interface implementation

Abstract data type interface

Application

Database systemUnix filestore

OR

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 51

⊗ Standards are an agreement across the
community which reduces the amount of
variablity in software systems

⊗ The development of standards in the 1980s
means that program portability is now much
simpler than before

⊗ In principle, as standards are further
developed, heterogeneous systems may be
developed where parts of a program may run
on completely different machines

Standards

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 52

⊗ Programming language standards
• Ada, Pascal, C, C++, FORTRAN.

⊗ Operating system standards
• UNIX, MS-DOS (de-facto standard), MS Windows

⊗ Networking standards
• TCP/IP protocols, X400, X500, Sun NFS, OSI layered

model. HTML, WWW

⊗ Window system standards
• X-windows. Motif toolkit

Existing standards

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 53

⊗ Software reuse involves using components
developed in some application in a different
application

⊗ Systematic reuse can reduce costs, reduce
management risk and improve software reliability

⊗ Development with reuse must be based on a
library of reusable components

⊗ Components must be generalised for reuse

Key points

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 20 Slide 54

Key points

⊗ Abstract data types and objects are encapsulations
of reusable components

⊗ Generator-based reuse depends on using standard
domain-specific patterns

⊗ Application portability is a form of reuse where an
entire application is reused on a different platform

⊗ Portablity is achieved by developing according to
standards and isolating platform dependencies

