Programming for Reliability

0 Programming techniques for
building reliable software
systems.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Sidel

Objectives

0 To describe programming techniquesfor reliable
systems devel opment

0 To discuss fault avoidance by error-prone
construct minimization

0 To describe fault tolerant system architectures

0 To show how exception handling constructs may
be used to create robust programs and as part of a
defensive approach to programming

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side2

Topics covered

O 0o o o od

Fault avoidance techniques

Fault tolerance and fault tolerant architectures
Exception handling and management
Defensive programming

Program examples are presented in both Adaand
C++

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side3

Software reliability

0 Ingeneral, software customers expect all software

to bereliable. However, for non-critical
applications, they may be willing to accept some
system failures

Some applications, however, have very high
reliability requirements and special programming
techniques must be used to achievethis

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side4

Reliability achievement

0 Fault avoidance

» The softwareis developedin such away that it does not contain
faults

0 Fault detection

» Thedevelopment process isorganised so that faultsin the
software are detected and repaired before delivery tothe cusomer

0 Fault tolerance

* The software is designed o that faults in the delivered software
do not result in complete system fdlure

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side5

Fault avoidance

0 Current methods of software engineering now
allow for the production of fault-free software.

0 Fault-free software means software which
conformsto its specification. It does NOT mean
software which will always perform correctly as
there may be specification errors.

0 The cost of producing fault free software is very
high. It isonly cost-effective in exceptional
situations. May be cheaper to accept software
faults

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side6

Fault removal costs

Cost A
per error
deleted
Very Few Many
few Number of residual errors
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side7

Fault-free software devel opment

Needs a precise (preferably formal) specification.
Information hiding and encapsulation in software
designis essential

0 A programming language with strict typing and
run-time checking shoul d be used
Extensive use of reviews at all process stages
Requires an organizational committment to
quality.

0 Careful and extensive system testing is still
necessary

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side8

Adaand C++

0 Adawas designed for large-scale software
engineering and is astrictly typed language.
However, few compilers available for persona
computers

0 However, C++ isbecoming increasingly widely
used for development.. Combines the efficiency of
alow-level language (C) with object-oriented
programming constructs. Better type checking
than C but not so good as Ada

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side9

Structured programming

0 First discussed in the 1970's
O Programming without gotos

0 Whileloops and if statements as the only
control statements.

0 Top-down design.

O Important because it promoted thought and
discussion about programming.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 10

Error-prone constructs

0 Floating-point numbers
* Inherently impredse. Theimprecision may lead to invalid
comparisons
0 Pointers
» Pointersreferring to the wrong memory areascan corrupt
data. Aliasing can make programs difficult to understand
and change
0 Dynamic memory allocation

* Run-timedlocation can cause memory overflow

0 Paralelism

e Canresult in subtle timing errors because of unforseen
interaction between parallel processes

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side11

Error-prone constructs

0 Recursion
» Errorsinrecursion can cause memory overflow
0 Inter rupts

* Interrupts can cause acritical operation to be terminated
and makea program difficult to understand. they are
comparable to goto statemerts.

O ItisNOT suggested that these constructs
should always be avoided but they must be
used with great care.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 12

Information hiding

0 Information should only be exposed to those parts
of the program which need to accessit. This
involves the creation of objects or abstract data
types which mai ntain state and operations on that
date

0 Thisavoids faults for three reasons:
» theprobability of accidental corruption of information

theinformationis surrounded by ‘firewalls so that problemsare
less likdy to spread to other parts of theprogram

asall informationislocalised, the programmer islesslikely to
make errors and reviewers are more likely to find errors

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 13

Datatyping

0 Each program component should only be
allowed access to datawhich is needed to
implement its function

0 The representation of a data type should be
concealed from users of that type

0 Ada, Modula-2 and C++ offer direct support for
information hiding

0 Thetype system can be used to enhance
program readability by modelling real-world
entitiesdirectly.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side 14

Type declarations

0 C++ typedeclarations
* typedef enum { red, redamber, amber, green} TrafficLightColour ;
TrafficLightColour ColourShowing, NextColour ;
0 Adatype declarations
* type POSITIVE isINTEGER range 1.MAXINT ;

type OIL_STATUSisnew BOOLEAN ;
type DOOR_STATUSisnew INTEGER ;
type FUEL_STATUSisnew BOOLEAN ;

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 15

Objects and abgract data types

0 Implemented in C++ as objects, in Adaas
packages

0 Thetype nameis declared within the object or
ADT

0 Type operations are defined as procedures or
functions.

0 Thetype representation i s defined in the private
part.

0 Generic abstract data structures may be
parameterised using the type name.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 16

Ada specification of an integer queue

package Queue is
type T is private ;
procedure Put (IQ : in out T; X: INTEGER);
procedure Remove (IQ :inoutT; X : out INTEGER);
function Size (1Q : T) return NATURAL,;
private
type Q_RANGE is range 0..99 ;
type Q_VEC is array (Q_RANGE) of INTEGER ;
type Tis record
The_queue: Q_VEC;
front, back : Q_RANGE ;
end record;
end Queue;

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 17

C++ Queue class declaration

class Queue {
public:
Queue () ;
~Queue () ;
void Put (int x) ; // adds an item to the queue
int Remove () ; // this has side effect of changing the queue
int Size() ; // returns number of elements in the queue
private:
int front, back ;
int gvec [100] ;

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 18

Generics

0 The behaviour of objectsand ADTs which are
composed of other objectsor ADTs s often
independent of the type of these included objects

0 Generics are away of writing generalised,
parameterised ADTs and objects which may be
instantiated later with particular types

0 Both Adaand C++ have generic type or class
definition facilities

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 19

Ada declaration of ageneric queue

generic
type ELEM s private;
type Q_SIZE is range <> ;
package Queue is
type Tis private;
procedure Put (IQ:in outT; X: ELEM);
procedure Remove (IQ:in out T; X: out ELEM);
function Size (IQ :in T) return NATURAL ;
private
type Q_VEC s array (Q_SIZE) of ELEM ;
type Tis record
The_queue: Q_VEC;
Front : Q_SIZE :=Q_SIZE'FIRST ;
Back: Q_SIZE :=Q_SIZE'FIRST ;
end record;

end Queue;
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 20

C++ generic queue

template
<class elem>
class Queue {
public:
Queue (int size =100) ; // default to queue of size 100 elements
~Queue () ;
void Put (elem x) ;
elem Remove () ;// this has side effect of changing queue
int Size () ;
private:
int front, back ;
elem* qvec ;

H

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide21

Generic instartiation

0 Generics are instanti ated at compile-time NOT at
run-time so type checking is possible

0o Ada

e typelQ_SIZEisrange 0..49 ; type LQ_SIZE is range 0..199 ;
package Integer_queue is new Queue (ELEM => INTEGER,
Q_SIZE=>1Q_SIZE);
package List_queue is new Queue (ELEM => List.T,
Q_SIZE=>LQ SIZE);

0o C++

« //[Assume List has been defined elsewhere as a type
Queue <int> Int_queue (50) ;
Queue <List> List_queue (200) ;

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide22

Fault tolerance

O Incritical situations, software systems must be
fault tolerant.

0 Fault tolerance means that the system can continue
In operation in spite of software system failure

0 Evenif the system has been demonstrated to
be fault-free, it must also be fault tolerant as
there may be specification errors or the validation
may be incorrect

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide23

Fault tolerance actions

0 Failure detection
* Thesystem must detect thet afailure has occurred.

0 Damage assessment

* Thepartsof the system state affected by the failure must be
detected.

0 Fault recovery
* Thesystem must restore its state to a known safe state.

0 Fault repair

* Thesystem may be modified to prevent recurrence of the
fault. As many software faults aretransitory, thisis often
unnecessary.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side24

Fault occurrence

0 Many software failures are transient and dependent
on individual data. Operation may continue by re-
starting the system

0 If thisisimpossible, dynamic system re-
configuration may be necessary where software
components are repl aced without stopping the
system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 25

Hardware fault tolerance

Depends on tripl e-modular redundancy (TMR)

0 There arethreereplicated identical components
which receive the same input and whose outputs
are compared

0 If one output is different, it isignored and
component failure is assumed

0 Based on most faults resulting from component
failures rather than design faults and alow
probability of simultaneous component failure

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 26

Hardware reliability with TMR

Output

o comparator

L

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 27

Software analogies

0 N-version programming
* The same specification isimplemented in anumber of
different versions. All versions compute simultaneoudly and
the majority output is sdected.
Thisisthe most commonly used approach eg. in Airbus
320. However, it does not providefault toleranceif thereare
specification errors.

0 Recovery blocks

* Versionsare exeauted in sequence The output which
conformsto an acceptancetest isselected. The weakness
in thissystem is writing an appropriate acceptancetest.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide28

N-version programming

—>=1 \Version 1

: Output
Version 2 comparator
A

i

greed
result
-——>=1 Version 3
N-versions
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide29

N-version programming

0 Thedifferent system versions are designed and
implemented by different teams. It is assumed that
thereisalow probability that they will make the
same mistakes

O However, thereis some empirica evidence that
teams commonly misinterpret specificationsin the
same way and use the same algorithmsi their
systems

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 30

Recovery blocks

Try algorithm Test for
1 success

Acceptance

test Continue execution if

acceptance test succeegls
Signal exception if all
algorithms fail

—>| Algorithm 1

Acceptance test

fails — re-try Retest

Algorithm 2 I Algorithm 3

Recovery
blocks

Retest

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide31

Recovery blocks

0 Force adifferent algorithm to be used for each
version so they reduce the probability of common
errors

O However, the design of the acceptancetest is
difficult asit must be independent of the
computation used

0 Like N-version programming, susceptible to
specification errors

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 32

Exception handling

0 A program exception is an error or some
unexpected event such as a power failure.

0 Exception handling constructs allow for such
events to be handl ed without the need for
continual status checking to detect exceptions.

0 Using normal control constructs to detect
exceptionsin a sequence of nested procedure
calls needs many additional statementsto be
added to the program and adds a significant
timing overhead.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 33

Exceptions in nested procedure calls

Exception
return
Call
sequence
. >
Exception —
occurrence

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side34

Ada exception handling

0 Adahas abuilt-in type exception and names
can therefore be associated with exceptions

0 Drawing attention to an exception iscalled
raising the exception (keyword raise)

0 An Adaprogram unit can have an exception

handler which isablock of code defining how

exceptions shoul d be processed

0 Codeisautomatically switched to the exception

handler when an exception is raised

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19

Slide 35

Ada’ s built-in exceptions

0 CONSTRAINT_ERROR

Raised when an attempt ismade to assign an out of range
valuetoavariable e.g. array access out of bounds

0 NUMERIC_ERROR

Raised when an error occursin an arithmetic operation (e.g.

division by zero)
0 PROGRAM_ERROR

Raised when a control structure isviolated.
0 STORAGE_ERROR

Raised when dynamic store is exhausted.
0 TASKING _ERROR

Rai sed when inter-task communication fails

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19

Slide 36

C++ exception handling

0 Keyword throw means raise an exception.
Handler isindicated by the keyword catch

0 Exceptions are defined as classes so may inherit
properties from other exception classes

0 Normally, exceptions are completely handled in
the block where they arise rather than propagated
for handling

0 All exceptions are user-defined. No built-in
exceptions.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 37

A temperature controller

0 Controls afreezer and keeps temperature
within a specified range
0 Switches arefrigerant pump on and off

0 Setsof an darm isthe maximum allowed
temperature is exceeded

0 Uses external entities Pump, Temperature didl,
Sensor, Alarm.

0 Externa shared state is held in a package
caled Globals (in Ada)

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 38

Freezer controller (Ada)

0 Seeportat dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 39
Freezer controller (C++)
0 Seeportrait dide
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide40

Defensive programming

0 An approach to program development where it
Is assumed that undetected faults may exist in
programs

0 The program contains code to detect and
recover from such faults

0 Does NOT require afault-tolerance controller
yet can provide a significant measure of fault
tolerance

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide41

Failure prevention

0 Type systems alow many potentialy corrupting
fallures to be detected at compile-time

0 Range checking and exceptions allow another
significant group of failuresto be detected at
run-time

0 State assertions may be developed and included as

checksin the program to catch a further class of
system failures

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide42

Adarange checking

0 Typesare declared asan allowed range e.g. 1..100

0 Ada srange checking automaticaly raisesa
CONSTRAINT_ERROR exception if an
assignment is out of range

0 Range checking only appliesto asingle
variable. Checks which apply across variables
(e.g. if A=0 then B=1) cannot be applied.

0 Out of range errors may require further processing
to locate the error source

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide43

State assertions

0 Logica predicates over the system state variables.

0 May beincorporated directly in alanguage but
this can cause compilation problemsiif quantifiers
are used.

0 Usually implemented as program checks.

0 Simplifed if ALL state operations are through
abstract datatypes. In many cases, predicates
need only be associated with the ADT.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side44

Even number type

0 Seeportrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide45
0 Seeportrait dide
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 46

Damage assessment

0 Analyse system state to judge the extent of
corruption caused by a system failure

O Must assess what parts of the state space have
been affected by the failure

0 Generaly based on ‘validity functions' which can
be applied to the state elements to assess if their
valueiswithin an allowed range

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide47

Damage assessment technigques

0 Checksums are used for damage assessment
in data transmission

0 Redundant pointers can be used to check the
integrity of data structures

0 Watch dog timers can check for non-terminating
processes. If no response after acertaintime, a
problem is assumed

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide48

Adatype with damage assessment

0 Seeportrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide49

C++ class with damage assessment

template <class elem> class Robust_array {
public:
Robust_array (int size = 20) ;
~Robust_array () ;
void Assign (int Index, elem Val) ;
elem Eval (int Index) ;

/I Damage assessment functions
/I Assess_damage takes a pointer to a function as a parameter
I'It sets the corresponding element of Checks if a problem is
// detected by the function Test
void Assess_damage (void (*Test) (boolean*)) ;
boolean Eval_state (int Index) ;
boolean Is_damaged () ;
private:
elem* Vals ;
boolean* Checks ;
s

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 50

Fault recovery

0 Forward recovery
* Apply repairstoacorrupted system state

0 Backward recovery
* Restore the system state to a known safe date
0 Forward recovery isusualy application specific
- domain knowledge is required to compute
possible state corrections

0 Backward error recovery is smpler. Details of a
safe state are maintained and this replaces the
corrupted system state

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide51

Forward recovery

0 Corruption of data coding

» Error coding techniques which add redundancy to coded
data can be used for repairing data corrupted during
transmisson

0 Redundant pointers

* When redundant pointers are included in deta structures
(e.g. two-way ligs), acorrupted list or filestore may be
rebuilt if asuffident number of painters areuncorrupted

* Often used for database and filesysem repair

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide52

Backward recovery

0 Transactions are afrequently used method of
backward recovery. Changes are not applied
until computation is complete. If an error
occurs, the system is left in the state preceding
the transaction

0 Periodic checkpoints allow system to 'roll-back'
to acorrect state

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide53

Safe sort procedure

0 Sort operation monitors its own execution and
assesses if the sort has been correctly executed

0 Maintainsacopy of itsinput so that if an error
occurs, theinput is not corrupted

Based on identifying and handling exceptions
0 Possibleinthiscaseas‘vaid' sort isknown.

However, in many casesit isdifficult to write
validity checks

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Side54

Safe sort procedure (Ada)

0 Seeportrait dide

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide55
Safe sort procedure (C++)
0 Seeportrait dide
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 56

Key points

0 Reliability in asystem can be achieved through
fault avoidance and fault tolerance

0 Some programming language constructs such
as gotos, recursion and pointers are inherently
error-prone

0 Datatyping alows many potential faultsto be
trapped at compile time.

0 Fault tolerant software can continuein executionin
the presence of software faults

Key points

0 Fault tolerance requires failure detection, damage
assessment, recovery and repair

0 N-version programming and recovery blocks
are approachesto fault tolerance

0 Exception handling mechanisms can be used to
recover from failure

0 Defensive programming can provide some fault

tolerance without a specia fault-tolerant
controller

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 19 Slide 58

