Real -time executive

information

Real-time
clock

Interrupt
handler

Scheduler
Process resourc
requirements
Processes
awaiting Resource
resources manager

Ready Released
processes ___resourc

Available
resource
list

Processor
list

Despatcher

Executing
process

©lan Sor 1995 off ji Sthedition. Chapter 16 Slide25

Process architecture

400Hz 60Hz 100Hz

Y

Door sensor
process

Movement
detector process,

Window sensor
process

Detector status Sensor status ensor status

Y

Communication
process

560Hz Alarm system

Building monitor
process

Power failure
interrupt Building monitor Room number

Alarm system
process

Alert message

Room num|
Alarm Alarm Alarm system
system v system 00m number v

Voice synthesizel
process

Audible alarm Lighting control
process process

©lan Sor 1995 off ji Sthedition. Chapter 16 Slide37

Building_monitor 1

task Building_monitor is
entry Initialise ;
entry Test ;
entry Monitor ;

end Building_monitor ;

task body Building_monitor is
type ROOMS is array (NATURAL range <>) of ROOM_NUMBER ;
Move_sensor, Window_sensor, Door_sensor : SENSOR ;
Move_sensor_locations: ROOMS (0..Number_of_move_sensors-1) ;
Window_sensor_locations: ROOMS (0.. Number_of_window_sensors -1) ;
Corridor_sensor_locations : ROOMS (0..Number_of_corridor_sensors-1) ;
Next_movement_sensor, Next_window_sensor,
Next_door_sensor: NATURAL := 0;
begin
select
accept Initialise do
-- code here to read sensor locations from a file and
-- initialise all location arrays
end Initialise ;
or
accept Testdo
-- code here to activate a sensor test routine
end Test ;
or
accept Monitor do
-- the main processing loop

©lan Sol 1995 Soff ji Sthedition. Chapter 16 Side38a

Building_monitor 2

accept Monitor do
-- the main processing loop
loop
- TIMING: Each movement sensor twice/second
Next_move_sensor :=
Next_move_sensor + 1 rem Number_of_move_sensors ;
-- rendezvous with Movement detector process
Movement_detector.Interrogate (Move_sensor) ;
if Move_sensor /= OK then
Alarm_system.Initiate
(Move_sensor_locations (Next_move_sensor)) ;
end if ;
- TIMING: Each window sensor twice/second
-- rendezvous with Window sensor process
Next_window_sensor :=
Next_window_sensor + 1 rem Number_of_window_sensors ;
Window_sensor.Interrogate (Window_sensor) ;
if Window_sensor /= OK then
Alarm_system.Initiate (Window_sensor_locations
(Next_move_sensor)) ;
end if ;
- TIMING: Each door sensor twice/second
-- rendezvous with Door sensor process
-- Comparable code to the above here
end loop ;
end select ;
end Building_monitor ;

©lan Sol 1995 Soff ji Sthedition. Chapter 16 Slide 38b

Sensor_data buffer

task body Sensor_data_buffer is
Size: constant NATURAL :=50000 ;
type BUFSIZE is range 0..Size ;
Store: array (BUFSIZE) of SENSOR_RECORD ;
Entries: NATURAL =0
Front, Back: BUFSIZE =1 ;
begin
loop
-- Acall to the Get and Put operations will only be accepted when
-- one of the expressions associated with when is true.
-- Thus, Put can only execute when there is space in the buffer,
-- Get can only take items from the buffer when it is not empty.
select
when Entries < Size =>
accept Put (Val: SENSOR_RECORD) do
Store (Back) := Val ;
endPut ;
Back :=Back rem BUFSIZE'LAST+ 1 ;
Entries := Entries + 1 ;
or
when Entries >0 =>
accept Get (Val: in out SENSOR_RECORD)
do
Val := Store (Front) ;
end Get ;
Front := Front rem BUFSIZE'LAST + 1 ;
Entries := Entries - 1 ;
end select ;
end loop ;

5 buffe: ji Sthedition. Chapter 16 Slide 47

