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Process architecture
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Building_monitor 1
task Building_monitor is

entry Initialise ;
entry Test ;
entry Monitor ;

end Building_monitor ;

task body Building_monitor is
type ROOMS is array (NATURAL range <>) of ROOM_NUMBER ;
Move_sensor, Window_sensor, Door_sensor : SENSOR ;

   Move_sensor_locations: ROOMS (0..Number_of_move_sensors-1) ;
   Window_sensor_locations: ROOMS (0.. Number_of_window_sensors -1) ;
   Corr idor_sensor_locations : ROOMS (0..Number_of_corr idor_sensors-1) ;
   Next_movement_sensor, Next_window_sensor, 
   Next_door_sensor: NATURAL := 0;
begin

select
      accept Initialise do
         -- code here to read sensor locations from a file and 
         -- initial ise all location arrays
      end Initialise ;
   or
     accept Test do
         -- code here to activate a sensor test routine

end Test ;
or

     accept Monitor do
       -- the main processing loop
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Building_monitor 2

accept Monitor do
       -- the main processing loop
       loop
          -- TIMING: Each movement sensor twice/second
          Next_move_sensor :=
             Next_move_sensor + 1 rem Number_of_move_sensors ;
          -- rendezvous with Movement detector process
          Movement_detector.Interrogate (Move_sensor) ;
          if Move_sensor /= OK then
             Alarm_system.Initiate

(Move_sensor_locations (Next_move_sensor)) ;
          end if ;
          -- TIMING: Each window sensor twice/second
          -- rendezvous with Window sensor process
          Next_window_sensor :=
             Next_window_sensor + 1 rem Number_of_window_sensors ;
          Window_sensor.Interrogate (Window_sensor) ;
          if Window_sensor /= OK then
             Alarm_system.Initiate (Window_sensor_locations

(Next_move_sensor)) ;
          end if ;
          -- TIMING: Each door sensor twice/second
          -- rendezvous with Door sensor process
          -- Comparable code to the above here
       end loop ;

end select ;
end Building_monitor ;
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Sensor_data_buffer
   

task body Sensor_data_buffer is
Size: constant NATURAL := 50000 ;
type BUFSIZE is range 0..Size ;
Store: array (BUFSIZE) of SENSOR_RECORD ;
Entries: NATURAL := 0 ;
Front, Back: BUFSIZE := 1 ;

begin
loop

--  A call to the Get and Put operations will only be accepted when
-- one of the expressions associated with when is true.
-- Thus, Put can only execute when there is space in the buffer,
-- Get can only take items from the buffer when it is not empty.
select

when Entries < Size =>
accept Put (Val: SENSOR_RECORD) do

Store (Back) := Val ;
end Put ;

      Back := Back rem BUFSIZE’LAST + 1 ;
Entries := Entries + 1 ;
or

      when Entries > 0 =>
        accept Get (Val: in out SENSOR_RECORD)
do
          Val := Store (Front) ;
         end Get ;

Front := Front rem BUFSIZE’LAST + 1 ;
Entries := Entries - 1 ;

    end select ;
end loop ;
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