
Real-time executive

Process resource
requirements

Scheduler

Scheduling
information

Resource
manager

Despatcher

Real-time
clock

Processes
awaiting
resources

Ready
list

Interrupt
handler

Available
resource

list

Processor
list

Executing
process

Ready
processes

Released
resources

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 16 Slide 25

Process architecture

Lighting control
process

Audible alarm
process

Voice synthesizer
process

Alarm system
process

Power switch
process

Building monitor
process

Communication
process

Door sensor
process

Movement
detector process

Window sensor
process

560Hz

60Hz400Hz 100Hz

Power failure
interrupt

Alarm
system

Building monitor

Alarm
system

Alarm system

Alarm system

Detector status Sensor status Sensor status

Room number

Alert message

Room number

Room number

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 16 Slide 37

Building_monitor 1
task Building_monitor is

entry Initialise ;
entry Test ;
entry Monitor ;

end Building_monitor ;

task body Building_monitor is
type ROOMS is array (NATURAL range <>) of ROOM_NUMBER ;
Move_sensor, Window_sensor, Door_sensor : SENSOR ;

 Move_sensor_locations: ROOMS (0..Number_of_move_sensors-1) ;
 Window_sensor_locations: ROOMS (0.. Number_of_window_sensors -1) ;
 Corr idor_sensor_locations : ROOMS (0..Number_of_corr idor_sensors-1) ;
 Next_movement_sensor, Next_window_sensor,
 Next_door_sensor: NATURAL := 0;
begin

select
 accept Initialise do
 -- code here to read sensor locations from a file and
 -- initial ise all location arrays
 end Initialise ;
 or
 accept Test do
 -- code here to activate a sensor test routine

end Test ;
or

 accept Monitor do
 -- the main processing loop

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 16 Slide 38a

Building_monitor 2

accept Monitor do
 -- the main processing loop
 loop
 -- TIMING: Each movement sensor twice/second
 Next_move_sensor :=
 Next_move_sensor + 1 rem Number_of_move_sensors ;
 -- rendezvous with Movement detector process
 Movement_detector.Interrogate (Move_sensor) ;
 if Move_sensor /= OK then
 Alarm_system.Initiate

(Move_sensor_locations (Next_move_sensor)) ;
 end if ;
 -- TIMING: Each window sensor twice/second
 -- rendezvous with Window sensor process
 Next_window_sensor :=
 Next_window_sensor + 1 rem Number_of_window_sensors ;
 Window_sensor.Interrogate (Window_sensor) ;
 if Window_sensor /= OK then
 Alarm_system.Initiate (Window_sensor_locations

(Next_move_sensor)) ;
 end if ;
 -- TIMING: Each door sensor twice/second
 -- rendezvous with Door sensor process
 -- Comparable code to the above here
 end loop ;

end select ;
end Building_monitor ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 16 Slide 38b

Sensor_data_buffer

task body Sensor_data_buffer is
Size: constant NATURAL := 50000 ;
type BUFSIZE is range 0..Size ;
Store: array (BUFSIZE) of SENSOR_RECORD ;
Entries: NATURAL := 0 ;
Front, Back: BUFSIZE := 1 ;

begin
loop

-- A call to the Get and Put operations will only be accepted when
-- one of the expressions associated with when is true.
-- Thus, Put can only execute when there is space in the buffer,
-- Get can only take items from the buffer when it is not empty.
select

when Entries < Size =>
accept Put (Val: SENSOR_RECORD) do

Store (Back) := Val ;
end Put ;

 Back := Back rem BUFSIZE’LAST + 1 ;
Entries := Entries + 1 ;
or

 when Entries > 0 =>
 accept Get (Val: in out SENSOR_RECORD)
do
 Val := Store (Front) ;
 end Get ;

Front := Front rem BUFSIZE’LAST + 1 ;
Entries := Entries - 1 ;

 end select ;
end loop ;
end Sensor_data_buffer ;©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 16 Slide 47

