
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 1

Function-oriented design

⊗ Design with functional units
which transform inputs to
outputs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 2

Objectives

⊗ To explain how a software design may be
represented as aset of functions which share state

⊗ To introduce notations for funciton-oriented
design

⊗ To illustrate the function-oriented design process
by example

⊗ To compare sequential, concurrent abd object-
oriented design strategies

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 3

Topics covered

⊗ data-flow design

⊗ Structural decomposition

⊗ Detailed design

⊗ A comparison of design strategies

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 4

Function-oriented design

⊗ Practised informally since programming began

⊗ Thousands of systems have been developed
using this approach

⊗ Supported directly by most programming
languages

⊗ Most design methods are functional in their
approach

⊗ CASE tools are available for design support

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 5

A function-oriented view of design

F2F1 F3

F4 F5

Shared memory

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 6

Natural functional systems

⊗ Some systems are naturally function-oriented

⊗ Systems which maintain minimal state
information i.e. where the system is concerned
with processing independent actions whose
outcomes are not affected by previous actions

⊗ Information sharing through parameter lists

⊗ Transaction processing systems fall into this
category. Each transaction is independent

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 7

An ATM system design

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 8

Functional and object-oriented design

⊗ For many types of application, object-oriented
deisgn is likely to lead to a more reliable and
maintainable system

⊗ Some applications maintain little state - function-
oriented design is appropriate

⊗ Standards, methods and CASE tools for
functional design are well-established

⊗ Existing systems must be maintained -
function-oriented design will be practised well
into the 21st century

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 9

Functional design process

⊗ Data-flow design
• Model the data processing in the system using data-flow

diagrams

⊗ Structural decomposition
• Model how functions are decomposed to sub-functions using

graphical structure charts

⊗ Detailed design
• The entities in the design and their interfaces are described in

detail. These may be recorded in a data dictionary and the design
expressed using a PDL

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 10

Data flow diagrams

⊗ Show how an input data item is functionally
transformed by a system into an output data
item

⊗ Are an integral part of many design methods
and are supported by many CASE systems

⊗ May be translated into either a sequential or
parallel design. In a sequential design,
processing elements are functions or
procedures; in a parallel design, processing
elements are tasks or processes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 11

DFD notation

⊗ Rounded rectangle - function or transform

⊗ Rectangle - data store

⊗ Circles - user interactions with the system

⊗ Arrows - show direction of data flow

⊗ keywords and/ or. Used to link data flows

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 12

Design report generator

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 13

⊗ Structural decomposition is concerned with
developing a model of the design which shows the
dynamic structure i.e. function calls

⊗ This is not the same as the static composition
structure

⊗ The aim of the designer should be to derive
design units which are highly cohesive and
loosely coupled

⊗ In essence, a data flow diagram is converted to a
structure chart

Structural decomposition

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 14

Decomposition guidelines

⊗ For business applications, the top-level structure
chart may have four functions namely input,
process, master-file-update and output

⊗ Data validation functions should be subordinate to
an input function

⊗ Coordination and control should be the
responsibility of functions near the top of the
hierarchy

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 15

Decomposition guidelines

⊗ The aim of the deisgn process is to identify
loosely couypled, highly cohesive functions. Each
function should therefore do one thing and one
thing only

⊗ Each node in the structure chart should have
between two and seven subordinates

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 16

Process steps

⊗ Identify system processing transformations
• Transformations in the DFD which are concerned with

processing rather than input/output activities. Group under a single
function in the structure chart

⊗ Identify input transformations
• Transformations concerned with reading, validating and

formatting inputs. Group under the input function

⊗ Identify output transformations
• Transformations concerned with formatting and writing output.

Group under the output function

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 17

Initial structure chart

Produce
design reports

Collate
entities

Generate
report

Get design
entity names

Design
name

Design
entity

names

Design
report

entity
names

entity
data

entity
data

entity
names

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 18

Expanded structure chart
Produce

design reports

Collate
entities

Generate
report

Get design
entity names

entity
names

names

sorted
entity
datanames

Get design
name

Get entity
names

Sort entities
by name

Get entity
data

Sort entities
by type

Produce
integrated report

Print
report

design
name

entity
names

reportentity
data

design
name

names

sorted
names

entity
data

sorted
entity
data

sorted
entity
data

Integrated
report

sorted
entity
data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 19

Final structure chart

Data
dictionary

Produce
design reports

Collate
entities

Generate
report

Get design
entity names

entity
names

names

sorted
entity
datanames

Get design
name

Get entity
names

Sort entities
by name

Get entity
data

Sort entities
by type

Produce
integrated report

Print
report

design
name

entity
names

report

entity
data

design
name

names

sorted
names

entity
data

sorted
entity
data

sorted
entity
data

Integrated
report

Design
database

design
name

entity
name

Produce
link report

Produce
node report

Link
data

Link
report

Node
data Node

report

sorted
entity
data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 20

Detailed design

⊗ Concerned with producing a short design
specification (minispec) of each function. This
should describe the processing, inputs and outputs

⊗ These descriptions should be managed in a data
dictionary

⊗ From these descriptions, detailed design
descriptions, expressed in a PDL or programming
language, can be produced

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 21

Data dictionary entries
Entity name Type Description

Design name STRING The name of the design assigned by the
design engineer.

Get design name FUNCTION Input: Design name
Function: This function communicates
with the user to get the name of a design
that has been entered in the design
database.
Output: Design name

Get entity names FUNCTION Input: Design name
Function: Given a design name, this
function accesses the design database to
find the names of the entities (nodes and
links) in that design.
Output: Entity names

Sorted names ARRAY of
STRING

A list of the names of the entities in a
design held in ascending alphabetical
order.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 22

Design entity information

Get entity
names

Design
database

Sort entity
names

Transform name: Sort entity names (Namelist: in out Names)

Description: This transform takes a list of entity names and
sorts them into ascending alphabetical order.
Duplicates are removed from the list.

It is anticipated that the names will be randomly ordered and
that a maximum of 200 names need be sorted at one time.
A quicksort algorithm is recommended.

Data
dictionary

Get design
name Design

name

Entity
names

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 23

A comparison of design strategies

⊗ An example of an office information retrieval
system (OIRS) is used to compare different
design strategies

⊗ Functional design, concurrent systems design and
object-oriented design are compared

⊗ The OIRS is an office system for document
management. Users can file, maintain and retrieve
documents using it

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 24

OIRS user interface

Get document

Put document

Search database

Add index

Delete index

Delete document

Known indexes Current indexes
Chapter 15

‘SE BOOK’

Document name

Qualifier

Documents4 documents in workspace

QUIT

CLEAR

Function-oriented design is an approach to software design where the design
is decomposed into a set of interacting units where each unit has a clearly
defined function. By comparison with object-oriented design, the design
components in this approach are cohesive around a function whereas
object-oriented cohesion is around some abstract data entity.

Function-oriented design has probably been practised informally since
programming began but it was only in the late 1960s and early 1970s that it

Operations

NEW STYLE

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 25

⊗ Operation field.
• Pull-down menu allowing an operation to be selected.

⊗ Known and current indexes fields
• Pull-down menus of indexes

⊗ Document name.
• Name under which the document is to be filed.

⊗ Qualifier field
• Pattern used in retrieval.

⊗ Current workspace
• Contains the documents currently being used. May be edited with

word processor

Interface description

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 26

OIRS inputs and outputs

OIRSDocument
database

Document
database

Current
workspace

Current
workspace

User command

Status message

and

and

or

and

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 27

Fetch-execute model
procedure Interactive_system is
begin

loop
Command := Get_command;
if Command = “quit” then

-- Make sure files etc. are closed properly
Close_down_system ;
exit ;

else
Input_data := Get_input_data ;
Execute_command (Command, Input_data, Output_data) ;

end if ;
end loop ;

end Interactive_system ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 28

Top-level OIRS DFD

Get
command

Update
database

Document
database

Current
workspace

Execute
Command

Update
workspace

Current
workspace

Document
database

Put status
message

Status message

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 29

⊗ What strategy should be adopted in
decomposing Execute command?

⊗ Are the input and output data flows processed
independently or are they inter-dependent. If
independent, there should be a central
transform for each processing unit

⊗ Is the central transform a series of transforms?
If so, each logical element in the series should
be a single transformation

Design decisions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 30

Execute command DFD

Identify
command type

Update
index

Update
database

Update
workspace

Known
indexes

User
command

Index update
command

Workspace update
command

Workspace

Selected
document

Status
message

Workspace Status
message

Database
update request

Workspace

Selected
documentDB

update
command

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 31

OIRS design description

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 32

⊗ Data flow diagrams explicitly exclude control
information. They can be implemented directly
as concurrent processes.

⊗ Logical groups of transformations can also be
implemented as concurrent processes e.g.
input data collection and checking

⊗ The OIRS system can be implemented as a
concurrent system with command input,
execution and status reporting implemented as
separate tasks

Concurrent systems design

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 33

OIRS process decomposition

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 34

Detailed process design
procedure Office_system is

task Get_command ;
 task Process_command is
 entry Command_menu ;
 entry Display_indexes ;
 entry Edit_qualifier ;
 -- Additional entries here. One for each command
 end Process_commands ;
 task Output_message is
 entry Message_available ;
 end Output_message ;
 task Workspace_editor is
 entry Enter ;
 entry Leave ;
 end Workspace_editor ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 35

Detailed process design

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 36

Object-oriented design

⊗ An object-oriented design focuses on the entities
in the system rather than the data processing
activities

⊗ Simplified OOD here which illustrates a different
decomposition

⊗ The initial decomposition was introduced in
Chapter 14 in the discussion of object
identification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 37

Preliminary object identification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 38

New objects required

⊗ Workspace
• Corresponds to the user’s workspace and provides operations to

add and remove documents from the workspace

⊗ Index list
• Provides facilities to manage a list of indexes

⊗ Document database
• Corresponds to the database of documents. provides search and

retrieval operations

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 39

Additional OIRS objects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 40

Object refinement

⊗ Retrieval system does not provide services. It
coordinates other objects. It has only attributes

⊗ Documents and indexes are explicitly named

⊗ The individual command components have
been bundled into a single attribute User
command in Retrieval system

⊗ The User object has been replaced by the Display
object

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 41

Modified OIRS objects

Get command
Put message

Display

Command list
Buttons
Known indexes
Current indexes
Doc. name
Doc. list
Qualifier
WSpace status

Retrieval system

User command
Workspace
Known indexes
Current indexes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 42

⊗ Function-oriented design relies on identifying
functions which transform inputs to outputs

⊗ Many business systems are transaction processing
systems which are naturally functional

⊗ The functional design process involves identifying
data transformations, decomposing functions into
sub-functions and describing these in detail

35

Key points

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 43

Key points

⊗ Data-flow diagrams are a means of documenting
end-to-end data flow. Structure charts represent the
dynamic hierarchy of function calls

⊗ Data flow diagrams can be implemented directly
as cooperating sequential processes

⊗ Functional and object-oriented design result in
different system decompositions. However, a
heterogeous approach to design is often necessary

