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Function-oriented design

⊗ Design with functional units
which transform inputs to
outputs
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Objectives

⊗ To explain how a software design may be
represented as aset of functions which share state

⊗ To introduce notations for funciton-oriented
design

⊗ To illustrate the function-oriented design process
by example

⊗ To compare sequential, concurrent abd object-
oriented design strategies
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Topics covered

⊗ data-flow design

⊗ Structural decomposition

⊗ Detailed design

⊗ A comparison of design strategies
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Function-oriented design

⊗ Practised informally since programming began

⊗ Thousands of systems have been developed
using this approach

⊗ Supported directly by most programming
languages

⊗ Most design methods are functional in their
approach

⊗ CASE tools are available for design support
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A function-oriented view of design

F2F1 F3

F4 F5

Shared memory
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Natural functional systems

⊗ Some systems are naturally function-oriented

⊗ Systems which maintain minimal state
information i.e. where the system is concerned
with processing independent actions whose
outcomes are not affected by previous actions

⊗ Information sharing through parameter lists

⊗ Transaction processing systems fall into this
category. Each transaction is independent
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An ATM system design

⊗ Replace with portrait slide
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Functional and object-oriented design

⊗ For many types of application, object-oriented
deisgn is likely to lead to a more reliable and
maintainable system

⊗ Some applications maintain little state - function-
oriented design is appropriate

⊗ Standards, methods and CASE tools for
functional design are well-established

⊗ Existing systems must be maintained -
function-oriented design will be practised well
into the 21st century



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 9

Functional design process

⊗ Data-flow design
• Model the data processing in the system using data-flow

diagrams

⊗ Structural decomposition
• Model how functions are decomposed to sub-functions using

graphical structure charts

⊗ Detailed design
• The entities in the design and their interfaces are described in

detail. These may be recorded in a data dictionary and the design
expressed using a PDL
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Data flow diagrams

⊗ Show how an input data item is functionally
transformed by a system into an output data
item

⊗ Are an integral part of many design methods
and are supported by many CASE systems

⊗ May be translated into either a sequential or
parallel design. In a sequential design,
processing elements are functions or
procedures; in a parallel design, processing
elements are tasks or processes



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 11

DFD notation

⊗ Rounded rectangle - function or transform

⊗ Rectangle - data store

⊗ Circles - user interactions with the system

⊗ Arrows - show direction of data flow

⊗ keywords and/ or. Used to link data flows
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Design report generator

⊗ Replace with portrait slide
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⊗ Structural decomposition is concerned with
developing a model of the design which shows the
dynamic structure i.e. function calls

⊗ This is not the same as the static composition
structure

⊗ The aim of the designer should be to derive
design units which are highly cohesive and
loosely coupled

⊗ In essence, a data flow diagram is converted to a
structure chart

Structural decomposition
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Decomposition guidelines

⊗ For business applications, the top-level structure
chart may have four functions namely input,
process, master-file-update and output

⊗ Data validation functions should be subordinate to
an input function

⊗ Coordination and control should be the
responsibility of functions near the top of the
hierarchy
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Decomposition guidelines

⊗ The aim of the deisgn process is to identify
loosely couypled, highly cohesive functions. Each
function should therefore do one thing and one
thing only

⊗ Each node in the structure chart should have
between two and seven subordinates
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Process steps

⊗ Identify system processing transformations
• Transformations in the DFD which are concerned with

processing rather than input/output activities. Group under a single
function in the structure chart

⊗ Identify input transformations
• Transformations concerned with reading, validating and

formatting inputs. Group under the input function

⊗ Identify output transformations
• Transformations concerned with formatting and writing output.

Group under the output function
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Initial structure chart
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Expanded structure chart
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Final structure chart
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Detailed design

⊗ Concerned with producing a short design
specification (minispec) of each function. This
should describe the processing, inputs and outputs

⊗ These descriptions should be managed in a data
dictionary

⊗ From these descriptions, detailed design
descriptions, expressed in a PDL or programming
language, can be produced
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Data dictionary entries
Entity name Type Description

Design name STRING The name of the design assigned by the
design engineer.

Get design name FUNCTION Input: Design name
Function: This function communicates
with the user to get the name of a design
that has been entered in the design
database.
Output: Design name

Get entity names FUNCTION Input: Design name
Function: Given a design name, this
function accesses the design database to
find the names of the entities (nodes and
links) in that design.
Output: Entity names

Sorted names ARRAY of
STRING

A list of the names of the entities in a
design held in ascending alphabetical
order.
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Design entity information

Get entity
names

Design
database

Sort entity
names

Transform name: Sort entity names (Namelist: in out Names)

Description: This transform takes a list of entity names and
sorts them into ascending alphabetical order.
Duplicates are removed from the list.

It is anticipated that the names will be randomly ordered and
that a maximum of 200 names need be sorted at one time.
A quicksort algorithm is recommended.

Data
dictionary

Get design
name Design

name

Entity
names
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A comparison of design strategies

⊗ An example of an office information retrieval
system (OIRS) is used to compare different
design strategies

⊗ Functional design, concurrent systems design and
object-oriented design are compared

⊗ The OIRS is an office system for document
management. Users can file, maintain and retrieve
documents using it
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OIRS user interface

Get document
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Chapter 15
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Document name
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QUIT

CLEAR

Function-oriented design is an approach to software design where the design
is decomposed into a set of interacting units where each unit has a clearly
defined  function. By comparison with object-oriented design, the design
components in this approach are cohesive around a function whereas
object-oriented cohesion is around some abstract data entity.

Function-oriented design has probably been practised informally since
programming began but it was only in the late 1960s and early 1970s that it

Operations

NEW STYLE
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⊗ Operation field.
• Pull-down menu allowing an operation to be selected.

⊗ Known and current indexes fields
• Pull-down menus of indexes

⊗ Document name.
• Name under which the document is to be filed.

⊗ Qualifier field
• Pattern used in retrieval.

⊗ Current workspace
• Contains the documents currently being used. May be edited with

word processor

Interface description
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OIRS inputs and outputs
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Fetch-execute model
procedure Interactive_system is
begin

loop
Command := Get_command;
if Command = “quit” then

-- Make sure files etc. are closed properly
Close_down_system ;
exit ;

else
Input_data := Get_input_data ;
Execute_command (Command, Input_data, Output_data) ;

end if ;
end loop ;

end Interactive_system ;
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Top-level OIRS DFD
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⊗ What strategy should be adopted in
decomposing Execute command?

⊗ Are the input and output data flows processed
independently or are they inter-dependent. If
independent, there should be a central
transform for each processing unit

⊗ Is the central transform a series of transforms?
If so, each logical element in the series should
be a single transformation

Design decisions
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Execute command DFD
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OIRS design description

⊗ Replace with portrait slide
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⊗ Data flow diagrams explicitly exclude control
information. They can be implemented directly
as concurrent processes.

⊗ Logical groups of transformations can also be
implemented as concurrent processes e.g.
input data collection and checking

⊗ The OIRS system can be implemented as a
concurrent system with command input,
execution and status reporting implemented as
separate tasks

Concurrent systems design
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OIRS process decomposition
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Detailed process design
procedure Office_system is

task Get_command ;
  task Process_command is
    entry Command_menu ;
    entry Display_indexes ;
    entry Edit_qualifier ;
    -- Additional entries here. One for each command
   end Process_commands ;
  task Output_message is
    entry Message_available ;
  end Output_message ;
  task Workspace_editor is
     entry Enter ;
     entry Leave ;
  end Workspace_editor ;



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 35

Detailed process design
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Object-oriented design

⊗ An object-oriented design focuses on the entities
in the system rather than the data processing
activities

⊗ Simplified OOD here which illustrates a different
decomposition

⊗ The initial decomposition was introduced in
Chapter 14 in the discussion of object
identification
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Preliminary object identification
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New objects required

⊗ Workspace
• Corresponds to the user’s workspace and provides operations to

add and remove documents from the workspace

⊗ Index list
• Provides facilities to manage a list of indexes

⊗ Document database
• Corresponds to the database of documents. provides search and

retrieval operations



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 15 Slide 39

Additional OIRS objects
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Object refinement

⊗ Retrieval system does not provide services. It
coordinates other objects. It has only attributes

⊗ Documents and indexes are explicitly named

⊗ The individual command components have
been bundled into a single attribute User
command in Retrieval system

⊗ The User object has been replaced by the Display
object
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Modified OIRS objects

Get command
Put message

Display

Command list
Buttons
Known indexes
Current indexes
Doc. name
Doc. list
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Retrieval system

User command
Workspace
Known indexes
Current indexes
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⊗ Function-oriented design relies on identifying
functions which transform inputs to outputs

⊗ Many business systems are transaction processing
systems which are naturally functional

⊗ The functional design process involves identifying
data transformations, decomposing functions into
sub-functions and describing these in detail

35

Key points
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Key points

⊗ Data-flow diagrams are a means of documenting
end-to-end data flow. Structure charts represent the
dynamic hierarchy of function calls

⊗ Data flow diagrams can be implemented directly
as cooperating sequential processes

⊗ Functional and object-oriented design result in
different system decompositions. However, a
heterogeous approach to design is often necessary


