
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 1

Object-oriented Design

⊗ Designing systems using self-
contained objects and object
classes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 2

Objectives

⊗ To explain how a software design may be
represented as a set of interacting objects

⊗ To illustrate, with a simple example, the object-
oriented design process

⊗ To introduce various models which describe an
object-oriented design

⊗ To explain how objects may be represented as
concurrent processes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 3

Topics covered

⊗ Objects, object classes and inheritance

⊗ Object identification

⊗ An object-oriented design example

⊗ Concurrent objects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 4

Characteristics of OOD

⊗ Objects are abstractions of real-world or system
entities and manage themselves

⊗ Objects are independent and encapsulate state and
representation information.

⊗ System functionality is expressed in terms of
object services

⊗ Shared data areas are eliminated. Objects
communicate by message passing

⊗ Objects may be distributed and may execute
sequentially or in parallel

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 5

OOD structure

state 3

O3

state 4

O4

state 1

O1

state 6

O6

state 5

O5

state 2

O2

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 6

Advantages of OOD

⊗ Easier maintenance. Objects may be
understood as stand-alone entities

⊗ Objects are appropriate reusable components

⊗ For some systems, there may be an obvious
mapping from real world entities to system
objects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 7

Object-oriented development

⊗ Object-oriented analysis, design and programming
are related but distinct

⊗ OOA is concerned with developing an object
model of the application domain

⊗ OOD is concerned with developing an object-
oriented system model to implement requirements

⊗ OOP is concerned with realising an OOD using
an OO programming language such as C++

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 8

Object-oriented design methods

⊗ Some methods which were originally based on
functions (such as the Yourdon method) have
been adapted to object-oriented design. Other
methods such as the Booch method have been
developed specifically for OOD

⊗ HOOD is an object-oriented design method
developed to support Ada programming.

⊗ JSD has an object-oriented flavour but does not
conceal entity state information.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 9

OO Design method commonality

⊗ The identification of objects, their attributes and
services

⊗ The organisation of objects into an aggregation
hierarchy

⊗ The construction of dynamic object-use
descriptions which show how services are used

⊗ The specification of object interfaces

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 10

Objects, classes and inheritance

⊗ Objects are entities in a software system which
represent instances of real-world and system
entities

⊗ Object classes are templates for objects. They may
be used to create objects

⊗ Object classes may inherit attributes and services
from other object classes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 11

Objects

An object is an entity which has a state and a defined set of
operations which operate on that state. The state is represented as a
set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these
services when some computation is required. Objects are created
according to some object class definition. An object class definition
serves as a template for objects. It includes declarations of all the
attributes and services which should be associated with an object of
that class.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 12

Object communication

⊗ Conceptually, objects communicate by
message passing.

⊗ Messages
• The name of the service requested by the calling object.

• Copies of the information required to execute the service
and the name of a holder for the result of the service.

⊗ In practice, messages are often implemented
by procedure calls
• Name = procedure name.

• Information = parameter list.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 13

Message examples

u Call the printing service associated with lists
to print the list L1

List.Print (L1)

u Call the service associated with integer
arrays which finds the maximum value of array XX.
Return the result in Max_value

IntArray.Max (XX, Max_value]

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 14

A mail message object class

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 15

Interface design of mail message
package Mail i s
 type MESSAGE is private ;
 -- Object operations
 procedure Send (M: MESSAGE; Dest: DESTINATION) ;
 procedure Present (M: MESSAGE; D: DEVICE) ;
 procedure File (M: MESSAGE; File: FILENAME) ;
 procedure Print (M: MESSAGE; D: DEVICE) ;

 -- Sender attribute
 function Sender (M: MESSAGE) return MAIL_USER ;
 procedure Put_sender (M: in out MESSAGE; Sender: MAIL_USER) ;
 -- Receiver attribute
 function Receiver (M: MESSAGE) return MAIL_USER ;
 procedure Put_receiver (M: in out MESSAGE; Receiver: MAIL_USER) ;
 -- Access functions and Put operations for other attributes here
 ...
private
 -- The representation of the attributes is concealed by
 -- representing it as an access type. Details are inside the package body
 type MAIL_MESSAGE_RECORD ;
 type MESSAGE is access MAIL_MESSAGE_RECORD ;
end Mail ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 16

Interface design of mail message
class Mail_message {
public:
 Mail_message () ;
 ~Mail_message () ;
 void Send () ;
 void File (char* filename) ;
 void Print (char* printer_name) ;
 void Present (char* device_name) ;
 char* Sender () ;
 void Put_sender (char* S) ;
 char* Receiver () ;
 void Put_receiver (char* R) ;
 // Other access and inspection functions here
private:
 char* sender, receiver, senderaddr, receiveraddr ;
 char* title, text ;
 date datesent, datereceived ;
} ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 17

Object definition

Ada

with Mail ;
-- define an object of type mail message by declaring a
-- variable of the specified abstract data type
Office_memo: Mail.MESSAGE ;
-- Call an operation on mail message
Mail.Print (Office_memo, Laser_printer) ;

C++
-- define an object of type Mail_message
Mail_message Office_memo ;

// Call an operation on mail message
Office_memo.Print (“Laser_printer”) ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 18

Inheritance

⊗ Objects are members of classes which define
attribute types and operations

⊗ Classes may be arranged in a class hierarchy
where one class is derived from an existing
class (super-class)

⊗ A sub-class inherits the attributes and
operations from its super class and may add
new methods or attributes of its own

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 19

A class or type hierarchy

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 20

Multiple inheritance

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 21

Advantages of inheritance

⊗ It is an abstraction mechanism which may be used
to classify entities

⊗ It is a reuse mechanism at both the design and the
programming level

⊗ The inheritance graph is a source of organisational
knowledge about domains and systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 22

Problems with inheritance

⊗ Object classes are not self-contained. they cannot
be understood without reference to their super-
classes

⊗ Designers have a tendency to reuse the inheritance
graph created during analysis. Can lead to
significant inefficiency

⊗ The inheritance graphs of analysis, design and
implementation have different functions and
should be separately maintained

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 23

Inheritance and OOD

⊗ There are differing views as to whether
inheritance is fundamental to OOD.
• View 1. Identifying the inheritance hierarchy or network is a

fundamental part of object-oriented design. Obviously this can
only be implemented using an OOPL.

• View 2. Inheritance is a useful implementation concept which
allows reuse of attribute and operation definitions. Identifying an
inheritance hierarchy at the design stage places unnecessary
restrictions on the implementation.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 24

Object identification

⊗ Identifying objects is the most difficult part of
object oriented design.

⊗ There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers.

⊗ Object identification is an iterative process. You
are unlikely to get it right first time

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 25

Approaches to identification

⊗ Use a grammatical approach based on a natural
language description of the system (used in Hood
method)

⊗ Base the identification on tangible things in the
application domain

⊗ Use a behavioural approach and identify objects
based on what participates in what behaviour

⊗ Use a scenario-based analysis. Used in the
ObjectOry method

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 26

An office information system

The Office Information Retrieval System (OIRS) is
an automatic file clerk which can file documents
under some name in one or more indexes, retrieve
documents, display and maintain document
indexes, archive documents and destroy
documents. The system is activated by a request
from the user and always returns a message to the
user indicating the success or failure of the request.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 27

Objects and operations

⊗ Nouns in the description give pointers to objects in
the system

⊗ Verbs give pointers to operations associated with
objects

⊗ Approach assumes that the designer has a
common sense knowledge of the application
domain as not all objects and services are likely to
be mentioned in the description

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 28

Preliminary object identification

File
Retrieve
Archive
Destroy

Document

Name

Display
Delete entry
Add entry

Index

Name

Get command
Put message

User Retrieval
system

User command

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 29

A weather mapping system

⊗ Takes data from several remote weather
stations which perform local data processing

⊗ The data is transmitted to an area computer for
further processing and integration with other
weather reports

⊗ Weather maps are generated by the area
computer by combining the weather data with a
map database

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 30

Weather system description

A weather data collection system is required to generate weather maps on a
regular basis using data collected from remote, unattended weather stations.
Each weather station collects meteorological data over a period and produces
summaries of that data. On request, it sends the collected, processed
information to an area computer for further processing. Data on the air
temperature, the ground temperature, the wind speed and direction, the
barometric pressure and the amount of rainfall is collected by each weather
station.

Weather stations transmit their data to the area computer in response to a
request from that machine. The area computer collates the collected data and
integrates it with reports from other sources such as satellites and ships. Using
a digitised map database it then generates a set of local weather maps.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 31

System architecture

Weather
data processor

Data
archive

Map
database

Telecomms
system

Satellite
receiver

Map
printer

Map
display

Manual data
collection

Weather
stations

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 32

Principal abstract objects

⊗ Weather station
• Package of instruments which collects data, performs some

processing and transmits the data for further processing

⊗ Map database
• Database of survey information which allows maps to be

generated at different scales

⊗ Weather map
• A representation of an area with superimposed, summarized

weather information

⊗ Weather data
• Used to produce the map and is archived for future processing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 33

Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected every five minutes.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
request is received.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 34

Weather station objects

⊗ Identified objects
• Air and ground thermometers, anemometer, wind vane,

barometer, rain gauge. The package of instruments may also be
an object

⊗ Identified operations
• Collect data, Perform data processing and Transmit Data

⊗ Identified attributes
• Summarized data

⊗ This description is refined using domain
knowledge e.g. a weather station must have a
unique identifier

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 35

Weather station class

Identifier
Weather data
Instrument status

Initialize
Transmit data
Transmit status
Self test
Shut down

Weather station

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 36

Hardware object design

⊗ Hardware objects correspond directly to
sensors or actuators connected to the system

⊗ They conceal the details of the hardware
control e.g. buffer address, masking bit pattern
etc.

⊗ Hardware changes can often be introduced by
hardware object re-implementation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 37

Hardware control objects

Test

Wind vane

Direction

Reset
Test

Rain gauge

Rainfall

Test
Calibrate

Barometer

Pressure
Height

Test
Calibrate

Air
thermometer

Temperature

Test
Calibrate

Ground
thermometer

Temperature

Test

Anemometer

Wind speed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 38

Data collected by weather station

⊗ Air and ground temperature
• Maximum, minimum and average

⊗ Wind speed
• Average speed, maximum gust speed

⊗ Wind direction
• Every 5 minutes during collection period

⊗ Pressure
• Average barometric pressure

⊗ Rainfall
• Cumulative rainfall

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 39

Weather data objects

Air temperature data
Ground temperature data
Wind speed data
Wind direction data
Pressure
Rainfall

Make readings
Process data

Weather data

Readings

Maximum
Minimum
Average
Read

Temperature data

Readings

Read
Average

Pressure

Readings

Average
Max. gust
Read

Wind speed data

Readings

Read

Wind direction
data

Cumulative

Read

Rainfall

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 40

Weather data

⊗ All weather data can be encapsulated in a
single object. Logically, the weather station
transmits a single object to the area computer

⊗ The attributes of the weather data object are
themselves objects

⊗ The Process_data operation is initiated when
weather information is to be transmitted. It
computes the information required using raw
collected data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 41

Other weather station objects

Time

Set time

Clock

Status

Test
Shutdown

Instruments

Input buffer
Output buffer

Transmit data
Transmit status

Comms

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 42

Object aggregation hierarchy

Barometer
Air

thermometer
Ground

thermometer Rain gauge Wind vane Anemometer

Weather
data Instruments Clock Comms

Met.
data

Weather *
station

Map
database

Weather
map

Weather
mapping
system

.

.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 43

Static and dynamic system structure

⊗ Object aggregation hierarchy diagrams show the
static system structure. They illustrate objects and
sub-objects. This is NOT the same as an
inheritance hierarchy

⊗ Object-service usage diagrams illustrate how
objects use other objects. They show the
messages passed (procedures called) between
objects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 44

Object interactions

RainfallGround temp.
data

Air temp.
data

Wind direction
data Pressure Wind speed

data

Cumulative Readings Average Average
Max. gust

Maximum
Minimum
Average

Weather
data

Process
data

Weather
station

Transmit
data

Transmit
dataComms Comms

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 45

Weather station object interactions

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 46

Object interface design

⊗ Concerned with specifying the detail of the object
interfaces. This means defining attribute types and
the signatures and semantics of object operations

⊗ Representation information should be avoided

⊗ Precise specification is essential so a programming
language description should be used

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 47

Ada interface design 1

with Weather_data, Instrument_status, Mapping_computer ;
package Weather_station is

type T is private ;
type STATION_IDENTIFIER is STRING (1..6) ;
procedure Initialise (WS: T) ;
procedure Transmit_data (Id: STATION_IDENTIFIER ;

 WR: Weather_data.REC ;
 Dest: Mapping_computer.ID) ;

procedure Transmit_status (Id: STATION_IDENTIFIER ;
 IS: Instrument_status.REC ;
 Dest: Mapping_computer.ID) ;

procedure Self_test (WS: T) ;
procedure Shut_down (WS: T) ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 48

Ada interface design 2
-- Access and constructor procedures for object attributes

-- Attribute: Station identifier
function Station_identifier (WS: T) return STATION_IDENTIFIER ;
procedure Put_identifier (WS: in out T ; Id: STATION_IDENTIFIER) ;
-- Attribute: Weather data record
function Weather_data (WS: T) return Weather_data.REC ;
procedure Put_weather_data (WS: in out T ; WR: Weather_data.REC) ;
-- Attribute: Instrument status
procedure Put_instrument_status (WS: in out T; IS: Instrument_status.REC) ;
function Instrument_status (WS: T) return Instrument_status.REC ;

private
type T is record

Id: STATION_IDENTIFIER ;
Weather_data: Weather_data.REC ;
Instrument_status: Instrument_status.REC ;

end record ;
end Weather_station ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 49

C++ interface design

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 50

Design evolution

⊗ Hiding information inside objects means that
changes made to an object do not affect other
objects in an unpredictable way

⊗ Assume pollution monitoring facilities are to be
added to weather stations. These sample the
air and compute the amount of different
pollutants in the atmosphere

⊗ Pollution readings are transmitted with weather
data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 51

Changes required

⊗ Add a Pollution record object.

⊗ Add an operation Transmit pollution data to
Weather station. Modify control software to
collect pollution readings

⊗ Add an Air quality sub-object to Pollution record
at the same level as Pressure, Rainfall, etc.

⊗ Add a hardware object Air quality meter

⊗ Adding pollution data collection does NOT
affect weather data collection in any way

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 52

Pollution monitoring objects

Identifier
Weather data
Pollution data
Instrument status

Initialize
Transmit data
Transmit pollution data
Transmit status
Self test
Shut down

Weather station

NO data
Smoke data
Benzene data

Make readings

Air quality

Readings

Read

NO level

Readings

Read

Smoke level

Readings

Read

Benzene level
Smoke
Nitrous Oxide
Benzene

Test
Calibrate

Air quality meter

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 53

Concurrent objects

⊗ The nature of objects as self-contained entities
make them suitable for concurrent
implementation

⊗ The message-passing model of object
communication can be implemented directly if
objects are running on separate processors in a
distributed system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 54

Object implementation

⊗ C++ has no built-in concurrency constructs

⊗ Ada’s concurrency constructs (tasks) may be used
to implement concurrent objects

⊗ Task types represent object classes, tasks represent
object instances, task entries represent object
operations.

⊗ Task entries are called like procedures

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 55

Active and passive objects

⊗ Passive objects.
• The object is implemented as a parallel process (server)

with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself

⊗ Active objects
• Objects are implemented as parallel processes and the

internal object state may be changed by the object itself and
not simply by external calls

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 56

Concurrent counter object

⊗ Passive object which may be used in a real-time
system, associated with system sensors

⊗ Operations are Get, Add and Initialize

⊗ Counters are created using language declaration
mechanisms
• Geiger1, Geiger2: Concurrent_counter

⊗ Operations are accessed via entry calls
• Geiger1.Get (The_value); Geiger2.Add (1)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 57

Ada counter object

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 58

Active transponder object

⊗ Active objects may have their attributes modified
by operations but may also update them
autonomously using internal operations

⊗ Transponder object broadcasts an aircraft’s
position. The position may be updated using a
satellite positioning system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 59

An active transponder object
task Transponder is

entry Give_position (Pos: POSITION) ;
end Transponder ;
task body Transponder is

Current_position: POSITION ;
C1, C2: Satellite.COORDS ;
loop

select
accept Give_position (Pos: out POSITION) do

Pos:= Current_position ;
end Give_position ;

else
C1 := Satellite1.Position ;
C2 := Satellite2.Position ;
Current_position := Navigator.Compute (C1, C2) ;

end select ;
end loop ;

end Transponder ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 60

⊗ OOD is design with information hiding.
Representations may be changed without
extensive system modifications

⊗ An object has a private state with associated
constructor and access operations. Objects provide
services (operations) to other objects.

⊗ Object identification is a difficult process.
Identifying nouns and verbs in a natural
language description can be a useful starting
point for object identification.

Key points

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 61

Key points

⊗ Object interfaces must be precisely defined. A
programming language such as Ada or C++ may
be used for this

⊗ Useful documentation of an OOD include object
hierarchy charts and object interaction
diagrams

⊗ Objects may be implemented as either
sequential or concurrent entities. Concurrent
objects may be active or passive

