Architectural Design

0 Establishing the overdl
structure of asoftware system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Sidel

Objectives

0 Tointroduce architectural design and itsrolein the
software process

0 To describe a number of different types of
architectural model

0 To show how the architecture of a system may be
modelled in different ways

0 To discuss how domain-specific reference models
may be used to compare software architectures

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side2

Topics covered

System structuring
Control models
Modular decomposition

O
O
O
0 Domain-specific architectures

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side3

Architectura paralels

0 Architects are the technical interface between the
customer and the contractor building the system

0 A bad architectural design for abuilding cannot be
rescued by good construction; the sameistrue for

software

0 Thereare specialist types of building and software
architects

0 Thereare schools or styles of building and
software architecture

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side4

Architectural design process

O System structuring

* The system is decomposed into several principal sub-systemsand
communications between these sub-systems are identified

0 Control modelling

* A model of the control rdationships between the different parts of
the system is established

0 Modular decomposition
» Theidentified sub-systems are decomposed into modules

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side5

Sub-systems and modules

0 A sub-systemisasystemin its own right whose
operation isindependent of the services provided
by other sub-systems.

0 A moduleisasystem component that provides
services to other components but would not
normally be consi dered as a separate system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side6

Architectural models

0 Structure, control and modular decomposition
may be based on a particular model or architectural
style

O However, most systems are heterogeneous in that
different parts of the system are based on different
models and, in some cases, the system may
follow a composite model

0 Thearchitectural model used affectsthe
performance, robustness, distributability and
maintainability of the system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side7

System structuring

0 Concerned with decomposing the system into
Interacting sub-systems

0 Thearchitectural design isnormally expressed as a
block diagram presenting an overview of the
system structure

0 More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side8

Packing robot control system

Vision
system

Object
identification
system

Y
Arm Gripper
controller controller
A

Packaging
selection
system

Packi =<
acxing < | Conveyor
system | controller
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side9

The repository model

0 Sub-systems must exchange data. This may be
donein two ways.

» Shared dataishdd in acentra database or repository and may be
accessed by all sub-systems

» Each sub-system mantainsits own database and passes data
explicitly to ather sub-systems

0 When large amounts of data are to be shared, the
repository model of sharing is most commonly
used

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 10

CA SE toolset architecture

Design
editor

Design Project
translator repository

Design Report
analyser generator

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side11

Code
generator

Program
editor

Repository model characterigtics

0 Advantages
» Efficient way to share large amounts of data

* Sub-systems need not be concerned with how datais produced
Centralised management e.g. backup, security, etc.

» Sharing model ispublished as therepository schema

0 Disadvantages

* Sub-systems must agree on arepository datamodel. Inevitably a
compromise

» Dataevolutionisdifficut and expensive
» No scope for spedfic management policies
» Difficultto distribute efficiently

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 12

Client-server architecture

0 Distributed system model which shows how data
and processing is distributed across a range of
components

0 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

0 Set of clientswhich call on these services
0 Network which allows clients to access servers

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 13

Film and picture library

Wide-bandwidth network

Video Picture
server server

Film clip Digitized
files photographs

Hypertext
server

Hypertext
web

Catalogue
server

Catalogue

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side14

Client-server characteristics

0 Advantages
» Didtribution of datais straightforward

* Makes effective use of networked systems. May require cheaper
hardware

» Easy to add new servers or upgradeexisting servers

0 Disadvantages
* No shared data model so sub-systems use different deta
organisation. datainterchange may beinefficient
* Redundant management in each server

* No centrd register of names and services - it may be hard tofind
out what servers and services are available

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 15

Abstract machine model

0 Used to model the interfacing of sub-systems

0 Organises the system into a set of layers (or
abstract machines) each of which provide a set of
services

0 Supports the incremental development of sub-
systemsin different layers. When alayer interface
changes, only the adjacent layer is affected

0 However, often difficult to structure systemsin
thisway

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 16

Version management system

Version management

Object management

Database system

Operating
system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 17

Control models

0 Areconcerned with the control flow between sub-
systems. Distinct from the system decomposition
model

0 Centraised control

* One sub-system has overall respongbility for contra and sarts
and stops other aub-systems

0 Event-based control

» Each sub-system can respond to externally generated events from
other sub-systems or thesystem’s environment

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 18

Centralised control

0 A control sub-system takes responsibility for
managing the execution of other sub-systems
0 Call-return model

* Top-down subroutine model where control garts at thetop of a
subroutine hierarchy and moves downwards. Applicableto
sequential systems

0 Manager model

» Applicableto concurrent systems. One system component
controlsthe stopping, arting and coordination of other system
processes Can be implemented in sequential systemsas acase
Statement

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 19

Call-return modd

Main
program

Routine 1 Routine 2

| Routine 1.1 ' | Routine 1.2 . | Routine 3.1 . | Routine B.j

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide20

Real -time system control

" Sensor “ Actuator
processes processes
System
controller
' Computation User Fault
processes interface handler

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13

Slide21

Event-driven systems

0 Driven by externally generated events where the
timing of the event is outwith the control of the
sub-systems which process the event

0 Two principa event-driven models

» Broadcas models. An evert is broadcast toal sub-systems. Any
sub-system which can handle the event may do so

* Interrupt-driven models. Used in redl-time systems where
interrupts are detected by an interrupt hand er and passed to some
other component for processing

0 Other event driven models include spreadsheets
and production systems

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide22

Broadcast modd

0 Effectivein integrati ng sub-systems on different
computersin anetwork

0 Sub-systemsregister an interest in specific events.

When these occur, control istransferred to the
sub-system which can handle the event

0 Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them

0 However, sub-systems don’'t know if or when an
event will be handled

©lan Sommerville 1995

Software Engineering, 5th edition. Chapter 13

Slide 23

Sdlective broadcasting

1 2 =)

Sub-system

4

Event and message handler

©lan Sommerville 1995

Software Engineering, 5th edition. Chapter 13

Slide24

Interrupt-driven systems

O

Used in real-time systems where fast response to
an event isessentid

There are known interrupt types with a handler
defined for each type

Each type is associ ated with a memory location
and a hardware switch causestransfer to its
handler

Allows fast response but complex to program and
difficult to validate

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide25

| nterrupt-driven control

Interrupts

H‘H

Interrupt
vector

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 26

Modular decomposition

0 Another structura level where sub-systems are
decomposed into modules

0 Two modular decomposition models covered

* Anobject modedl where the system is decomposed into interacting
objects
A data-flow model where the system is decomposed into
functiond modules which transform inputsto outputs. Also
known as the pipeline model

0 If possible, decisions about concurrency should be
delayed until modules are implemented

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 27

Object models

0 Structure the system into a set of loosely coupled
objects with well -defined interfaces

0 Object-oriented decomposition is concerned with
identifying object classes, their attributes and
operations

0 When implemented, objects are created from these

classes and some control moddl used to coordinae
object operations

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 28

Invoice processing system

Customer Receipt

customer # invoice #
name > date
address Invoice amount
credit period — customer #
invoice #
date
amount
customer
Payment Issue

Send reminder
Accept payment
Send receipt

invoice #
date
amount
customer #

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide29

Data-flow modds

0 Functional transformations process their inputs to
produce outputs

0 May bereferred to as a pipe and filter model (asin
UNIX shell)

0 Variants of this approach are very common.
When transformations are sequential, thisisa
batch sequential model whichis extensively used
In data processing systems

0 Not really suitable for interactive systems

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 30

Invoice processing system

Issue s
W| Receipts I
Find Issue
e e
due reminder

Read issue
invoices

Identify
payments

| Invoices I | PaymentsI

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide31

Domain-specific architectures

0 Architectural models which are specific to some
application domain

0 Two types of domain-specific model

* Generic models which are abstractions from anumber of real
systems and which encapsulate the principd characteristics of
these systems

» Reference model swhich aremore abstract, idealised model.
Providea means of information about that dass of system and of
comparing different architectures

0 Generic models are usual ly bottom-up models;
Reference models are top-down models

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 32

Generic models

0 Compiler model isawell-known example
although other models exist in more speciaised
application domains

* Lexicd anayser

* Symbol table

e Syntax anayser

e Syntaxtree

e Semanticanayser
» Code gererator

0 Generic compiler model may be organised
according to different architectural models

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 33

Compiler modd

Syntactic
analysis

Lexical
analysis

Semantic Code
analysis generation

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Side34

L anguage processing system

Lexical
analyser

Syntax
analyser

Semantic
analyser

Pretty- Abstract Grammar
printer syntax tree definition
. Symbol Output
table . definition '

Code
generator

Repository
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 35
Reference architectures

0 Reference models are derived from a study of the
application domain rather than from existing
systems

0 May be used as a basis for system implementation
or to compare different systems. It actsas a
standard against whi ch systems can be evaluated

0 OSI model isalayered model for communication
systems

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 36

OSl reference modd

7 Application
6 Presentation Presentation
5 Session Session
4 Transport Transport
3 Network Network Network
2 Data link Data link Data link
1 Physical Physical Physical
Communications medium
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide37
Key points

0 The software architect isresponsible for deriving a
structural system model, a control model and a
sub-system decomposition model

0 Large systemsrarely conform to asingle
architectural model

0 System decomposition models include repository
models, client-server models and abstract machine

models

0 Control modedlsinclude centraised control and

event-driven models

©lan Sommerville 1995

Software Engineering, 5th edition. Chapter 13

Slide 38

Key points

0 Modular decomposition models include data-flow
and object models

0 Domain specific architectural models are
abstractions over an application domain. They
may be constructed by abstracting from existing
systems or may be idealised reference models

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 39

