
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 1

Architectural Design

⊗ Establishing the overall
structure of a software system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 2

Objectives

⊗ To introduce architectural design and its role in the
software process

⊗ To describe a number of different types of
architectural model

⊗ To show how the architecture of a system may be
modelled in different ways

⊗ To discuss how domain-specific reference models
may be used to compare software architectures

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 3

Topics covered

⊗ System structuring

⊗ Control models

⊗ Modular decomposition

⊗ Domain-specific architectures

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 4

Architectural parallels

⊗ Architects are the technical interface between the
customer and the contractor building the system

⊗ A bad architectural design for a building cannot be
rescued by good construction; the same is true for
software

⊗ There are specialist types of building and software
architects

⊗ There are schools or styles of building and
software architecture

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 5

Architectural design process

⊗ System structuring
• The system is decomposed into several principal sub-systems and

communications between these sub-systems are identified

⊗ Control modelling
• A model of the control relationships between the different parts of

the system is established

⊗ Modular decomposition
• The identified sub-systems are decomposed into modules

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 6

Sub-systems and modules

⊗ A sub-system is a system in its own right whose
operation is independent of the services provided
by other sub-systems.

⊗ A module is a system component that provides
services to other components but would not
normally be considered as a separate system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 7

Architectural models

⊗ Structure, control and modular decomposition
may be based on a particular model or architectural
style

⊗ However, most systems are heterogeneous in that
different parts of the system are based on different
models and, in some cases, the system may
follow a composite model

⊗ The architectural model used affects the
performance, robustness, distributability and
maintainability of the system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 8

System structuring

⊗ Concerned with decomposing the system into
interacting sub-systems

⊗ The architectural design is normally expressed as a
block diagram presenting an overview of the
system structure

⊗ More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 9

Packing robot control system
Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 10

The repository model

⊗ Sub-systems must exchange data. This may be
done in two ways:
• Shared data is held in a central database or repository and may be

accessed by all sub-systems

• Each sub-system maintains its own database and passes data
explicitly to other sub-systems

⊗ When large amounts of data are to be shared, the
repository model of sharing is most commonly
used

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 11

CASE toolset architecture

Project
repository

Design
translator

Program
editor

Design
editor

Code
generator

Design
analyser

Report
generator

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 12

Repository model characteristics

⊗ Advantages
• Efficient way to share large amounts of data

• Sub-systems need not be concerned with how data is produced
Centralised management e.g. backup, security, etc.

• Sharing model is published as the repository schema

⊗ Disadvantages
• Sub-systems must agree on a repository data model. Inevitably a

compromise

• Data evolution is difficult and expensive

• No scope for specific management policies

• Difficult to distribute efficiently

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 13

Client-server architecture

⊗ Distributed system model which shows how data
and processing is distributed across a range of
components

⊗ Set of stand-alone servers which provide specific
services such as printing, data management, etc.

⊗ Set of clients which call on these services

⊗ Network which allows clients to access servers

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 14

Film and picture library

Catalogue
server

Catalogue

Video
server

Film clip
files

Picture
server

Digitized
photographs

Hypertext
server

Hypertext
web

Client 1 Client 2 Client 3 Client 4

Wide-bandwidth network

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 15

Client-server characteristics

⊗ Advantages
• Distribution of data is straightforward

• Makes effective use of networked systems. May require cheaper
hardware

• Easy to add new servers or upgrade existing servers

⊗ Disadvantages
• No shared data model so sub-systems use different data

organisation. data interchange may be inefficient

• Redundant management in each server

• No central register of names and services - it may be hard to find
out what servers and services are available

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 16

Abstract machine model

⊗ Used to model the interfacing of sub-systems

⊗ Organises the system into a set of layers (or
abstract machines) each of which provide a set of
services

⊗ Supports the incremental development of sub-
systems in different layers. When a layer interface
changes, only the adjacent layer is affected

⊗ However, often difficult to structure systems in
this way

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 17

Version management system

Operating
system

Database system

Object management

Version management

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 18

Control models

⊗ Are concerned with the control flow between sub-
systems. Distinct from the system decomposition
model

⊗ Centralised control
• One sub-system has overall responsibility for control and starts

and stops other sub-systems

⊗ Event-based control
• Each sub-system can respond to externally generated events from

other sub-systems or the system’s environment

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 19

Centralised control

⊗ A control sub-system takes responsibility for
managing the execution of other sub-systems

⊗ Call-return model
• Top-down subroutine model where control starts at the top of a

subroutine hierarchy and moves downwards. Applicable to
sequential systems

⊗ Manager model
• Applicable to concurrent systems. One system component

controls the stopping, starting and coordination of other system
processes. Can be implemented in sequential systems as a case
statement

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 20

Call-return model

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 21

Real-time system control

System
controller

User
interface

Fault
handler

Computation
processes

Actuator
processes

Sensor
processes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 22

Event-driven systems

⊗ Driven by externally generated events where the
timing of the event is outwith the control of the
sub-systems which process the event

⊗ Two principal event-driven models
• Broadcast models. An event is broadcast to all sub-systems. Any

sub-system which can handle the event may do so

• Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and passed to some
other component for processing

⊗ Other event driven models include spreadsheets
and production systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 23

Broadcast model

⊗ Effective in integrating sub-systems on different
computers in a network

⊗ Sub-systems register an interest in specific events.
When these occur, control is transferred to the
sub-system which can handle the event

⊗ Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them

⊗ However, sub-systems don’t know if or when an
event will be handled

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 24

Selective broadcasting

Sub-system
1

Event and message handler

Sub-system
2

Sub-system
3

Sub-system
4

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 25

Interrupt-driven systems

⊗ Used in real-time systems where fast response to
an event is essential

⊗ There are known interrupt types with a handler
defined for each type

⊗ Each type is associated with a memory location
and a hardware switch causes transfer to its
handler

⊗ Allows fast response but complex to program and
difficult to validate

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 26

Interrupt-driven control

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 27

Modular decomposition

⊗ Another structural level where sub-systems are
decomposed into modules

⊗ Two modular decomposition models covered
• An object model where the system is decomposed into interacting

objects

• A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also
known as the pipeline model

⊗ If possible, decisions about concurrency should be
delayed until modules are implemented

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 28

Object models

⊗ Structure the system into a set of loosely coupled
objects with well-defined interfaces

⊗ Object-oriented decomposition is concerned with
identifying object classes, their attributes and
operations

⊗ When implemented, objects are created from these
classes and some control model used to coordinate
object operations

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 29

Invoice processing system

Issue
Send reminder
Accept payment
Send receipt

invoice #
date
amount
customer

Invoice

customer #
name
address
credit period

Customer

invoice #
date
amount
customer #

Receipt

invoice #
date
amount
customer #

Payment

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 30

Data-flow models

⊗ Functional transformations process their inputs to
produce outputs

⊗ May be referred to as a pipe and filter model (as in
UNIX shell)

⊗ Variants of this approach are very common.
When transformations are sequential, this is a
batch sequential model which is extensively used
in data processing systems

⊗ Not really suitable for interactive systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 31

Invoice processing system

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 32

Domain-specific architectures

⊗ Architectural models which are specific to some
application domain

⊗ Two types of domain-specific model
• Generic models which are abstractions from a number of real

systems and which encapsulate the principal characteristics of
these systems

• Reference models which are more abstract, idealised model.
Provide a means of information about that class of system and of
comparing different architectures

⊗ Generic models are usually bottom-up models;
Reference models are top-down models

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 33

Generic models

⊗ Compiler model is a well-known example
although other models exist in more specialised
application domains
• Lexical analyser

• Symbol table

• Syntax analyser

• Syntax tree

• Semantic analyser

• Code generator

⊗ Generic compiler model may be organised
according to different architectural models

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 34

Compiler model

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol
table

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 35

Language processing system

Syntax
analyser

Lexical
analyser

Semantic
analyser

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimizer

Code
generator

Repository

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 36

Reference architectures

⊗ Reference models are derived from a study of the
application domain rather than from existing
systems

⊗ May be used as a basis for system implementation
or to compare different systems. It acts as a
standard against which systems can be evaluated

⊗ OSI model is a layered model for communication
systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 37

OSI reference model

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Communications medium

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 38

Key points

⊗ The software architect is responsible for deriving a
structural system model, a control model and a
sub-system decomposition model

⊗ Large systems rarely conform to a single
architectural model

⊗ System decomposition models include repository
models, client-server models and abstract machine
models

⊗ Control models include centralised control and
event-driven models

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 39

Key points

⊗ Modular decomposition models include data-flow
and object models

⊗ Domain specific architectural models are
abstractions over an application domain. They
may be constructed by abstracting from existing
systems or may be idealised reference models

