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Architectural Design

⊗ Establishing the overall
structure of a software system
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Objectives

⊗ To introduce architectural design and its role in the
software process

⊗ To describe a number of different types of
architectural model

⊗ To show how the architecture of a system may be
modelled in different ways

⊗ To discuss how domain-specific reference models
may be used to compare software architectures
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Topics covered

⊗ System structuring

⊗ Control models

⊗ Modular decomposition

⊗ Domain-specific architectures
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Architectural parallels

⊗ Architects are the technical interface between the
customer and the contractor building the system

⊗ A bad architectural design for a building cannot be
rescued by good construction; the same is true for
software

⊗ There are specialist types of building and software
architects

⊗ There are schools or styles of building and
software architecture
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Architectural design process

⊗ System structuring
• The system is decomposed into several principal sub-systems and

communications between these sub-systems are identified

⊗ Control modelling
• A model of the control relationships between the different parts of

the system is established

⊗ Modular decomposition
• The identified sub-systems are decomposed into modules
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Sub-systems and modules

⊗ A sub-system is a system in its own right whose
operation is independent of the services provided
by other sub-systems.

⊗ A module is a system component that provides
services to other components but would not
normally be considered as a separate system
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Architectural models

⊗ Structure, control and modular decomposition
may be based on a particular model or architectural
style

⊗ However, most systems are heterogeneous in that
different parts of the system are based on different
models and, in some cases, the system may
follow a composite model

⊗ The architectural model used affects the
performance, robustness, distributability and
maintainability of the system
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System structuring

⊗ Concerned with decomposing the system into
interacting sub-systems

⊗ The architectural design is normally expressed as a
block diagram presenting an overview of the
system structure

⊗ More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed
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The repository model

⊗ Sub-systems must exchange data. This may be
done in two ways:
• Shared data is held in a central database or repository and may be

accessed by all sub-systems

• Each sub-system maintains its own database and passes data
explicitly to other sub-systems

⊗ When large amounts of data are to be shared, the
repository model of sharing is most commonly
used
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Repository model characteristics

⊗ Advantages
• Efficient way to share large amounts of data

• Sub-systems need not be concerned with how data is produced
Centralised management e.g. backup, security, etc.

• Sharing model is published as the repository schema

⊗ Disadvantages
• Sub-systems must agree on a repository data model. Inevitably a

compromise

• Data evolution is difficult and expensive

• No scope for specific management policies

• Difficult to distribute efficiently



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 13

Client-server architecture

⊗ Distributed system model which shows how data
and processing is distributed across a range of
components

⊗ Set of stand-alone servers which provide specific
services such as printing, data management, etc.

⊗ Set of clients which call on these services

⊗ Network which allows clients to access servers
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Client-server characteristics

⊗ Advantages
• Distribution of data is straightforward

• Makes effective use of networked systems. May require cheaper
hardware

• Easy to add new servers or upgrade existing servers

⊗ Disadvantages
• No shared data model so sub-systems use different data

organisation. data interchange may be inefficient

• Redundant management in each server

• No central register of names and services - it may be hard to find
out what servers and services are available
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Abstract machine model

⊗ Used to model the interfacing of sub-systems

⊗ Organises the system into a set of layers (or
abstract machines) each of which provide a set of
services

⊗ Supports the incremental development of sub-
systems in different layers. When a layer interface
changes, only the adjacent layer is affected

⊗ However, often difficult to structure systems in
this way
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Control models

⊗ Are concerned with the control flow between sub-
systems. Distinct from the system decomposition
model

⊗ Centralised control
• One sub-system has overall responsibility for control and starts

and stops other sub-systems

⊗ Event-based control
• Each sub-system can respond to externally generated events from

other sub-systems or the system’s environment
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Centralised control

⊗ A control sub-system takes responsibility for
managing the execution of other sub-systems

⊗ Call-return model
• Top-down subroutine model where control starts at the top of a

subroutine hierarchy and moves downwards. Applicable to
sequential systems

⊗ Manager model
• Applicable to concurrent systems. One system component

controls the stopping, starting and coordination of other system
processes. Can be implemented in sequential systems as a case
statement
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Event-driven systems

⊗ Driven by externally generated events where the
timing of the event is outwith the control of the
sub-systems which process the event

⊗ Two principal event-driven models
• Broadcast models. An event is broadcast to all sub-systems. Any

sub-system which can  handle the event may do so

• Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and passed to some
other component for processing

⊗ Other event driven models include spreadsheets
and production systems
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Broadcast model

⊗ Effective in integrating sub-systems on different
computers in a network

⊗ Sub-systems register an interest in specific events.
When these occur, control is transferred to the
sub-system which can handle the event

⊗ Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them

⊗ However, sub-systems don’t know if or when an
event will be handled
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Interrupt-driven systems

⊗ Used in real-time systems where fast response to
an event is essential

⊗ There are known interrupt types with a handler
defined for each type

⊗ Each type is associated with a memory location
and a hardware switch causes transfer to its
handler

⊗ Allows fast response but complex to program and
difficult to validate

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 26

Interrupt-driven control

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 27

Modular decomposition

⊗ Another structural level where sub-systems are
decomposed into modules

⊗ Two modular decomposition models covered
• An object model where the system is decomposed into interacting

objects

• A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also
known as the pipeline model

⊗ If possible, decisions about concurrency should be
delayed until modules are implemented
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Object models

⊗ Structure the system into a set of loosely coupled
objects with well-defined interfaces

⊗ Object-oriented decomposition is concerned with
identifying object classes, their attributes and
operations

⊗ When implemented, objects are created from these
classes and some control model used to coordinate
object operations
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Data-flow models

⊗ Functional transformations process their inputs to
produce outputs

⊗ May be referred to as a pipe and filter model (as in
UNIX shell)

⊗ Variants of this approach are very common.
When transformations are sequential, this is a
batch sequential model which is extensively used
in data processing systems

⊗ Not really suitable for interactive systems
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Domain-specific architectures

⊗ Architectural models which are specific to some
application domain

⊗ Two types of domain-specific model
• Generic models which are abstractions from a number of real

systems and which encapsulate the principal characteristics of
these systems

• Reference models which are more abstract, idealised model.
Provide a means of information about that class of system and of
comparing different architectures

⊗ Generic models are usually bottom-up models;
Reference models are top-down models
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Generic models

⊗ Compiler model is a well-known example
although other models exist in more specialised
application domains
• Lexical analyser

• Symbol table

• Syntax analyser

• Syntax tree

• Semantic analyser

• Code generator

⊗ Generic compiler model may be organised
according to different architectural models
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Reference architectures

⊗ Reference models are derived from a study of the
application domain rather than from existing
systems

⊗ May be used as a basis for system implementation
or to compare different systems. It acts as a
standard against which systems can be evaluated

⊗ OSI model is a layered model for communication
systems
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Key points

⊗ The software architect is responsible for deriving a
structural system model, a control model and a
sub-system decomposition model

⊗ Large systems rarely conform to a single
architectural model

⊗ System decomposition models include repository
models, client-server models and abstract machine
models

⊗ Control models include centralised control and
event-driven models
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Key points

⊗ Modular decomposition models include data-flow
and object models

⊗ Domain specific architectural models are
abstractions over an application domain. They
may be constructed by abstracting from existing
systems or may be idealised reference models


