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Software Design

⊗ Deriving a solution which
satisfies software requirements
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Objectives

⊗ To introduce the process of software design

⊗ To describe the different stages in this design
process

⊗ To show how object-oriented and functional
design strategies are complementary

⊗ To discuss some design quality attributes
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Topics covered

⊗ The design process and design methods

⊗ Design strategies including object-oriented design
and functional decomposition

⊗ Design quality attributes
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Stages of design

⊗ Problem understanding
• Look at the problem from different angles to discover the

design requirements

⊗ Identify one or more solutions
• Evaluate possible solutions and choose the most

appropriate depending on the designer's experience and
available resources

⊗ Describe solution abstractions
• Use graphical, formal or other descriptive notations to

describe the components of the design

⊗ Repeat process for each identified abstraction
until the design is expressed in primitive terms
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The design process

⊗ Any design may be modeled as a directed
graph made up of entities with attributes which
participate in relationships

⊗ The system should be described at several
different levels of abstraction

⊗ Design takes place in overlapping stages. It is
artificial to separate it into distinct phases but
some separation is usually necessary
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From informal to formal design
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Phases in the design process
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Design phases

⊗ Architectural design  Identify sub-systems

⊗ Abstract specification  Specify sub-systems

⊗ Interface design  Describe sub-system  interfaces

⊗ Component design  Decompose sub-systems
into components

⊗ Data structure design  Design data structures to
hold problem data

⊗ Algorithm design  Design algorithms for problem
functions
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Hierarchical design structure
System level

Sub-system
level
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Top-down design

⊗ In principle, top-down design involves starting
at the uppermost components in the hierarchy
and working down the hierarchy level by level

⊗ In practice, large systems design is never
truly top-down. Some branches are designed
before others. Designers reuse experience (and
sometimes components) during the design
process
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Design methods

⊗ Structured methods are sets of notations for
expressing a software design and guidelines for
creating a design

⊗ Well-known methods include Structured Design
(Yourdon), and JSD (Jackson Method)

⊗ Can be applied successfully because the
support standard notations and ensure
designs follow a standard form

⊗ Structured methods may be supported with
CASE tools

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 12

Method components

⊗ Many methods support comparable views of a
system

⊗ A data flow view (data flow diagrams) showing
data transformations

⊗ An entity-relation view describing the logical
data structures

⊗ A structural view showing system components
and their interactions
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Method deficiencies

⊗ They are guidelines rather than methods in the
mathematical sense. Different designers create
quite different system designs

⊗ They do not help much with the early, creative
phase of design. Rather, they help the designer
to structure and document his or her design
ideas
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Design description

⊗ Graphical notations. Used to display
component relationships

⊗ Program description languages. Based on
programming languages but with more flexibility
to represent abstract concepts

⊗ Informal text. Natural language description.

⊗ All of these notations may be used in large
systems design
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Design strategies

⊗ Functional design
• The system is designed from a functional viewpoint. The system

state is centralized and shared between the functions operating on
that state

⊗ Object-oriented design
• The system is viewed as a collection of interacting objects.

The system state is de-centralized and each object manages its
own state. Objects may be instances of an object class and
communicate by exchanging methods
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Functional view of a compiler
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Object-oriented view of a compiler
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Mixed-strategy design

⊗ Although it is sometimes suggested that one
approach to design is superior, in practice, an
object-oriented and a functional-oriented
approach to design are complementary

⊗ Good software engineers should select the
most appropriate approach for whatever
sub-system is being designed
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High-level objects

⊗ The navigation system

⊗ The radar system

⊗ The communications system

⊗ The instrument display system

⊗ The engine control system

⊗ ...

18
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System functions (sub-system level)

⊗ Display track (radar sub-system)

⊗ Compensate for wind speed (navigation
sub-system)

⊗ Reduce power (engine sub-system)

⊗ Indicate emergency (instrument sub-system)

⊗ Lock onto frequency (communications
sub-system)

⊗ ...
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Low-level objects

⊗ The engine status

⊗ The aircraft position

⊗ The altimeter

⊗ The radio beacon

⊗ ...

20
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Design quality

⊗ Design quality is an elusive concept. Quality
depends on specific organizational priorities

⊗ A 'good' design may be the most efficient, the
cheapest, the most maintainable, the most
reliable, etc.

⊗ The attributes discussed here are concerned
with the maintainability of the design

⊗ Quality characteristics are equally applicable to
function-oriented and object-oriented designs
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Cohesion

⊗ A measure of how well a component 'fits
together'

⊗ A component should implement a single logical
entity or function

⊗ Cohesion is a desirable design component
attribute as when a change has to be made, it
is localized in a single cohesive component

⊗ Various levels of cohesion have been identified
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Cohesion levels

⊗ Coincidental cohesion (weak)
• Parts of a component are simply bundled together

⊗ Logical association (weak)
• Components which perform similar functions are grouped

⊗ Temporal cohesion (weak)
• Components which are activated at the same time are grouped

⊗ Procedural cohesion (weak)
• The elements in a component make up a single control sequence
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Cohesion levels
⊗ Communicational cohesion (medium)

• All the elements of a component operate on the same input or
produce the same output

⊗ Sequential cohesion (medium)
• The output for one part of a component is the input to another part

⊗ Functional cohesion (strong)
• Each part of a component is necessary for the execution of a

single function

⊗ Object cohesion (strong)
• Each operation provides functionality which allows object

attributes to be modified or inspected
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Cohesion as a design attribute

⊗ Not well-defined. Often difficult to classify
cohesion

⊗ Inheriting attributes from super-classes
weakens cohesion

⊗ To understand a component, the super-classes
as well as the component class must be
examined

⊗ Object class browsers assist with this process
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⊗ A measure of the strength of the inter-connections
between system components

⊗ Loose coupling means component changes are
unlikely to affect other components

⊗ Shared variables or control information
exchange lead to tight coupling

⊗ Loose coupling can be achieved by state
decentralization (as in objects) and component
communication via parameters or message
passing

28

Coupling
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Tight coupling
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Loose coupling
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⊗ Object-oriented systems are loosely
coupled because there is no shared state and
objects communicate using message passing

⊗ However, an object class is coupled to its
super-classes. Changes made to the attributes
or operations in a super-class propagate to all
sub-classes. Such changes must be carefully
controlled

Coupling and inheritance
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⊗ Related to several component characteristics
• Cohesion. Can the component be understood on its own?

• Naming. Are meaningful names used?

• Documentation. Is the design well-documented?

• Complexity. Are complex algorithms used?

⊗ Informally, high complexity means many
relationships between different parts of the
design. hence it is hard to understand

⊗ Most design quality metrics are oriented
towards complexity measurement. They are
of limited use

32

Understandability
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⊗ A design is adaptable if:
• Its components are loosely coupled

• It is well-documented and the documentation is up to date

• There is an obvious correspondence between design levels
(design visibility)

• Each component is a self-contained entity (tightly cohesive)

⊗ To adapt a design, it must be possible to trace the
links between design components so that change
consequences can be analyzed

33

Adaptability
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⊗ Inheritance dramatically improves adaptability.
Components may be adapted without change
by deriving a sub-class and modifying that
derived class

⊗ However, as the depth of the inheritance
hierarchy increases, it becomes increasingly
complex. It must be periodically reviewed and
restructured

35

Adaptability and inheritance
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⊗ Design is a creative process

⊗ Design activities include architectural design,
system specification, component design, data
structure design and algorithm design

⊗ Functional decomposition considers the system
as a set of functional units

⊗ Object-oriented decomposition considers the
system as a set of objects

⊗ Decisions on parallelism should usually be
detailed design decisions
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Key points


