
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 1

Software Design

⊗ Deriving a solution which
satisfies software requirements

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 2

Objectives

⊗ To introduce the process of software design

⊗ To describe the different stages in this design
process

⊗ To show how object-oriented and functional
design strategies are complementary

⊗ To discuss some design quality attributes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 3

Topics covered

⊗ The design process and design methods

⊗ Design strategies including object-oriented design
and functional decomposition

⊗ Design quality attributes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 4

Stages of design

⊗ Problem understanding
• Look at the problem from different angles to discover the

design requirements

⊗ Identify one or more solutions
• Evaluate possible solutions and choose the most

appropriate depending on the designer's experience and
available resources

⊗ Describe solution abstractions
• Use graphical, formal or other descriptive notations to

describe the components of the design

⊗ Repeat process for each identified abstraction
until the design is expressed in primitive terms

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 5

The design process

⊗ Any design may be modeled as a directed
graph made up of entities with attributes which
participate in relationships

⊗ The system should be described at several
different levels of abstraction

⊗ Design takes place in overlapping stages. It is
artificial to separate it into distinct phases but
some separation is usually necessary

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 6

From informal to formal design

Informal
design
outline

Informal
design

More
formal
design

Finished
design

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 7

Phases in the design process

Architectural
design

Abstract
specificatio

n

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design products

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 8

Design phases

⊗ Architectural design Identify sub-systems

⊗ Abstract specification Specify sub-systems

⊗ Interface design Describe sub-system interfaces

⊗ Component design Decompose sub-systems
into components

⊗ Data structure design Design data structures to
hold problem data

⊗ Algorithm design Design algorithms for problem
functions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 9

Hierarchical design structure
System level

Sub-system
level

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 10

Top-down design

⊗ In principle, top-down design involves starting
at the uppermost components in the hierarchy
and working down the hierarchy level by level

⊗ In practice, large systems design is never
truly top-down. Some branches are designed
before others. Designers reuse experience (and
sometimes components) during the design
process

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 11

Design methods

⊗ Structured methods are sets of notations for
expressing a software design and guidelines for
creating a design

⊗ Well-known methods include Structured Design
(Yourdon), and JSD (Jackson Method)

⊗ Can be applied successfully because the
support standard notations and ensure
designs follow a standard form

⊗ Structured methods may be supported with
CASE tools

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 12

Method components

⊗ Many methods support comparable views of a
system

⊗ A data flow view (data flow diagrams) showing
data transformations

⊗ An entity-relation view describing the logical
data structures

⊗ A structural view showing system components
and their interactions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 13

Method deficiencies

⊗ They are guidelines rather than methods in the
mathematical sense. Different designers create
quite different system designs

⊗ They do not help much with the early, creative
phase of design. Rather, they help the designer
to structure and document his or her design
ideas

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 14

Design description

⊗ Graphical notations. Used to display
component relationships

⊗ Program description languages. Based on
programming languages but with more flexibility
to represent abstract concepts

⊗ Informal text. Natural language description.

⊗ All of these notations may be used in large
systems design

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 15

Design strategies

⊗ Functional design
• The system is designed from a functional viewpoint. The system

state is centralized and shared between the functions operating on
that state

⊗ Object-oriented design
• The system is viewed as a collection of interacting objects.

The system state is de-centralized and each object manages its
own state. Objects may be instances of an object class and
communicate by exchanging methods

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 16

Functional view of a compiler

Analyse
Build

symbol
table

Scan
source

Generate
code

Symbol
table

Output
errors

Source
program

Tokens Tokens Syntax
tree

Object
code

Error
indicatorSymbols Symbols

Error
messages

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 17

Object-oriented view of a compiler

Source
program

Token
stream

Symbol
table

Syntax
tree

Grammar Error
messages

Abstract
code

Object
code

Scan Add

Check Get

Build Print

Generate

Generate

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 18

Mixed-strategy design

⊗ Although it is sometimes suggested that one
approach to design is superior, in practice, an
object-oriented and a functional-oriented
approach to design are complementary

⊗ Good software engineers should select the
most appropriate approach for whatever
sub-system is being designed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 19

Aircraft sub-systems

Instrument
display

Navigation
system

Engine
control

Radar
system

Comms
system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 20

High-level objects

⊗ The navigation system

⊗ The radar system

⊗ The communications system

⊗ The instrument display system

⊗ The engine control system

⊗ ...

18

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 21

System functions (sub-system level)

⊗ Display track (radar sub-system)

⊗ Compensate for wind speed (navigation
sub-system)

⊗ Reduce power (engine sub-system)

⊗ Indicate emergency (instrument sub-system)

⊗ Lock onto frequency (communications
sub-system)

⊗ ...

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 22

Low-level objects

⊗ The engine status

⊗ The aircraft position

⊗ The altimeter

⊗ The radio beacon

⊗ ...

20

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 23

Design quality

⊗ Design quality is an elusive concept. Quality
depends on specific organizational priorities

⊗ A 'good' design may be the most efficient, the
cheapest, the most maintainable, the most
reliable, etc.

⊗ The attributes discussed here are concerned
with the maintainability of the design

⊗ Quality characteristics are equally applicable to
function-oriented and object-oriented designs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 24

Cohesion

⊗ A measure of how well a component 'fits
together'

⊗ A component should implement a single logical
entity or function

⊗ Cohesion is a desirable design component
attribute as when a change has to be made, it
is localized in a single cohesive component

⊗ Various levels of cohesion have been identified

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 25

Cohesion levels

⊗ Coincidental cohesion (weak)
• Parts of a component are simply bundled together

⊗ Logical association (weak)
• Components which perform similar functions are grouped

⊗ Temporal cohesion (weak)
• Components which are activated at the same time are grouped

⊗ Procedural cohesion (weak)
• The elements in a component make up a single control sequence

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 26

Cohesion levels
⊗ Communicational cohesion (medium)

• All the elements of a component operate on the same input or
produce the same output

⊗ Sequential cohesion (medium)
• The output for one part of a component is the input to another part

⊗ Functional cohesion (strong)
• Each part of a component is necessary for the execution of a

single function

⊗ Object cohesion (strong)
• Each operation provides functionality which allows object

attributes to be modified or inspected

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 27

Cohesion as a design attribute

⊗ Not well-defined. Often difficult to classify
cohesion

⊗ Inheriting attributes from super-classes
weakens cohesion

⊗ To understand a component, the super-classes
as well as the component class must be
examined

⊗ Object class browsers assist with this process

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 28

⊗ A measure of the strength of the inter-connections
between system components

⊗ Loose coupling means component changes are
unlikely to affect other components

⊗ Shared variables or control information
exchange lead to tight coupling

⊗ Loose coupling can be achieved by state
decentralization (as in objects) and component
communication via parameters or message
passing

28

Coupling

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 29

Tight coupling

Module A Module B

Module C Module D

Shared data
area

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 30

Loose coupling

Module A

A’s data

Module B

B’s data

Module D

D’s data

Module C

C’s data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 31

⊗ Object-oriented systems are loosely
coupled because there is no shared state and
objects communicate using message passing

⊗ However, an object class is coupled to its
super-classes. Changes made to the attributes
or operations in a super-class propagate to all
sub-classes. Such changes must be carefully
controlled

Coupling and inheritance

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 32

⊗ Related to several component characteristics
• Cohesion. Can the component be understood on its own?

• Naming. Are meaningful names used?

• Documentation. Is the design well-documented?

• Complexity. Are complex algorithms used?

⊗ Informally, high complexity means many
relationships between different parts of the
design. hence it is hard to understand

⊗ Most design quality metrics are oriented
towards complexity measurement. They are
of limited use

32

Understandability

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 33

⊗ A design is adaptable if:
• Its components are loosely coupled

• It is well-documented and the documentation is up to date

• There is an obvious correspondence between design levels
(design visibility)

• Each component is a self-contained entity (tightly cohesive)

⊗ To adapt a design, it must be possible to trace the
links between design components so that change
consequences can be analyzed

33

Adaptability

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 34

Design traceability

P O R

D

A

B

F

C

D Object interaction
level

Object decomposition
level

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 35

⊗ Inheritance dramatically improves adaptability.
Components may be adapted without change
by deriving a sub-class and modifying that
derived class

⊗ However, as the depth of the inheritance
hierarchy increases, it becomes increasingly
complex. It must be periodically reviewed and
restructured

35

Adaptability and inheritance

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 36

⊗ Design is a creative process

⊗ Design activities include architectural design,
system specification, component design, data
structure design and algorithm design

⊗ Functional decomposition considers the system
as a set of functional units

⊗ Object-oriented decomposition considers the
system as a set of objects

⊗ Decisions on parallelism should usually be
detailed design decisions

36

Key points

