M odel -based Soecification

0 Formal specification of
software by developing a
mathematical model of the
system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 1

Objectives

0 Tointroduce an approach to formal specification
based on mathematical system models

0 To present some features of the Z specification
language

0 Toillustrate the usef ulness of Z by describing
small examples

0 To show how Z schemas may be used to develop
incremental specifications

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 2

Topics covered

0 Z schemas
0 The Z specification process
0 Specifying ordered coll ections

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 3

M odel-based specification

0 Definesamodel of a system using well-
understood mathematical entities such as setsand
functions.

0 The state of the system is not hidden (unlike
algebraic specification).

0 State changes are straightforward to define.

0 VDM and Z are the most widely used
model-based specification languages.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 4

Z as a specification language

Based on typed set theory
Probably now the most widely-used
specification language

0 Includes schemas, an effective low-level
structuring facility
Schemas are specification building blocks

Graphical presentation of schemas make Z
specifications easier to understand

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 5

Z schemas

0 Introduce specification entities and defines
invariant predicates over these entities
0 A schemaincludes
* A name identifying the schema
A signature introducing entities and their types
A predicate part defining invariants over these entities
0 Schemas can be included in other schemas and
may act astype definitions

0 Namesareloca to schemas

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 6

Z schema highlighting

Schema name Schema signature Schema predicate

/

— Container
contents: N
capacity: N

contents < capacity

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 7

An indicator specification

— Indicator

light: {off, on}
reading: N
danger_level: N

light=on <« reading < danger_level

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 8

Storage tank specification

— Storage_tank

Container
Indicator

reading = contents
capacity = 5000
danger_level =50

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11

Slide 9

Full specification of a storage tank

— Storage_tank

contents: N
capacity: N
reading: N
danger_level: N
light: {off, on}

contents < capacity

light=on < reading < danger_level
reading = contents

capacity = 5000

danger_level =50

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11

Slide 10

Z conventions

0 A variable name decorated with a quote mark (N*)
represents the value of the state variable N after an
operation

0 A schemaname decorated with a quote mark
introduces the dashed values of all names defined

in the schema
0 A variable name decorated with a! represents an
output
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 11

Z conventions

0 A variable name decorated with a ? represents an
Input

0 A schema name prefixed by the Greek letter Xi
(=) means that the defined operation does not
change the values of state variables

0 A schemaname prefixed by the Greek |etter Delta
(A) means that the operation changes some or all
of the state variables i ntroduced in that schema

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 12

Operation specification

0 Operations may be specified incrementally as
separate schema then the schema combined to
produce the compl ete specification

Define the ‘normal’ operation as a schema
Define schemas for exceptional situations

0 Combine all schemas using the digunction (or)
operator

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 13

A partial spec. of afill operation

— Fill-OK

A Storage_tank
amount?: N

contents + amount? < capacity
contents’ = contents + amount?

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 14

Storage tank fill operation

. OverFill

= Storage-tank
amount?: N

rl: seq CHAR

capacity < contents + amount?
r! = “Insufficient tank capacity — Fill cancelled”

— Fill

Fill-OK v OverFill

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11

Slide 15

The Z specification process

Specify syste
components

rite informal
specification J¥

Define state
variables

Decompose
system 1

Define initial
state

Compose
component
specification:

Define given
sets and typesy

Define
‘correct’
operations

Define
exceptional
operations

Combine
operation
schemas

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11

Slide 16

Data dictionary specification

0 Datadictionary, introduced in Chapter 6, will be
used as an example. Thisis part of a CASE
system and is used to keep track of system names

0 Datadictionary structure
* |tem name
Description
Type. Assume in these examples tha the dlowed types arethose
used in smantic data models
Creation date

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 17

Given sets

0 Z does not require everything to be defined at
specification time

0 Some entities may be ‘given’ and defined later

0 Thefirst stagein the specification processisto
introduce these given sets

« [NAME, DATE]
We don't care about these representationsat this dage

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 18

Type definitions

0 There are anumber of built-in types (such as
INTEGER) in Z

0 Other types may be defined by enumeration
* Sem_mode_types={ relation, entity, attribute }
0 Schemas may aso be used for type definition. The
predicates serve as constraints on the type

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 19

Specification usng functions

0 A function is amapping from an input value to an

output value
« SmalSquae={1-1,2-43-94_ 1652256 - 2
36,7 - 49}

0 Thedomain of afunction isthe set of inputs over
which the function has a defined result
e dom SmallSquare={1, 2, 3,4,5,6,7}
0 Therange of afunction isthe set of results which
the function can produce
« rng SmallSquare = {1, 4, 9, 16, 25, 36, 49}

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 20

The function SmallSgquare

Domain (SmallSquare) Range (SmallSquare)

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 21

Datadictionary modeling

0 A datadictionary may be thought of asa
mapping from a name (the key) to avalue (the
description in the dictionary)

0 Operations are

e Add. Makes anew entry in the dictionary or
replaces an existing entry
* Lookup. Givenaname, returns thedescription.
* Deete. Deletes an entry from thedictionary
* Replace. Replaces the information associated with an entry

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 22

Data dictionary entry

— DataDictionaryEntry 1

entry: NAME

desc: seq char

type: Sem_model_types
creation_date: DATE

#description < 2000

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 23

Data dictionary as afunction

DataDictionary

DataDictionaryEntry
ddict: NAME . {DataDictionaryEntry}

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 24

Datadictionary - initial state

— Init-DataDictionary

DataDictionary’

ddict' = @

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 25

Add and lookup operations

— Add_OK

A DataDictionary
name?: NAME
entry?: DataDictionaryEntry

name? [0 dom ddict
ddict’ = ddict O {name?i- entry?}

__ Lookup_OK

= DataDictionary
name?: NAME
entry!: DataDictionaryEntry

name? [0 dom ddict
entry! = ddict (hame?)

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 26

Add and lookup operations

— Add_Error

= DataDictionary
name?: NAME
errorl: seq char

name? [0 dom ddict
error! = “Name already in dictionary”

— Lookup_Error

= DataDictionary
name?: NAME
errorl: seq char

name? O dom ddict
error! = “Name not in dictionary”

|
©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 27

Function over-riding operator

0 ReplaceEntry uses the function overriding
operator (written [J). This adds a new entry or
replaces an existing entry.

e phone={ lan - 3390,Ray - 3392, Seve - 3427}

» Thedoman of phoneis{lan, Ray, Steve} and therangeis
{3390, 3392, 3427} .

* newphone = {Steve - 3386, Ron — 3427}

e phoned newphone={ lan - 3390, Ray —» 3392, Seve
- 3386, Ron — 3427}

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 28

Replace operation

— Replace_OK

A DataDictionary
name?: NAME
entry?: DataDictionaryEntry

name? [0 dom ddict
ddict’ @ {name? - entry?}

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11

Slide 29

Deleting an entry

0 Usesthe domain subtraction operator (written

4) which, given a name, removes that name
from the domain of the function

e phone={ lan - 3390, Ray - 3392, Seve - 3427}

+ {lan} 4 phone
* {Ray - 3392, Seve - 3427}

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11

Slide 30

Delete entry

__ Delete OK

A DataDictionary
name?: NAME

name? O dom ddict
ddict’ = {name?} ¢ ddict

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 31

Specifying ordered collections

0 Specification using functions does not allow
ordering to be specified

0 Sequences are used for specifying ordered
collections

0 A sequenceis amapping from consecutive
Integersto associated values

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 32

A Z seguence

It
5 W
5
4
5
6
>
Domain (SqSeq) Range (SqSeq)
Datadictionary extract operation

0 The Extract operation extracts from the data
dictionary al those entries whose type is the same
asthetype input to the operation

0 Theextracted list is presented in alphabetical order

O A sequenceis used to specify the ordered output
of Extract

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 34

The Extract operation

— EXxtract

DataDictionary
rep!: seq {DataDictionaryEntry}
in_type?: Sem_model_types

(On : dom ddict ddict(n). type = in_type? O ddict (n) O rng rep!
Oi: 1 <i<#rep! e rep! (i).type = in_type?

Oi:1<i<#rep! erep! (i) O rng ddict

Oi, j:domreple (i<j) O rep. name(i) < . rep.name (j)

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Side 35

Extract predicae

0 For al entriesin the data dictionary whosetypeis
in_type?, thereisan entry in the output sequence

0 Thetype of all members of the output sequenceis
in_type?

0 All members of the output sequence are members
of the range of ddict

0 The output sequenceis ordered

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 36

Data dictionary specification

Add

— The_Data_Dictionary

DataDictionary
Init-DataDictionary

Lookup
Delete
Replace
Extract

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 37

Key points

O

M odel-based specification relies on building a
system model usi ng well-understood
mathematical entities

Z specifications are made up of mathematical
model of the system state and a definition of
operations on that state

A Z specification is presented as a number of
schemas

Schemas may be combined to make new schemas

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 11 Slide 38

Key points

0 Operations are specified by defining their effect on
the system state. Operations may be specified
incrementally then different schemas combined to
compl ete the specification

0 Zfunctions are a set of pairs where the domain of
the functionisthe set of valid inputs. Therange is
the set of associated outputs. A sequenceisa
special type of function whose domain isthe
consecutive integers

©lan Sommerville 1995

Software Engineering, 5th edition. Chapter 11 Slide 39

