
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 1

Software Engineering

⊗ Designing, building and maintaining
large software systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 2

Objectives

⊗ To define software engineering and explain its
importance

⊗ To discuss the concepts of software products and
software processes

⊗ To explain the importance of process visibility

⊗ To introduce the notion of professional
responsibility

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 3

Topics covered

⊗ Software products

⊗ The software process

⊗ Boehm’s spiral model

⊗ Process visibility

⊗ Professional responsibility

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 4

⊗ The economies of ALL developed nations are
dependent on software

⊗ More and more systems are software controlled

⊗ Software engineering is concerned with theories,
methods and tools for professional software
development

⊗ Software engineering expenditure represents a
significant fraction of GNP in all developed
countries

Software engineering

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 5

⊗ Software costs often dominate system costs. The
costs of software on a PC are often greater than the
hardware cost

⊗ Software costs more to maintain than it does to
develop. For systems with a long life,
maintenance costs may be several times
development costs

⊗ Software engineering is concerned with cost-
effective software development

Software costs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 6

Software products

⊗ Generic products
• Stand-alone systems which are produced by a development

organization and sold on the open market to any customer

⊗ Bespoke (customized) products
• Systems which are commissioned by a specific customer and

developed specially by some contractor

⊗ Most software expenditure is on generic products
but most development effort is on bespoke
systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 7

Software product attributes

⊗ Maintainability
• It should be possible for the software to evolve to meet changing

requirements

⊗ Dependability
• The software should not cause physical or economic damage in

the event of failure

⊗ Efficiency
• The software should not make wasteful use of system resources

⊗ Usability
• Software should have an appropriate user interface and

documentation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 8

Importance of product characteristics

⊗ The relative importance of these characteristics
depends on the product and the environment in
which it is to be used

⊗ In some cases, some attributes may dominate
• In safety-critical real-time systems, key attributes may be

dependability and efficiency

⊗ Costs tend to rise exponentially if very high levels
of any one attribute are required

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 9

Efficiency costs
Cost

Efficiency
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 10

The software process

⊗ Structured set of activities required to develop a
software system
• Specification

• Design

• Validation

• Evolution

⊗ Activities vary depending on the organization
and the type of system being developed

⊗ Must be explicitly modeled if it is to be
managed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 11

Process characteristics

⊗ Understandability
• Is the process defined and understandability

⊗ Visibility
• Is the process progress externally visible

⊗ Supportability
• Can the process be supported by CASE tools

⊗ Acceptability
• Is the process acceptable to those involved in it

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 12

Process characteristics

⊗ Reliability
• Are process errors discovered before they result in product errors

⊗ Robustness
• Can the process continue in spite of unexpected problems

⊗ Maintainability
• Can the process evolve to meet changing organizational needs

⊗ Rapidity
• How fast can the system be produced

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 13

Engineering process model

⊗ Specification - set out the requirements and
constraints on the system

⊗ Design - Produce a paper model of the system

⊗ Manufacture - build the system

⊗ Test - check the system meets the required
specifications

⊗ Install - deliver the system to the customer and
ensure it is operational

⊗ Maintain - repair faults in the system as they
are discovered

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 14

Software process models

⊗ Normally, specifications are
incomplete/anomalous

⊗ Very blurred distinction between specification,
design and manufacture

⊗ No physical realization of the system for testing

⊗ Software does not wear out - maintenance
does not mean component replacement

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 15

Generic software process models

⊗ The waterfall model
• Separate and distinct phases of specification and development

⊗ Evolutionary development
• Specification and development are interleaved

⊗ Formal transformation
• A mathematical system model is formally transformed to an

implementation

⊗ Reuse-based development
• The system is assembled from existing components

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 16

Waterfall model
Requirements

definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 17

Waterfall model phases

⊗ Requirements analysis and definition

⊗ System and software design

⊗ Implementation and unit testing

⊗ Integration and system testing

⊗ Operation and maintenance

⊗ The drawback of the waterfall model is the
difficulty of accommodating change after the
process is underway

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 18

Evolutionary development

Validation
Final

version

Development
Intermediate

versions

Specification
Initial
version

Outline
description

Concurrent
activities

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 19

Evolutionary development

⊗ Exploratory prototyping
• Objective is to work with customers and to evolve a final system

from an initial outline specification. Should start with well-
understood requirements

⊗ Throw-away prototyping
• Objective is to understand the system requirements. Should start

with poorly understood requirements

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 20

Evolutionary development

⊗ Problems
• Lack of process visibility

• Systems are often poorly structured

• Special skills (e.g. in languages for rapid prototyping) may be
required

⊗ Applicability
• For small or medium-size interactive systems

• For parts of large systems (e.g. the user interface)

• For short-lifetime systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 21

Risk management

⊗ Perhaps the principal task of a manager is to
minimize risk

⊗ The 'risk' inherent in an activity is a measure of
the uncertainty of the outcome of that activity

⊗ High-risk activities cause schedule and cost
overruns

⊗ Risk is related to the amount and quality of
available information. The less information, the
higher the risk

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 22

Process model risk problems

⊗ Waterfall
• High risk for new systems because of specification and

design problems

• Low risk for well-understood developments using familiar
technology

⊗ Prototyping
• Low risk for new applications because specification and

program stay in step

• High risk because of lack of process visibility

⊗ Transformational
• High risk because of need for advanced technology and

staff skills

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 23

Hybrid process models

⊗ Large systems are usually made up of several
sub-systems

⊗ The same process model need not be used for
all subsystems

⊗ Prototyping for high-risk specifications

⊗ Waterfall model for well-understood
developments

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 24

Spiral model of the software process

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysisProto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 25

Phases of the spiral model

⊗ Objective setting
• Specific objectives for the project phase are identified

⊗ Risk assessment and reduction
• Key risks are identified, analyzed and information is sought to

reduce these risks

⊗ Development and validation
• An appropriate model is chosen for the next phase of

development.

⊗ Planning
• The project is reviewed and plans drawn up for the next round of

the spiral

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 26

Template for a spiral round

⊗ Objectives

⊗ Constraints

⊗ Alternatives

⊗ Risks

⊗ Risk resolution

⊗ Results

⊗ Plans

⊗ Commitment

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 27

Quality improvement

⊗ Objectives
• Significantly improve software quality

⊗ Constraints
• Within a three-year timescale

Without large-scale capital investment
Without radical change to company standards

⊗ Alternatives
• Reuse existing certified software

Introduce formal specification and verification
Invest in testing and validation tools

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 28

⊗ Risks
• No cost effective quality improvement possible

Quality improvements may increase costs excessively
New methods might cause existing staff to leave

⊗ Risk resolution
• Literature survey

Pilot project
Survey of potential reusable components
Assessment of available tool support
Staff training and motivation seminars

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 29

⊗ Results
• Experience of formal methods is limited - very hard to

quantify improvements
Limited tool support available for company standard
development system.
Reusable components available but little reuse tool support

⊗ Plans
• Explore reuse option in more detail

Develop prototype reuse support tools
Explore component certification scheme

⊗ Commitment
• Fund further 18-month study phase

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 30

Catalogue Spiral

⊗ Objectives
• Procure software component catalogue

⊗ Constraints
• Within a year

Must support existing component types
Total cost less than $100, 000

⊗ Alternatives
• Buy existing information retrieval software

Buy database and develop catalogue using database
Develop special purpose catalogue

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 31

⊗ Risks
• May be impossible to procure within constraints

Catalogue functionality may be inappropriate

⊗ Risk resolution
• Develop prototype catalogue (using existing 4GL and an existing

DBMS) to clarify requirements
Commission consultants report on existing information
retrieval system capabilities.
Relax time constraint

Catalogue Spiral (continued)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 32

⊗ Results
• Information retrieval systems are inflexible. Identified

requirements cannot be met.
Prototype using DBMS may be enhanced to complete
system
Special purpose catalogue development is not cost-effective

⊗ Plans
• Develop catalogue using existing DBMS by enhancing

prototype and improving user interface

⊗ Commitment
• Fund further 12 month development

Catalogue Spiral (continued)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 33

Spiral model flexibility

⊗ Well-understood systems (low technical risk) -
Waterfall model. Risk analysis phase is
relatively cheap

⊗ Stable requirements and formal specification.
Safety criticality - Formal transformation model

⊗ High UI risk, incomplete specification -
prototyping model

⊗ Hybrid models accommodated for different parts
of the project

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 34

Spiral model advantages

⊗ Focuses attention on reuse options

⊗ Focuses attention on early error elimination

⊗ Puts quality objectives up front

⊗ Integrates development and maintenance

⊗ Provides a framework for hardware/software
development

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 35

Spiral model problems

⊗ Contractual development often specifies
process model and deliverables in advance

⊗ Requires risk assessment expertise

⊗ Needs refinement for general use

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 36

Process visibility

⊗ Software systems are intangible so managers need
documents to assess progress

⊗ However, this may cause problems
• Timing of progress deliverables may not match the time needed

to complete an activity

• The need to produce documents constraints process iteration

• The rime taken to review and approve documents is significant

⊗ Waterfall model is still the most widely used
deliverable-based model

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 37

Waterfall model documents

Activity Output documents
Requirements analysis Feasibility study, Outline requirements
Requirements definition Requirements document
System specification Functional specification, Acceptance test plan

Draft user manual
Architectural design Architectural specification, System test plan
Interface design Interface specification, Integration test plan
Detailed design Design specification, Unit test plan
Coding Program code
Unit testing Unit test report
Module testing Module test report
Integration testing Integration test report, Final user manual
System testing System test report
Acceptance testing Final system plus documentation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 38

Process model visibility

Process model Process visibility
Waterfall model Good visibility, each activity produces some

deliverable
Evolutionary
development

Poor visibility, uneconomic to produce
documents during rapid iteration

Formal
transformations

Good visibility, documents must be produced
from each phase for the process to continue

Reuse-oriented
development

Moderate visibility, it may be artificial to
produce documents describing reuse and
reusable components.

Spiral model Good visibility, each segment and each ring
of the spiral should produce some document.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 39

Professional responsibility

⊗ Software engineers should not just be concerned
with technical considerations. They have wider
ethical, social and professional responsibilities

⊗ No clear rights and wrongs about many of these
issues
• Development of military systems

• Whistleblowing

• What’s best for the software engineering profession

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 40

Ethical issues

⊗ Confidentiality

⊗ Competence

⊗ Intellectual property rights

⊗ Computer misuse

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 41

Key points

⊗ Software engineering is concerned with the
theories, methods and tools for developing,
managing and evolving software products

⊗ Software products consist of programs and
documentation. Product attributes are
maintainability, dependability, efficiency and
usability

⊗ The software process consists of those activities
involved in software development

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 1 Slide 42

Key points

⊗ The waterfall model considers each process
activity as a discrete phase

⊗ Evolutionary development considers process
activities as concurrent

⊗ The spiral process model is risk-driven

⊗ Process visibility involves the creation of
deliverables from activities

⊗ Software engineers have ethical, social and
professional responsibilities

