UltraSAN Version 3.0

UltraSAN
User's Manua

Copyright (c¢) Univ. of Arizona 1330-139394, Univ. of Illinois 1994

® Project: faulty_proc

mag 1x

File Edit Font Option

select
Define
Move
Magnify
Text

Subnet
Replicate

iraSAN Wersion 30

hostview, version 1.5

Version 3.0

view.gps LI _@toe484 1 V& SM1_tats us nuriber of taska In qusus

processor

File
Page
Magstep
Orientation

Media

Copyright (c¢) Univ. of Arizona 1330-139394, Univ. of lllinois 1994

Project: faulty_prac

Subnet: processor

Select
Drefine
Maove
Magnify
Texrt

Place
Inst. Activity
Timed Activity
Input Gate
Output Gate

File Edit Font Option

© . lcofrect

one fail

quele aroess num_tasks

o fail

ready
markihg =1

 Initial

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

art_ram

Copyright (c) 1990-1994 The University of Arizona, 1994-1995 The University of Illinois.
All Rights Reserved.

The UltraSAN software has been provided pursuant to an agreement containing restrictions on
itsdisclosure, duplication, and use. The software contains proprietary information congtituting valu-
able trade secrets of the University of Arizona and the University of Illinois and is protected as an
unpublished work by federal copyright law. The software (or any portion thereof) may not be used
for any purpose not contemplated by the agreement. This notice must be embedded in or attached
to al copies, including partia copies, of the software or any revisions thereof. The University of
Arizona and the University of Illinois make no representations about the suitability of this software
for any purpose. It isprovided “asis’ without express or implied warranty.

The University of Arizona and the University of Illinois disclaim al warranties with regard to
this software, including all implied warranties of merchantability and fitness. In no event shall the
University of Arizona or University of Illinois be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or profits, whether in an ac-
tion of contract, negligence or other tortuous action, arising out of or in connection with the use or
performance of this software.

Contents

Preface %
How to Use thisManual Vii
1 Modeingwith Stochastic Activity Networks 1-1
1.1 Stochastic Activity Networks.o 1-1
111 SANPrimitives 1-2

112 Making ChangeAlgorithms 1-4

1.1.3 Faulty Microprocessor Example 1-6
1.2 Composed Model Specification 1-10
1.3 Performability Variable Specification 1-12
131 RewardVariables 1-12
132 ActivityVariables 1-13
1.4 Underlying Stochastic Processes and State Space Generation 1-16

2 Getting Started 2-1
2.1 DestriptionoftheModel L 2-1
22 StatingUltraSAN L 2-2
23 CregtingaSubnet L 2-2
23.1 Creatingthebuffer Subnet 2-4

2.3.2 Connecting the Subnet Components 2-9
24 CregtingtheComposedModd 2-11
24.1 Pacing the Subnetsinto the Composed Model 2-11
242 Replicatingtheprocessor Subnet 2-12
2.4.3 Joining the processor and buffer Subnets 2-13
25 DefiningRewardVariables 2-13
2.6 Credating Studiesand Experiments 2-18
2.7 Sdecting Studies and Experiments for Solution 2-21
28 SolvingtheMode 2-22

2.8.1 Anayticdly SolvingtheModel 2-22

282 SmulatingtheModd 2-23
29 ReportGenerator 2-25
29.1 CreatingtheGraph 2-26
29.2 ViewingtheGraph 2-30
210 Whereto GONext e 2-31
User Interface 31
31 Genera Menu 34
32 ProjectMenu 35
33 SubnetMenu 3-8
34 Study Menu e 39
35 ExperimentMenu 39
3.6 MachineMenu L 3-10
37 EditMenu 311
38 SolveMenu 311
3.9 SANeditor (Edit->Subnet) 312
39.1 Menuitemswithin Edit->Subnet (sanedit) 3-12
392 Tool panel options 3-15
3.10 Composed Model Editor (Edit->Composed model) 3-24
3.11 Performability variable editor (Edit->Performability Variables) 3-28
312 ISeditor (Edit->IS GOVETNOTr) . . . « . v v v v vt i et e 3-33
3.13 Study Editor (Edit->Studies) v vt e 334
Solvers 4-1
4.1 Choosingan AppropriateSolver e 4-1
4.2 AnayticSolvers e e e e 4-5
421 Reduced BaseModd Generator oL 4-5
422 Common Featuresof All AnalyticSolvers 4-7
423 Direct Steady-StateSolver o 4-9
424 lterative Steady-State Solver oL Lo 4-11
425 Determinigtic Iterative Steady-State Solver L. 4-13
426 TransentSolver L. 4-16
427 Accumulated RewardSolvero 4-17
4.2.8 Probability Digtribution Solver oL 4-18
4.3 Simulators L e 4-20

5 Graphsand Tableswith the Report Generator
51 CreatingaGraph e e
52 CregtingaTable
5.3 Different SolversinaSingleGraphorTable
54 SaveandlLoad GrgphsandTables
55 Hints e

6 Importance Sampling
6.1 IntroductiontolmportanceSampling.
6.2 ISGOVENOr e
6.3 Stating thelS Terminating Simulator
6.4 PFitfdlsandHints

A Installation
Al Ingalation e
A.2 Environment Setupfor UltraSAN users.
A3 Demoprojects e e e e

B Tool Organization and File Structure
C Output File Formats of the Reduced Base Model Generator

D Bibliography
D.1 Theory and Algorithm Development
D.2 Tool Development e
D.3 Applications
D4 Theses e

Index

51

5-3
5-7
5-8
5-8

A-1
A-1
A-3
A-4

B-1

Vi

Preface

UltraSAN is a software tool for model-based performance, dependability and performability evalu-
ation of computer, communication and other systems. The tool provides high-level modeling con-
structsinthe form of stochastic activity networks (SANS), and offers hierarchical modeling by means
of composed models. To specify performance and dependability measures for these models, reward
variables are used. Given the SAN, composed model and reward variables, the tool either generates
an executabl e discrete-event ssmulation or an underlying stochastic process, which then is solved by
analytic methods. UltraSAN Version 3.0 provides six analytic solvers and three discrete-event sim-
ulators, one based on importance sampling. Furthermore, the report generator facilitates the gener-
ation of graphs and tables from the obtained performance results. UltraSAN Version 3.0 runs under
Unix, and is available for HPs, SUN OS 4.1.3, DECstations and IBM RS6000s.

The UltraSAN software has evolved over the last six years, and the UltraSAN team is now lo-
cated at the Center for Reliable and High-Performance Computing, within the Coordinated Sci-
ence Laboratory, at the University of Illinois at Urbana-Champaign. In addition to tool develop-
ment, the main research in the UltraSAN group is carried out in theory and application of model-
based quantitative evaluation. To obtain further information about our group, inspect the world-
wide web pages at the http address http://www.crhc.uiuc.edu/ UltraSAN. The research pa
pers of our group are also obtainable by anonymous ftp at ftp.crhc.uiuc.edu in the directory
pub/UltraSAN/USAN papers. Of course, you can aso reach usviae-mail, at usan-info@crhc.
uiuc.edu, and we are happy to provide you with further information.

If you areinterested in using UltraSAN, and do not possess alicense yet, please send an e-mail to
usan-request@crhc.uiuc.edu. When used for research and educational purposes, UltraSAN is
provided free. Usethe address on the next page to contact us by regular mail, phone or fax, regarding
software or documentation.

Vil

viii

UltraSAN, ¢/o W. H. Sanders

Coordinated Science L aboratory

University of Illinois at Urbana-Champaign
1308 W. Main St., Urbana, 1L 61801

phone: (217) 333-0345, fax: (217) 244-5686

e-mail: usan@crhc.uiuc.edu

ftp: ftp.crhc.uiuc.edu
world wideweb: http://www.crhc.uiuc.edu/UltraSAN

Finally, if you like to stay informed about research and tool development in the UltraSAN group,
send usan e-mail at usan@crhc.uiuc.edu. Wethen add youto amailing list of tool users and other
interested parties, and will keep you informed about developments in our group.

How To Use This Manual

The user's manual for UltraSAN Version 3.0 discusses all features of the UltraSAN tool, how to in-
stall UltraSAN on your system, and how to set up your account in order to usethetool. Asthismanual
will be used by different people for different purposes, we have listed the parts of the manua which
will be of interest to different readers.

Installation If you plan toinstall UltraSAN on your computer, see Appendix A for an explanation
of how to do this.

New User If you will be using UltraSAN for the first time, read Appendix A which explains how
to set up the environment of your computer account. Furthermore, Chapter 2 provides atutoria that
step-by step illustrates the use of UltraSAN for an example model.

Inexperienced with SANs If you want to model with UltraSAN but do not have a detailed knowl-
edge of how SANswork, first read through the theory described in Chapter 1, and consult the refer-
ences therein.

Experienced User If you understand the basic use of UltraSAN but want to look up how specific
aspects of the tool function, Chapter 3 provides a reference guide that explains the operation of the
individual parts of the toal.

Solving a Model If you want to get an indication of which solver to choose for your model, read
Chapter 4. This chapter discusses the use of the solvers in detail, and provides hints for the use of
the different solvers.

Report Writing If you have successfully used the tool and want to document the results you have
obtained, take alook at the documentation options of the report generator, described in Chapter 5,
and the IATEX generator described in Section 3.2.

Advanced Simulation If your simulation has “rare events,” and if you are knowledgeable in the
area of discrete-event simulation, you might be interested in investigating the use of the importance
sampling simulator, described in Chapter 6.

Throughout the different chapters a running example of a faulty multi-processor illustrates the

iX

use of thetool. The running example is introduced in Chapter 1. Often, a surrounding box is used
to highlight text referring to the running example.

At the end of the different chapters ashort bibliography isincluded which contains the references
used in that chapter. A full list of papers that are of interest for users of UltraSAN can be found in
Appendix D.

Toemphasizeterminology or text, weaternately use typed text oritalics. Thetyped textis
especially reserved to denote menu buttons which the user can select. In particular, the A->B notation
is used to denote that menu item B can be selected in the window that appears after selecting item A.

Finally, we would like to encourage users of the manual to let us know about their experiences.
Please, give us your feedback about how we might improve the manual or UltraSAN itself. We can
be reached at the address given in the Preface.

Chapter 1

Modeling with Stochastic Activity
Networks

This chapter discusses the theoretical background necessary to successfully use UltraSAN. Thefol-
lowing topics will be discussed:

e stochastic activity networks,

e composed models,

e performability measures,

¢ underlying stochastic processes and state space generation.

The discussion will be kept concise and tailored to aspects that are relevant for UltraSAN users. For
an extensive discussion consult the references in Appendix D under the section entitled “ Theory and
Algorithm Development.” In particular, the paper entitled “ Specification and Construction of Per-
formability Models,” by Meyer and Sanders [1] provides a more detailed discussion of many of the
topics considered in this chapter.

1.1 Stochastic Activity Networks

Stochastic activity networks (SANS) [2, 3, 4], conceived in the early 1980's, are a stochastic ex-
tension to Petri nets'. Using graphical primitives, SANs provide a high-level modeling formalism
with which detailed performance, dependability and performability models can be specified rela-
tively easy. This section provides a description of the modeling primitives used in SANs and of the
dynamics (i.e., the behavior in time or “execution”) of a SAN model.

! Petri nets are amodel type, developed in the early 1960's, that are used to prove logical properties about systems.

1-1

1-2 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

available
correct
| b
. queue U
arrival access

b one fall ek d
check_done
processing . -
two fail -

ready

Initial Marking = 1

Figure 1.1: SAN model of afaulty microprocessor.

1.1.1 SAN Primitives

SANSsconsist of four primitive objects: places, activities, input gates, and output gates. Activi-
ties represent actions of the modeled system. Places represent the state of the modeled system. Input
gates are used to control the “enabling” of activities, and output gates are used to change the state of
the system when an activity “completes” Figure 1.1 is an example of a SAN model, representing
afaulty microprocessor system. This section will explain each of the SAN model primitives, using
Figure 1.1 as an example. The workings of this SAN will then be explained.

Places Places represent the state of the modeled system. They are represented graphically as cir-
cles. InFigure 1.1, size, queue, num_tasks, ready, and done are places. Each place contains a certain
number of tokens, which represents the marking of the place. The set of al place markings rep-
resents the marking of the network. Note that tokens in a place are homogeneous, in that only the
number of tokens in a place is known; there is no delineation of specific tokens within a place.

The meaning of the marking of aplaceisarbitrary. For example, the number of tokensin aplace
could represent a number of objects, such as a number of tasks awaiting service. Also, the number
of tokensin a place could represent an object of acertain type, such as atask with a certain priority
level. This dua nature of a place marking provides a great amount of flexibility in modeling the
dynamics of asystem.

Activities Activities represent actions in the modeled system that take some specified amount of
time to complete. They are of two types. timed and instantaneous. Timed activities have durations
which impact the performance of the modeled system. Examples would be a packet transmission
time or the time associated with aretransmission timer. Timed activities are represented graphically
as hollow ovals. In Figure 1.1, arrival, access, processing, and 1_O are timed activities. Each timed
activity has an activity time distribution function associated with its duration. Activity time distri-

1.1. STOCHASTICACTIVITY NETWORKS 1-3

bution function can be generaly distributed random variables. Each distribution can depend on the
marking of the network. For example, one distribution parameter could be a constant multiplied by
the marking of acertain place. Instantaneous activities represent actions that complete in a negligi-
ble amount of time compared to the other activities in the system. They are represented graphically
as vertical lines; however, there are no instantaneous activities represented in Figure 1.1.

Case probabilities, represented graphically as circles on the right side of an activity, model un-
certainty associated with the completion of an activity. Each case stands for a possible outcome. Ex-
amples would be arouting choice in anetwork, or afailure mode in a faulty system. In Figure 1.1,
activity processing has three cases. Each activity has a probability distribution, called the case dis-
tribution associated with its cases. This distribution can depend on the marking of the network at
the moment of completion of an activity. If no circles are shown on an activity, one case is assumed
with a probability of one.

Also associated with each activity isareactivation function. Thisfunction gives marking depen-
dent conditions under which an activity is reactivated. Reactivation of an activated activity means
that the activity isaborted and that immediately anew activity timeisobtained from the activity time
distribution. The reactivation function consists of an activation predicate and a reactivation predi-
cate. An activity will be reactivated at the moment of a marking change if (1) the activity remains
enabled, (2) the reactivation predicate holds for the new marking, and (3) the activation predicate
holds for the marking in which the activity was originally activated.

Input gates Input gates control the enabling of activities and define the marking changes that will
occur when an activity completes. They are represented graphically astriangles with their point con-
nected to the activity they control. In Figure 1.1, capacity and available are input gates. On the
other side of thetriangle are a set of arcsto the places upon which the gate depends, also called input
places. Input gates are defined with an enabling predicate and a function. The enabling predicate
is a Boolean function that controls whether the connected activity is enabled or not. It can be any
function of the markings of the input places. The input gate function defines the marking changes
that occur when the activity completes.

There is one short hand notation scenario for input gates. If aplace is directly connected to an
activity, thisis the same as an input gate with a predicate that enables the activity if there is at least
one token in the place, and a function that decrements the marking of the place (thus behaving as
an input arc in normal Petri nets). In Figure 1.1, thisis shown by the connection of place queue to
activity access.

Output gates Like input gates, output gates define the marking changes that will occur when ac-
tivities complete. The only difference is that output gates are associated with a single case. They
are represented graphically astriangles with their flat side connected to an activity or acase. In Fig-

1-4 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

O

Figure 1.2: Sample activity configuration.

ure 1.1, correct and check done are output gates. On the other side of the triangle are a set of arcs
to the places affected by the marking changes. Output gates are defined only with afunction. The
function defines the marking changes that occur when the activity completes.

Thereisa so adefault scenario for output gates. If an activity isdirectly connected to aplace, this
isthe same as an output gate with afunction that increments the marking of the place. In Figure 1.1,
this is shown by the connection of activity access to place num_tasks.

1.1.2 Marking Change Algorithms

AsaSAN executes, it goes through a sequence of markings. A stable marking is one in which
no instantaneous activities are enabled; an unstable marking is one in which one or more instanta
neous activities are enabled. Since unstable markings do not contribute to performability variables
(which will be discussed later in this chapter), we need not preserve information pertaining to them.
Therefore, the marking change agorithm descriptions will concentrate on obtaining sequences of
timed activity completions and reached stable markings. These algorithms will now be explained.

Enablingand completion rulesfor activities Figure 1.2 showsarather complicated configuration
of gates and places around an instantaneous activity, although the following istruefor either timed or
instantaneous activities. For this activity to be enabled, the predicates of the two input gates would
have to be true, and there would have to be at least one token in both of the two directly connected
places. For atimed activity, these conditions have to be true throughout the duration of the activity
time for the activity to complete. Marking dependent case probabilities are evaluated with respect to
the marking of the SAN at the moment of completion of the activity. When the activity completes,
one of the three cases is chosen, based upon the case probability distribution. Then, the following
steps are taken:

1. dl of the directly connected input places have their marking decremented,

1.1. STOCHASTICACTIVITY NETWORKS 1-5

le activity >l
time

@)

Activation Completion

e activity -l activity -
time time
(b)
t
Activation Completion and Completion
Activation

e activity -
time
(©
- t
Activation Aborted
lee— activity -
< activity time
time
(d)
t
Activation Reactivation Completion

Figure 1.3: Execution of atimed activity.

2. al of the input gate functions are executed;
3. all of the places directly connected to the selected case have their marking incremented;
4. the functions of al of the output gates connected to the selected case are executed.

The above order isthe order UltraSAN follows upon completion of an activity. Note that input gate
functions will be executed before output gate functions, but that there is no specified ordering within
each type of gate. Therefore, it should be ensured that the order in which input gate functions (and
output gate functions) are executed does not matter.

The activity that is chosen to complete in a certain marking is based upon the activity time dis-
tribution functions of each activity that is currently enabled, and the fact that instantaneous activities
have priority over timed activities. Figure 1.3 shows the four possible time lines for the execution
of atimed activity. The shaded areas represent time during which the activity is enabled. Each time

1-6 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

line shows the activity being enabled initially and an activity time scheduled. After the activity time
in (), the activity completes, and the new marking is such that the activity is not enabled. After the
activity timein (b), the activity completes, and the new marking is such that the activity is still en-
abled. Before the activity can complete in (c), the enabling conditions become false, and the activity
is aborted. Finally, before the activity can complete in (d), the activity is reactivated and therefore
does not complete until its new activity time has elapsed.

Stabilizing and well specified SANs For each stable marking, we need to determine the set of
activities which may complete in that marking, the cases that may be chosen, and the probability
distribution on possible next stable markings. Given a choice of an activity and a case, the execution
of the appropriate gates may result in another stable marking, or it may not. If it doesresult in another
stable marking, the probability associated with this marking ismerely the probability associated with
the chosen case. If it does not result in another stable marking, then we must recursively evaluate
every possible outcome of all the enabled instantaneous activities and al unstable markings resulting
from their completion.

Two important issues relate to the use of instantaneous activities. First, isthere areachable stable
marking, such that an activity which may complete in that marking, and a case that may be chosen
would cause an infinite sequence of instantaneous activity completions and unstable markings? If
not, then the SAN is stabilizing. It is not decidable whether a SAN is stabilizing [4]. The Ultra-
SAN implementation assumes a SAN is not stabilizing if a maximum number of intervening unsta-
ble markings is exceeded. The second issue relates to whether or not amodel iswell specified [4]. If
there is more than one instantaneous activity enabled in a certain marking, and the probability dis-
tribution on the next stable markings depends on which instantaneous activity is chosen to complete
firgt, the model is not well specified. Since the ordering of instantaneous activity completions is not
specified, this order must not matter if the SAN isto be solved. UltraSAN checks that models are
well specified each time an unstable marking is reached by checking that the probability of reaching
each possible next stable does not depend on choices among instantaneous activities that are made.

1.1.3 Faulty Microprocessor Example

As an example, consider a model of afaulty microprocessor system (similar to the model con-
sidered in[1]). Tasksfor the processor arrive as a Poisson process with parameter A. Arriving tasks
are put in a queue of capacity L. If the queue is full, the task is regjected. The processor removes
tasks from the queue on a FIFO basi s, which takes an exponentially distributed amount of time with
mean value 1/~. The processor can process atask in an exponentialy distributed time with mean
value 1/p. It can also process a second task simultaneously, thereby completing both tasks at the
single-task rate .. Therefore, the processor can accept anew task if it isprocessing one or zero tasks

1.1. STOCHASTICACTIVITY NETWORKS 1-7

| Activity | Distribution | Parameter values

e exponential

rate | GLOBAL_D(io_rate)
access exponential

rate | GLOBAL _D(access rate)
arrival exponential

rate | GLOBAL _D(arr _rate)
processing | exponential
rate | GLOBAL_D(proc._rate)

Table 1.1: Activity time distributions for the faulty microprocessor model.

| Activity | Case | Probability
processing 1 | if (MARK(num.tasks) == 1)
return(1.0);
else return(GLOBAL_D(ok_prob));
2 | if (MARK(num_tasks) == 1)
return(ZERO);®
else return(GLOBAL_D(one_error _prob));
3 | if (MARK(num.tasks) == 1)
return(ZERO);
elsereturn(1.0—GLOBAL _D(ok_prob)-GLOBAL_D(one_error_prob));

“The value ZERO is amacro used by UltraSAN for distinguishing exactly zero from an arbitrarily small number.

Table 1.2: Activity case probabilities for the faulty microprocessor model.

currently.

If only one task is processed at atime, correct processing is guaranteed. If two tasks are pro-
cessed at atime, thereisachance of aprocessing error. With probability p;, both tasks are processed
correctly, and with probability p, one task was processed incorrectly. When atask is processed cor-
rectly, it is sent to output. This|/O timeis exponentialy distributed with rate 6. The processor may
not resume processing until al 1/0 is complete. A task that is processed incorrectly remains in the
processor for processing.

The SAN in Figure 1.1 represents the faulty microprocessor system just described. Tables 1.1,
1.2, 1.3, and 1.4 give the component definitions for the SAN. The model has been parameterized
viathe use of “global variables’. Global variables are variables that are introduced while specifying
the model and are assigned specific values later while defining studies and experiments. They are of
two types. (a) double and (b) short represented by GLOBAL_D and GLOBAL_S respectively. The
specific values assigned to these global variables represent the different values the input parameters

1-8 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

| Gate | Definition
available | Predicate

MARK (num_tasks) < 2
Function

/% do nothing */

capacity | Predicate
I+ hasthe buffer capacity been reached? «/
MARK (queue) < GLOBAL_S(size)
Function
/% do nothing */

Table 1.3: Input gate definitions for the faulty microprocessor model.

| Gate | Definition
check_done | /x when 1/O done, reset ready */
if (MARK(done) == 0)
MARK (ready) = 1;
correct /% put one or two tasksin done, clear num tasks */
MARK (done) = MARK (num.tasks) + 1;
MARK (num_tasks) = 0;

Table 1.4: Output gate definitions for the faulty microprocessor model.

1.1. STOCHASTICACTIVITY NETWORKS 1-9

to the model can take, and the studies and experiments constructed with these global variables can
be used to study the effect of changes in these parameters on the model. Thus, for example, the ar-
rival parameter) is represented by the global variable GLOBAL _D(arr _rate), the service parameter
1 isrepresented by the global variable GLOBAL _D(proc_rate) and so on, asshownin Table 1.1. The
effect of different arrival and service times, for example, on the model performance can now be stud-
ied by assigning different values to these parameters. The assignment of different valuesisin turn
is done by defining different studies and experiments. All definitions in UltraSAN are givenin‘C’
syntax with the added notation of MARK(place) dencting the marking of the specified place.

The model behaves as follows. Activity arrival represents the time between arrivals of tasks to
the system. Its activity timeis exponentialy distributed with rate GLOBAL _D(arr _rate). Each time
it completes, it puts atoken in place queue. Input gate capacity models the finite nature of the arrival
gueue. Itsenabling predicate indicates that activity arrival is only enabled aslong as the marking of
place queueislessthe global variable GLOBAL _S(size), which represents the queue size of the multi
processor.

Activity access represents the time to assign atask to the processor. Its activity timeis exponen-
tially distributed with rate GLOBAL D(access rate). It is enabled when there is at least onetask in
place queue and there are less than two tasks in place num_tasks (per the enabling predicate of input
gate available). When activity access completes, atoken is put in place num_tasks. Activity pro-
cessing is enabled when there is one or more tokens in place num_tasks and there is atoken in place
ready, which indicates that the processor is ready for processing. Activity processing represents the
timeto process atask. Itsactivity timeisexponentialy distributed with rate GLOBAL _D(proc_rate).

When activity processing completes, the outcome depends on the number of tasksthat were being
processed. Thisis seen in the activity’s case probabilities in Table 1.2. If only one task was being
processed (MARK (num_tasks) == 1), then thefirst case is chosen with probability one. Output gate
correct isthen executed, which puts one token in place done. Place done represents a queue of tasks
awaiting 1/0. If two tasks were being processed, then the following may occur:

¢ With probability GLOBAL _D(ok_prob) (p1), case one is chosen, meaning both tasks were pro-

cessed correctly. Output gate correct putstwo tokensin place done and removes all tasksfrom
place num_tasks.

¢ With probability GLOBAL_D(one_prob_error) (p2), case two is chosen, meaning one task was
processed incorrectly. Thedirected arc from place num_tasksto activity processing causesone
token to be removed upon completion. The other token remains, representing the task that was
processed in error. One token is also put in place done.

¢ With probability 1.0 —- GLOBAL_D(ok_prob) — GLOBAL_D(one_error_prob) (1 —p; —
p2), casethreeischosen, meaning both tasks were processed incorrectly. Thedirected arcfrom
place num_tasks to activity processing causes one token to be removed upon completion, but
the arc from case three back to the place causes it to be put back, thereby leaving two tasks for
processing. Since no tasks are queued for /O, the token in place ready is replaced.

1-10 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

capacity

gueue
arrival

Figure 1.4: SAN model buffer.

Activity |_Orepresentsthetimeto send atask to I/O. Itsactivity timeisexponentially distributed with
rate GLOBAL _D(io_rate). When I/O is complete (MARK (done) == 0), the token in place ready is
replaced, indicating that the processor is ready for processing again. Tasks continue to arrive and
be processed according to these rules. The performance measures of interest for this model will be
explained later in this chapter.

1.2 Composed Model Specification

It can be cumbersome to specify large systemsin terms of asingle SAN. Composed models are
a hierarchical specification of SAN models and their corresponding performability variable speci-
fications (discussed later in this chapter). SAN models and their performability variable specifica
tions are combined with replicate and join operations to form a composed SAN-based reward model
[4,5, 6].

The replicate operation replicates a SAN and its performability variables a certain number of
times. A subset of its places, called its common places, are made common among all the replicated
submodels. This provides a means of communication between the submodels. Places that are not
common may have different markings in the different submodels. Thejoin operation combines dif-
ferent types of submodels. Here again, common places are used for communication.

Example As an example, consider the extension of the faulty microprocessor model to an N-
processor system. Tasks arrive to the NV -processor system just as before, but now there are N pro-
cessors removing tasks from the queue. Rather than building one SAN with N copies of the pro-
cessing part of the SAN, we can use the replicate operation and specify the number of copies N via
the global variable GLOBAL _S(hum_processors). Figures 1.4 and 1.5 are the workload and process-
ing parts of Figure 1.1 respectively. All the components have the same definitions as before. Fig-
ure 1.6 represents the composed model of the GLOBAL_S(num_processors)-system. The pro-
cessor node represents the SAN of Figure 1.5. The Rep node represents the replication operation,
indicating that the processor SAN is to be replicated. Table 1.5 shows which places are common

1.2. COMPOSED MODEL SPECIFICATION 1-11

available

correct

b one fail
rocessin
‘EIIIIII%') two fail

ready
Initial marking = 1

check_done
access

Figure 1.5: SAN model processor.

Join

Rep

processor buffer

Figure 1.6: Faulty microprocessor composed model.

| Node | Reps | Common Places |
| Rep | GLOBAL_S(num_processors) | queue |

Table 1.5: Composed model replicate node definitions for project faulty_proc.

1-12 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

| Node | Common Places | |
Join Subtree | 1 | 2
queue VIV

Table 1.6: Composed model join node definitions for project faulty_proc.

placesin the Rep node. Place queueis specified ascommon, since all processors are retrieving tasks
from the same queue. The buffer node represents the SAN of Figure 1.4. The Join node combines
the IV copies of the processor to the SAN of the workload model. In Table 1.6 it is shown that place
gueue is specified as common. Asaconsequence, tasks generated in the buffer SAN can be removed
by the processor SANSs.

Besides simplicity of specification, composed SAN-based reward models also offer advantages
in the area of model solution. For analytic solution, composed models exploit symmetries in the
model to reduce the number of reachable states[5]. Thisis done by representing state as the number
of submodelsin aparticular state, rather than avector of the state of each submodel. For ssimulation,
composed models reduce the overhead of event list manipulation by grouping events of the same

type [6].

1.3 Performability Variable Specification

Performability measures are used to gain information about the object system. So far, we have
been describing the specification of the composed model, which defines the stochastic process on
whichthisevauationisbased. Performability variable specification isaway of relating the stochastic
process to the performability measures of interest. There are two types of performability variables.
Reward variables are specified in terms of a common, uninterpreted unit of measure, called a unit
of reward. Reward variables can represent any aspect of system performance by giving ‘reward’ a
more specific interpretation. Activity variables represent the time between completions of a certain
activity. Each variable type will now be explained.

1.3.1 Reward Variables

A reward structure consists of two types of rewards. impulse rewards associated with state
changes, and rate rewards associated with the time spent in a state. The reward structure is defined
by associating impul se rewards with activity completions and rate rewards with times in particular
markings. The reward specification itself does not define the performability variable completely. In
particular, the following three aspects have to befurther specified to compl ete the measure definition:

1.3. PERFORMABILITY VARIABLE SPECIFICATION 1-13

e interva-of-time or instant-of-time measures,
e resultsfor transient times or in steady-state,
e Mmean, variance, or the complete distribution of reward variable obtained.

Interval-of-time or instant-of-time. The reward accumulated over an interval of time [¢o, ¢1]
is caled an interval-of-time reward variable. Examples of interval-of-time measures are the number
of service completions in atime interval or the amount of time a system is functioning correctly in
theinterval (“interval availability”). For rate rewards, which are assigned to a marking, the reward
is accumulated over the time the model spends in that marking. In case of impulse rewards, which
are assigned to an activity, the reward is counted every time the activity completes in the interval.
An often encountered variant of the interval-of-time measure is the time-averaged interval-of-time
measure for which the accumulated reward is divided by the length ¢, — ¢ of theinterval.

I nstant-of-time measures give the performability at a particular instant of time ¢. An example of
an instant-of-time measure is the number of elementsin abuffer at moment ¢ or the fact whether the
system is functioning or not at moment ¢ (the “instantaneous availability”). For a rate reward, the
instant-of-time measure takes the value of the rate reward associated with the marking at moment ¢.
For animpulse reward, the measure takes the value of the impulse reward of to the activity that last
completed before time ¢.

Transient or Steady-State. Thetime instant ¢ of an instant-of-time measure can be taken to
gotoinfinity, i.e., t — oo. Inthis case the performability measure is called a steady-state measure,
whileif ¢ < oo itisatransient measure. For an interval-of-time measure the steady-state measure
obtainable in UltraSAN results if the time-averaged measure is considered for ¢; — oo in [to, t1].

Mean, Variance or Distribution. Reward variables are random variables, which implies that
they can take different values with different probabilities. In other words, one can speak of thedis-
tribution of the variable, and consequently of itsmean and variance. For instance, areward variable
denoting the number of jobs in a buffer has a probability distribution over all possible values it can
take, and its mean corresponds to the expected or average buffer occupancy. Sometimesthere will be
interest in the compl ete distribution, sometimes only its mean and/or variance. Note that the know!-
edge of the full distribution implies that percentiles can be derived, i.e., the probability the reward
exceeds some value z is known for any z.

1.3.2 Activity Variables

A second type of variable supported in UltraSAN isthe activity variable. Activity variables repre-
sent the time between successive completions of activities. Wewill call thetime between completion
n — 1 and n the n-th inter-completion time. Clearly, this time has a distribution for which the mean
and the variance can be defined.

1-14 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

| Variable | Definition
probability non—blocking
Rate rewards
Subnet = buffer
Predicate:
MARK(queue) < GLOBAL_S(size)
Function:
1
Impulse rewards
none
Simulator statistics
Estimate mean and variance
Confidence Level =0.95
Relative Confidence Interval = 0.10
Initial Transient = 1000
Batch Size = 1000
Variable type = Instant of Time
Start of Interval = 100.0
Length of Interval = 100.0

Table 1.7: Reward variable definitions for the faulty microprocessor model.

The notion of instant and interval-of-time measures as for reward variables does not exist for
activity variables. Instead, single inter-completion times or series of inter-completion times can be
considered. An example of aseriesis the distribution of the sum of the inter-completion times be-
tween the 11-th and 100-th completion. Notions similar to transient and steady-state reward variables
can be defined as follows. For a single inter-completion time, the value of n isfinite in the transient
case whilen — oo for the steady-state case.

Example Consider the reward variable specifications for the multiprocesor system described ear-
lier, given in Tables 1.7 and 1.8.

The convention used here and in UltraSAN isasfollows. Rate rewards are given as a set of pred-
icate/function pairs. When the predicate istrue, reward is earned at the rate specified by the function
and zero otherwise. The total rate is the sum of the reward contributed by each predicate/function
pair. Also, since the replicate operation replicates the reward structure as well asthe SAN, the tota
reward associated withaSAN isthe sum of therewards across al of itsreplications. Impulserewards
are specified as anumber associated with each activity. The smulator statistics apply to simulation
only and will be explained fully in Chapter 3.

Each variable will now be described. We display simulator statistics only for the variable proba-
bility non-blocking since the others are similar. Consider the variable in Table 1.7, which represents

1.3. PERFORMABILITY VARIABLE SPECIFICATION

1-15

| Variable | Definition

utilization

Rate rewards
Subnet = processor
Predicate:
MARK (num_tasks) > 0 && MARK(ready) ==1
Function:
1.0/ GLOBAL_S(num_proc)

number of tasksin queue

Rate rewards
Subnet = buffer
Predicate:
1
Function:
MARK (queue)

number of tasksin system

Rate rewards
Subnet = buffer
Predicate:
1
MARK (queue)
Subnet = processor
Predicate:
1
MARK (num_tasks) + MARK(done)

fraction of timein|_O

Rate rewards
Subnet = processor
Predicate:
MARK (ready) ==
1.0/ GLOBAL_S(num_proc)

number of tasks processed

Impulse rewards
Subnet = processor
activity = 1.0, value=1

Table 1.8: Reward variable definitions for the faulty microprocessor model.

1-16 CHAPTER 1. MODELING WITH STOCHASTICACTIVITY NETWORKS

the probability that the queue is not full. The random variable for this reward variable is an indica-
tor random variable defined on the buffer subnet, taking a value of one when the queue is not full
(MARK(queue) < GLOBAL _S(size)) and zero otherwise. The expected value of this variable is the
probability that the queue is not full. The utilization variable represents the utilization of the sys-
tem. It is defined on the processor subnet, which is replicated GLOBAL _S(num_processors) times.
Each replicaaddsareward of 1.0/GLOBAL_S(num_processors), whenitiscurrently processing
(MARK(num.tasks) > 0 && MARK(ready) == 1) and zero otherwise, so this variable ranges from
zero to one.

The number of tasks in queue variable has a predicate of one (“true’), and therefore reward is
aways accumulated. Thereward isthe marking of place queue, so this variable represents the num-
ber of tasks in the queue. The next variable uses a predicate/function pair defined on each sub-
net. The number of tasks in system variable represents the total number of tasks in the system, by
adding up the tokens in each num_tasks place, the tokens in each done place, and the tokens in place
queue. The fraction of timein 1_O variable is also an indicator random variable, taking a value of
1.0/GLOBAL_S (num_processors) when the processor is doing 1/0 (MARK(ready) == 0) and
zero otherwise.

The number of tasks processed variable is an interval-of-time variable. It has no rate rewards,
and an impulse reward of one on activity 1_O. This means that areward of one will be added to the
variable each time activity 1_O completes, representing the number of tasks that are processed in the
interval of interest.

Consider the activity variable specifications for the multiprocessor system described earlier,
given in Table 1.9. Activity variables are named by the variable's subnet name and activity name.
Activity variable processor 1_O represents the time between the zeroth and 100th task completion,
and activity variable processor processing represents the time between the zeroth and 100th process-
ing completions.

1.4 Underlying Stochastic Processes and State Space Gener ation

To solve for the specified performability variable, either a smulation executable is generated
[6], or the state space and state transition matrix to be used for analytic evaluation is generated [5].
Simulation can be applied to any underlying stochastic process (and hence can be applied for any
specified SAN model), but to apply the analytic solvers the stochastic process must be of either of
the following two process types:

1. All activities are exponentially distributed (Markov processes)
Models where:

e all timed activities are exponentially distributed, and

14. UNDERLYING STOCHASTIC PROCESSESAND STATE SPACE GENERATION 1-17

| Variable | Definition
processor 1_.O
Simulator statistics
Estimate mean and variance
Confidence Level =0.95
Relative Confidence Interval = 0.10
Initial Transient = 1000
Batch Size = 1000
First Completion=0
Last Completion = 100
processor processing
Simulator statistics
Estimate mean and variance
Confidence Level =0.95
Relative Confidence Interval = 0.10
Initial Transient = 1000
Batch Size = 1000
First Completion=0
Last Completion = 100

Table 1.9: Activity variable definitions for the faulty microprocessor model.

¢ thereactivation function is such that the timed acitivities are reactivated often enough so
that the activity time distribution only depends on the current marking (see below).

2. Deterministic and exponentially distributed activities
Models where:

e al timed activities are either exponentialy distributed or deterministic,
e al most 1 deterministic activity is enabled at the same time,
e thetime of the deterministic activities may not depend on the marking of the SAN,

e for the activation and reactivation predicates for the exponential activities the same re-
striction as above holds.

Note that there are no restrictions on the definition of the instantaneous activities, aslong as the re-
sulting SAN is stabilizing and well-specified (see Section 1.1.2).

For the above model types, the condition on the reactivation function of the exponentia activ-
ities is necessary to preserve the Markov property?, because there are SANs with all exponentially
distributed activities which are not Markov. Thisimportant fact follows from the execution rules for

2The Markov property says, very informally, that the future behavior of the stochastic process only depends on the past
through its present state, not through past states of the stochastic process.

1-18 REFERENCES

SANSs. In particular, recall that activity times are determined at activation time and may be marking
dependent. Therefore, if anew marking is reached before completion of an exponential activity, it
may be that the activity time depends on a past marking for its rate, and, hence, the model is not
Markov. A sufficient condition for the reactivation function to assure the Markov property is that
both the activation and reactivation predicate are equal to 1 (true). In that case, if an activity is acti-
vated, and if the activity remains enabled when anew marking is reached prior to completion of the
activity, the activity will always be reactivated (i.e., at the moment the new marking is reached the
activity is aborted and directly activated again).

When the state space and transition matrix is generated in UltraSAN, it is assumed that the reac-
tivation function is specified such that the Markov property holds. It isthus not necessary to specify
the activation and reactivation predicate yourself. Realize that if the specified model belongs to one
of the first two model classes above, this default procedure will not change the stochastic properties
of your model. On the other hand, if asimulation executable isbuilt for the model, it is not assumed
that the reactivation function guarantees the Markov property (since such non-Markov models can
be solved). Therefore, take care that in simulation the activation and reactivation predicates are de-
fined correctly for the activities. For all models, defining the activation and reactivation predicate
both to be equal to 1 for all marking dependent activities guarantees the equality of the simulation
executable with the explicitly generated mode.

Finally, anoteisin order about the notion of state when generating the state space of the stochas-
ticprocess. In UltraSAN, amarking together with theimpulse reward associated to the activity which
completion brings the SAN to that marking determine the state. So, two timed activities which result
in the same marking upon completion give rise to two different states if different impulse rewards
are state space size increases in this case. It isimportant to realize this when anayzing the size of
the generated state space in UltraSAN. For a more detailed discussion about state space generation
consult [5].

REFERENCES

[1] J. F Meyerand W. H. Sanders, “ Specification and Construction of Performability Models,” Proceedings
of the Second International Workshop on Performability Modeling of Computer and Communication
Systems, Mont. Saint-Michel, France, June 28-30, 1993.

[2] J. F Meyer, A. Movaghar, and W. H. Sanders, “ Stochastic Activity Networks: Structure, Behavior, and
Application,” in Proc. Int. Conf. on Timed Petri Nets, Torino, Italy, July 1985, pp. 106-115.

[3] A. Movaghar and J. F. Meyer, “Performability Modeling with Stochastic Activity Networks,” in Proc.
1984 Real-Time Systems Symp., Austin, TX, Dec. 1984.

[4] W. H. Sanders, Construction and Solution of Performability Models Based on Stochastic Activity Net-
works, Doctoral Dissertation, University of Michigan, 1988.

REFERENCES 1-19

[5] W. H. Sanders and J. F. Meyer, “Reduced Base Model Construction Methods for Stochastic Activity
Networks,” in |EEE Journal on Selected Areas in Communications, special issue on Computer-Aided
Modeling, Analysis, and Design of Communication Networks, vol. 9, no. 1, Jan. 1991, pp. 25-36.

[6] W.H.SandersandR. S. Freire, “Efficient Simulation of Hierarchical Stochastic Activity Network Mod-
els,” in Discrete Event Dynamic Systems: Theory and Applications, vol. 3, no. 2/3, July 1993, pp. 271—
300.

1-20 REFERENCES

Chapter 2

Getting Started

After UltraSAN has been installed and the environment has been set up according the directions in
Appendix A, the user should be able to build and solve models. The purpose of this chapter is to
quickly introduce the user to modeling using UltraSAN. By following this tutorial, the user will:

e Construct amodd of ahypothetical system using stochastic activity networks (SANS).
e Become exposed to different components of the model-building process used in UltraSAN.

e Beable to specify and solve/simulate for different reliability and performance measures of a
model.

2.1 Description of the M odel

Inthisexample, the system that will be modeled isthefaulty microprocessor discussed in Chapter
1. Briefly, recall that the faulty microprocessor is a multiprocessor computer in which jobs can be
processed either sequentialy or in paralel. However, in this system, parallel processing can yield
incorrect results. The arrival of tasks to the system is a Poisson process with rate A. Arriving jobs
are placed in a fixed size queue; when the queue is full, additional jobs are regjected. The time for
processors to remove tasks from the queue is exponentially distributed with amean of 1/+; thetime
to process ajob is exponential with amean value of 1/u. Moreover, a processor always attempts to
process two tasks from the queue, but may encounter errors in processing more than one job. If a
processor processes asingle task, the task is always processed correctly. However, for two jobs, the
probability that onejob was processed incorrectly and must be reprocessed isp; ; the probability that
both jobs were incorrectly processed is ps.

At a high level, processors take jobs from a common buffer, process the jobs, then take addi-
tiona jobs when they are available. In UltraSAN terminology, the buffer and processors are modeled
as subnets. By logically joining the buffer and processor subnets through a common queue, a con
posed model is created. After a composed model of the faulty processor has been created, reward

2-1

2-2 CHAPTER 2. GETTING STARTED

variables are defined to determine measures of performance. After analytically solving the model,
graphs and/or tables of the results are created to analyze the performance of the system versus dif-
ferent parameters of interest.

To accomplish these steps, thistutoria will describe the editors and commands used in UltraSAN
to create amodel. First, the SAN editor (sanedit) is used to create the buffer and processor subnets.
Next, the subnets are logically linked using the composed model editor (compedit). After the com-
posed model has been created, areward variable to determine the system utilization is defined using
the performability variables editor (varedit). UltraSAN also provides the ability to specify multiple
values for model parameters specified in sanedit and compedit. The study editor (stdedit) is used to
assign vaues to model parameters for later solution of the model.

To analytically solve the model, the underlying stochastic process space is generated from the
SAN representation using reduced base Model construction (RBMC). Using the generated state
space, the iterative steady state solver (iss) isused to solve for the steady state utilization. For com-
parison, the model is aso simulated using the steady state smulator (SSm). Finaly, a3-D graphis
created using the report generator (repgen) to understand the effect of the number of processors and
job arrival rate on utilization.

2.2 Starting UltraSAN

Start UltraSAN by typing usan on the command line and pressing <RETURN>>.

The graphical interface, or Control Panel, appears as shown in Figure 2.1.

Thefirst step in creating amodel in UltraSAN, isto create aproject . Roughly speaking, projects are
used to hold all the components needed to specify amodel in UltraSAN. These components will be
discussed in the following sections of the chapter as the model is constructed.

To create aproject, choose from the Control Panel menu. Whenthe Create Project win-
dow appears as shown in Figure 2.2, type faulty_proc and click on the OK button.

2.3 Creating a Subnet

Once the project has been created, individual subnets can be created within the project. The first
subnet that will be created is the buffer subnet. Recall that the buffer subnet models the Poisson
arrival of tasks to the multiprocessor. Once atask arrives, it is placed in a queue with a size limit.
If the queue isfull, arriving jobs are discarded. One way to model this behavior isto create atimed
activity with an exponential distribution of time between completions. Upon each completion, the
activity places atoken in the place to represent ajob arrival. To model alimit on the number of jobs,

2.3. CREATING A SUBNET

usan

{HtraSAM “Version 3.0

Copyright (c] Univ. of Arizona 1330-1334, Univ. of lllinois 1334

Control Panel

General Project Subnet Study Experiment kachine Edit Solve
hMessages
|
i
Project Directory: shome/bobcatZiusan/projects
Project: Subnet: Study:

Figure 2.1: UltraSAN Control Panel.

i usan

CREATE PROJECT

Froject Mame:

| faulty_prac|

Figure 2.2: Create project window.

2-3

2-4 CHAPTER 2. GETTING STARTED

— usan

CREATE SUBMET

Froject Mame: faulty_proc
Subnet Name: hutied

| & @ |

Figure 2.3: Create subnet window.

an input gate is connected from the place to the timed activity. The gate compares the number of
tokens in the place with a predefined limit. If the number of tokens is less than the limit, the input
gate alows the activity to complete normally. However, if the number of tokens equals the limit, the
input gate does not alow the timed activity to complete until one or more tokens are removed from
the place. Once this happens, the input gate again allows the timed activity to complete.

To create the subnet buffer, choose Subnet->Create from the Control Panel menu. Note
that the project name faulty_proc already appears in the Create Subnet Window. When
the Create Qubnet window appears asshownin Figure 2.3, click in thewindow for the Subnet
Name: and type buffer. Click on the OK button.

After the subnet has been created, the functionality can be defined using the Edit->Subnet option.

To edit the newly created subnet buffer, choose Edit->Subnet. Note that the project name
faulty_proc and the subnet name buffer appear, since they have been selected as the default
project and subnet. Click on the OK button to continue. When the sanedit drawing editor
appears, awindow with the message “ No subnet found, starting new model” appears. This
is correct since a new subnet was created. Click on the OK button to continue.

2.3.1 Creating the buffer Subnet

Now the subnet buffer can be created. Figure 2.4 shows a possible layout for the objects that will be
created in this section.

Tobegin, click onthelabel Place. Click inthe drawing areato put the place into the subnet.
To place an object. hold down the left mouse button, move the object to the desired location,
and release the button. At this point, awindow asking for the place name will appear. Type
queue. Then click on the OK button. To create the activity arrival, first click on the Timed
Activity label and then click on the drawing areato place the activity. A window asking
for the activity name and number of case probabilities will appear. Since there are no case
probabilities, only type arrival. Click on the OK button to continue.

For moreinformation about the definition of activities, seethe background theory of SANsin Chapter
1

2.3. CREATING A SUBNET

-y sanedit E’E—]
HitraSAN Version 3.0 Copyright (c) Univ. of Arizona 1930-1334, Liniv. of lllinois 1334
* Project faully_proc Subnet: buffer mag 1x
File Edit Font Option

Select [o oo
Defing R Ll D L
ragnify Ll D L
Text Ll D L
Place Ll L
Inst. Activity |0 o000 R .
Timed Activity R Ll L
Input Gate R Ll o
Output Gate R Ll L
F

Figure 2.4: buffer subnet.

The final component of the subnet that must be created is the input gate capacity. This gate controls

the number of jobs in the buffer.

Click on the Input Gate label and then in the drawing area to create the input gate. Type
capacity in the window that appears and click on the 0K button.

Once all the components have been placed in the editor, each component can be defined. To do this,
click on theDef ine label. Then click on each component. Depending on the SAN component, dif-
ferent windows will appear. Note that gates and activities will have ahatched outline, indicating that
they must be defined before the SAN is complete.

Defining the Input Gate capacity

The purpose of the input gate capacity is to control the number of jobs queued in the processor by
disabling arrivals when a certain number of jobs are in the queue. To do this, the gate should allow
the timed activity arrival to be enabled when the number of tokens or jobs in the place queue isless

than a certain number.

Click on the input gate capacity.

CHAPTER 2. GETTING STARTED

s sanedit

INPUT GATE EDITOR

Input Gate: capacity

Input Predicate:

f* has the buffer capacity been reached? *f
MARK[qUeue) « GLOBAL_S(size)

Input Function:

¥ do nothing */

Figure 2.5: Input gate editor - capacity.

2.3. CREATING A SUBNET 2-7

After clicking on capacity, the Input Gate Editor window appears asshown in Figure 2.5. The
Input Gate Editor window is used to define the input predicate and input function. The input
predicate is a C expression that describes under what conditions the activity connected to the input
gate will be allowed to complete. Thisisdone using atrue-false condition, or predicate. Recall from
the above description of the model, capacity should allow arrival to complete only when the number
of tokens in queue is less than a certain value. The statement that describes this is MARK(queue)
< GLOBAL_Ysize), where MARK is a C function that returns the number of tokens in a place.
GLOBAL _Srefersto aglobal variable. Global variables allow for parameters to be more easily spec-
ified in alater step of the model-building process. For a more complete description of the MARK
function, see Section 3.9.2.

To define capacity, move the mouse cursor to the Input Predicate window and type
MARK (queue) < GLOBAL _S(size).

Theinput function isaC function that specifies how the gate changes the marking of connected places
when the associated activity completes. In this case, the capacity should only enable or disable ar-
rival and not change the marking of any connected places. In C, a semicolon is used to indicate an
identity statement.

‘ Move the mouse cursor to the Input Function section and type a semicolon. ‘

With both theinput predicate and function for capacity defined, the definition of capacity iscomplete.

‘ To save the definition, click on the Accept button. ‘

Defining the Timed Activity arrival

To define the timed activity arrival, click on the label Define and then on the activity.

When the Timed Activity Editor appears as shown in Figure 2.6, the top of the window con-
tains the time distributions that can be chosen for atimed activity. The exponentia activity is chosen
by default. To define other distributions, click on the circle next to the type desired. Depending on
the type and number of parameters needed to define the particular activity time distribution, the pa-
rameter window changes. In this example, the delay is exponentialy distributed since a Poisson job
arrival process is modeled.

In the rate window, type GLOBAL _S(arr_rate).

The global variable represents the rate of arrival of tasks to the common queue. Since the activa-
tion and reactivation functions will not be used, click on the Accept button to complete the activity
definition. For more detailed information about the definition of activities, refer to Section 3.9.2.

2-8

CHAPTER 2. GETTING STARTED

sanedit

TIMED ACTIVITY EDITOR

Timed activity: arrival

Time Distribution Functions:

@ exponential
O deterministic
3 geometric
Crweibull

Crnormal Crgamma
1 heta

3 unifarm

rlognaormal

Cretlang
Cririangular

Crbinamial
rnegative hinomial

Oy hyperexponential

FParameters:

rate

JELOBAL_Diarr_rate)

<)

<)

il

Reactivation Function

Activation Predicate:

Reactivation Predicate:

Figure 2.6: Timed activity editor - arrival.

2.3. CREATING A SUBNET 2-9

2.3.2 Connecting the Subnet Components

Now that all the places, gates, and activities in the subnet have been defined, they must be connected
together to complete the subnet.

To connect all the defined components, click on the curved line label on the |eft side of the
sanedit drawing window.

Since job arrivals enter the queue, an arc is used to connect the timed activity arrival to the place
queue.

To connect arrival to queue, place the mouse cursor on thetimed activity, click theleft mouse
button, and drag the arc to the place queue. Once the mouse cursor is on queue, press the
right mouse button.

If sanedit recognizes the arc, aline from the activity to the place will appear. If the arc isnot correct,
awindow with the message “ Can't identify the object this arc is coming from” or “ Can't identify
the object you' re trying to connect to.” will appear, depending on whether the starting object or end
object cannot be identified by sanedit. In either case, click on the 0K button, and try to redraw the
arc. Becareful to draw the arc from the timed activity arrival to the place queue. In SANS, adirected
arc from an activity to aplace means that upon each completion of the activity, atoken will be added
to the place. A directed arc from a place to an activity signals that if one or more tokens are in the
place, the activity will be enabled, and when the activity completes, one token will be removed from
the place. For more discussion regarding the execution of SANS, see the background for SANsin
Chapter 1.

The next arc will be from the place queue to the input gate capacity. Asacorvention, arcs are dravn
from places to the back side of the input gate.

Place the mouse cursor on the place queue, click the left mouse button, drag the arc to the
input gate capacity and click the right mouse button.

If the arc is correct, a line between the place and gate will appear. As with the arc from queue to
arrival, if the arc is not correct, one of two windows will appear. Click on the 0K button and try

again.

In addition, drawing an arc in the incorrect direction from an input gate to a place causes a window
with the error message “ Input gates must be connected to activities”” to appear. This enforces the
rule that input gates control the enabling of activities. Click on the 0K button to continue.

Thefinal arc to be drawn isfrom the input gate capacity to the timed activity arrival. Per convention,
arcsfrom input gatesto activities are drawn from thel eft side of the gate to theleft side of the activity.

2-10 CHAPTER 2. GETTING STARTED

| compedit B
UitraSAN Wersion 3.0 Caopyright () Univ. of Arlzona 1980-1334, Univ. of llinois 1984

Froject: faulty_proc mag 1x

Define | o

Mave |0
Magnify ffffff ffffff ffffffffffffff::::::::::::::::::::::: N

Text N N P 11 Ll

Subnet | e R

Replicate |00 000 00D N L

Join L R

Figure 2.7: faulty_proc composed model.

Place the mouse cursor on the input gate capacity. Click the left mouse button. Draw the
arc to the left side of the activity arrival. Click the right mouse button.

If the arc is not complete, awindow as described above will appear. Click on the 0K button and try
again. When the arc is correctly drawn, aline from capacity to arrival will appear.

At this point, all components for the buffer subnet have been defined and connected as shown in
Figure 2.4.

To save the subnet, choose File->Save.

This allows sanedit to compile and write the necessary files.

At this point, the subnet processor can be created. The steps needed to create the processor subnet
will not be described in thistutorial. Refer to the descriptions and definitions in Chapter 1 to create
the subnet in the same way as the buffer subnet was created.

2.4. CREATING THE COMPOSED MODEL 2-11

i usan

COMPOSED MODEL EDITOR

Froject Mame: | faulty_proc

l 1

Figure 2.8: Composed model editor window.

2.4 Creating the Composed M odel

Once the buffer and processor subnets have been created, the subnets can be logically combined to
form the faulty microprocessor model. Recall that multiple processors take tasks that arrive into a
common queue. To model this behavior, separate processor subnets and the buffer subnets are con-
nected, or joined in UltraSAN terminology. In UltraSAN, different subnets are joined by identifying
common places through which each subnet interacts. For the buffer and processor subnets, the place
gueue is common. Furthermore, since each processor behaves in exactly the same way, it is possi-
ble to replicate the processor subnets to model multiple processors. When subnets are replicated,
each copy behaves independently, with certain places identified as common. Since each processor
processes tasks from a common gueue, the place queue is also made common between the replicas.
Finally, thereplicated processor isjoined with the buffer subnet to create the faulty processor model.
Figure 2.7 show the composed model for the faulty microprocessor.

Choose Edit->Composed Model. Aswith the SAN editor, awindow displaying Project
Name: faulty proc appears asshown in Figure 2.8. Click on the 0K button to define the
composed model. Again, awindow with the message“ No Composed Model found. Sarting
new Model” appears. Click on the 0K button to begin specifying the composed model.

24.1 Placing the Subnetsinto the Composed M odel

To choose asubnet for the composed model, click on the Subnet label and move the mouse
cursor to the drawing area. Click with the left mouse button and a window displaying the
names of the subnets created previously with the SAN editor will appear. Choose the buffer
subnet by clicking on buffer and then clicking on the Open button. Click in the drawing area
to place the buffer. In the same way, choose and place the processor subnet.

Note that if two or more components are placed too close to each other, awindow with the message
“ Qubnet will overlap at least 1 other object(s). Please allow more space between it and surrounding
objects” appears. Just click on the 0K button and move the component further away from other
components.

2-12 CHAPTER 2. GETTING STARTED

— compedit

REPLICATE EDITOR

Specify Number of Replicas

o Ecalar
s Wariahle

[BAL_S{num_processorsi]

Select Common Places

Figure 2.9: Replicate editor.

2.4.2 Replicating the processor Subnet

To create multiple copies of processor as described above, the replicate operation is used.

‘ Click ontheReplicate label and click in the drawing area just above the processor box.

Note that although components may be placed anywhere, it will be easier to see the hierarchical na-
ture of the composed model if the components are placed as shown in Figure 2.7.

Draw an arc from the Rep node to the processor node.

Drawing an arc from the processor node to the Rep node will cause awindow with the message“ Sub-
net nodes cannot have any Outgoing Arcs” to appear. Thisis because a composed model is atree
structure in which the subnet nodes are the leaves. If this occurs, click on the 0K button to continue.

To define the number of processor nodes that will be replicated, click on the Define label
and then click on the Rep node.

TheReplicate Editor window will appear as shown in Figure 2.9. In this window, the default
number of replicas and alist of al the places in the connected subnets appear. In alogical sense,
the replicate operation creates separate copies of the same subnet which can communicate through
shared places.

Move the mouse cursor to the window for specifying the number of replicas. Highlight the
number 1 and type GLOBAL_S (num processors). Then click on the circle next to Vari-
able to indicate that the number of processors in thereplicaisagloba variable as shown in
Figure 2.9.

2.5. DEFINING REWARD VARIABLES 2-13

This global variable is used to vary the number of processors in the model.

| Click on the box next to queue. |

Thiswill ensure that the processors will process jobs from a common queue.

| Choose Accept: to closethe Replicate Editor. |

2.4.3 Joining the processor and buffer Subnets

Next, the buffer and replicated processor subnets are joined. Recall that the purpose of the subnet
buffer isto model the arrival of jobsto the multiprocessor. When tasks arrive, the subnet buffer places
the tasks into a queue from which the individual processors take tasks for processing. This can be
accomplished by the join operation.

Thejoin operation alowsdifferent subnets to communicate by passing tokens through shared places.
In this example, the tasks that are generated by the subnet buffer are accessed by each copy of the
subnet processor subnet.

Click onthe Join label and then click in the drawing area. Draw an arc from the Join node
to the subnet buffer. Then draw a separate arc from the Join node to the Rep node.

Thisjoins buffer and the replicated processor submodels.

To define the Join, click on the Define label and click on the Join node.

The Join Editor window appears with the possible placesin the buffer node and places made common
in the Rep node that can be made common.

To make the place queue common, click on the boxes next to queue in both subwindows.
Then click on the Add Set button to make the place queue common to the buffer and pro-
cessorsasshownin Figure 2.10. Tofinish defining the composed model, click onthe Accept
button to close the Join Editor. To save the composed model, choose File->Save.
Choose File->Quit to exit the Composed Model Editor.

The completed composed maodel is shown in Figure 2.7.

2.5 Defining Reward Variables

Once the composed model has been defined, measures can be specified to quantify the behavior of
the model. Thisisdone through the definition of reward and activity variables. In particular, anim-
portant performance measure for multiprocessor systems is utilization. Utilization is defined asthe
fraction of timethe system isdoing useful work. Thissection will illustrate how processor utilization
can be defined using reward variables.

2-14 CHAPTER 2. GETTING STARTED

s compedit

JOIN EDITOR
Current Common Set: none

((add &l] [Add3et | [add] [Prev][Mext | [Delete]

b S

Figure 2.10: Join editor.

i usan

PERFORMABILITY VARIABLES EDITOR

Froject Mame: | faulty_proc

l 1

Figure 2.11. Performability variable editor window.

2.5. DEFINING REWARD VARIABLES 2-15

- varedit Fa 1)
{HtraSAN “ersion 3.0 Copyright (c) Univ. of Arizona 1990-1834, Univ. of Illinois 1934
Performabhility Variable Specification

Reward Yariahle Selectar

ke3
Add (Editrate | ((Editimpulse | Edit Stats |
activity Variable Selectar
G
2

Figure 2.12: Performability variable editor.

Choose Edit->Performability Variables option from the Control Panel menu. As
with the other editors, a window with the current project name faulty proc appears as
shown in Figure 2.11. Click on the OK button to continue.

The window which appears in Figure 2.12 is divided into two parts. In the top half, rate reward
variables are defined. In the bottom half, activity reward variables are defined. In this example,
only arate reward variable is defined, but it will allow the user to get afeel of how variables and
solvers/simulators are intertwined. For adescription of both variable types, see Chapter 1.

2-16 CHAPTER 2. GETTING STARTED

= varedit
Rate Reward Specification

Wariahle: utilization
SubModel: processor

[Prev SubMadel] [Mext SubMadel]

[#dd Rate | [Edit Rate | (Del Rate | [Prev Rate | [Next Rate |

Fredicate:

p&RK UM _tasks) = 0 && MARK(ready) == -

53
Function:
fi.0/ GLOBAL_S(num_processars) -
2 S

Figure 2.13: utilization variable definition.

2.5. DEFINING REWARD VARIABLES 2-17

= varedit

Reward Variable Simulator Statistics [Accept | [Abort]

Yariahle Mame: utilization

[Estimate Mean
[Estimate Variance

Confidence Level 0.95
Relative Confidence Interval 010

Steady State:

Initial Transient [1900.0
Batch Size 1000.0

Transient:
@ Instant of Time
& Interval of Time Start of Interyal 1000
» Time Averaged Interval of Time Length of Interwal 100.0

Figure 2.14: utilization variable simulator statistics.

To create areward variable for processor utilization, move the mouse cursor to the Reward
Variable Selector window and click onthe Add button. Type utilization and click on the
OK button. The name utilization appears in the window as shown in Figure 2.13. To define
thevariable, select utilization and click ontheEdit Rate button. Sincethe reward is deter-
mined by the status of the submaodel processor, click onNext SubModel. InthePredicate
window, type (MARK (num tasks) > 0) && (MARK(ready)==1).IntheFunctionwin-
dow, type 1/ (GLOBAL_S (num processors)).

Whenever any of the replicated processors is processing one or more tasks, the condition in the
Predicate window istrue. When the predicateistrue, areward of 1/(GLOBAL _S(num_processors))
is assigned since the measure isfor utilization of the entire system.

| Click on the Edit Stats button. |

TheEdit Stats optionisused to define parameters related to simulation. Although the theoretical
background of statistical simulation will not be discussed, it is sufficient to note that it isimportant
for the confidence in the results to set the confidence interval sufficiently high. Unfortunately, more
accurate results require longer smulation times. See Chapter 4 for more details.

The important parameters in the Reward Variable Simulator Statistics window shown in
Figure 2.14 are the Confidence Level and Relative Confidence Interval. These quantities mean that
with 0.95 probability the mean (or variance) produced by the simulator iswithin arelative confidence
interval of 10% of the true mean (or variance). By default, the confidence level is 95% with arelative
confidenceinterval width of 10%. Thiswill provide sufficient accuracy to compare theanalytical and

2-18 CHAPTER 2. GETTING STARTED

i usan

STUDY EDITOR

Froject Mame: | faulty_proc

l 1

Figure 2.15; Study editor window.

simulation results generated later. Discussion of other parameters used for smulation can be found
in Chapter 4.

Tosavethesimulator statistics, click onthe Accept buttontoreturntothePerformability
Variable Specification window. Click onthe Accept button to save the performabil-
ity variable definitions.

2.6 Creating Studies and Experiments

The next stage of the specification of an UltraSAN model isthe creation of studies and experiments.
Recall that severa global variables were defined in the subnets and composed model. Through the
study editor (stdedit), single or multiple values can be assigned to each global variable. Often, inter-
est isin the behavior of systems for several parameter values. The features of stdedit make it much
easier to assign these values. In this section, stdedit will be used to assign values to each global vari-
able defined in sanedit and compediit.

To access the study editor, choose Edit->Studies. A window containing the project name
faulty_proc appearsasshown in Figure 2.15. Click on the 0K button to continue. Initially,
the stdedit window is blank. To add a new study, click on the Add button. Move the mouse
cursor to the window and type vary_arr_and processors and click on the 0K button.
Now, the window contains the newly created study as shown in Figure 2.16.

Now that a new study with the name faulty_proc has been created, different values for the global
variables can be specified.

Click on the faulty_proc label.

Values for globa variables can be defined using arange or set. A range allows each global variable
to be defined as either afixed value or a number of values specified by a starting value and ending
value separated by additive or multiplicative increments. A set allowsvectors of fixed valuesfor each
global variable. Inthisway, a“matrix” of vaues for the global variables can be created using either
ranges or sets.

2.6. CREATING STUDIESAND EXPERIMENTS 2-19

k
bl repgen
Study Selector
vary_arr_and_processolg
3
o Select Exp "
E]

Figure 2.16: Study editor selector - vary_arr _and_processors.

In this example, the globa variables are defined using the range option.

Click on the Range button. The first window that appears contains the global variable ac-
cess_rate. To assign avaue for the variable, click on the Edit button. An edit window for
the global variable access rate appears. Click on the circle next to the left of the Fixed
Value label. Then click in the window next to the Fixed Value label. Type 20 and click
the Accept button.

The definition for access_rate is shown in Figure 2.17.

In this example, arr_rate will be varied from 5 to 30 in steps of 5. The range option allows a starting
value and end value to be specified, separated by additive or multiplicative increments. For more
information on how to specify value for global variables, see Section 3.13.

To edit the next global variable, arr_rate, click onthe Next button. To vary arr_rate from
51to 30 using arange, click on the circle next to the Range Value label. Then click in the
window next to Initial and type5. Next, click inthe Final Window and type 30. To get
a spacing of 5 between each value, click on the circle next to the Additive label and type
5inthe Increment window. Click on the Accept button to finish defining the range.

The definition for arr_rate appears in Figure 2.18.

Inasimilar way, defineio_rate asfixed value equal to 10, num_reps as afixed value equal to
3, ok prob as afixed value equal to 0.81, one_error_prob as afixed value equa to 0.18, and
proc_rate as a fixed value equal to 20. num_processors is varied from 1 to 6, in steps of 1.
This can be done is a similar way as arr _rate was defined. Choose 1 as the initial value, 6
asthefina value, and 1 as the additive increment.

Onceall of the global variables have been defined, click on the Next or Previous button(s) to check
that each variable has been defined with the correct value(s).

2-20 CHAPTER 2. GETTING STARTED

— stdedit

Range Editor

Type: DOUBLE
Wariahle Mame: access_rate

@® Fixed value |[HY

Range valua

Initial

I

Final
Additive
rultiplicative

Increment

H

[Edit | [Prev

g

[Mewt |

Figure 2.17: Range editor - access_rate variable.

e stdedit

Range Editor

Type: DOUBLE
Yariahle Mame: arr_rate

Fixed Walue

@ Range Value

Initial

1

Final
@ Additive
Iy Multiplicative

(Eait] [Prev] [MNest |

Figure 2.18: Range editor - arr_rate variable.

2.7. SELECTING STUDIESAND EXPERIMENTS FOR SOLUTION 2-21

— usan

SELECT STUDIES

fhomefbobcathusanfprujectsﬁaulty_prucfstudiesf|

wary_arr_and_pracessars S

)
|

Figure 2.19: Select studies window.

To save the variable values and return to the Global Variable Assignment Window,
click on the Accept button.

After al the global variables have been defined, UltraSAN creates separate experiments for each
value of the global variable defined. Since the ranges for arr_rate and num_processors each contain
6 values, 36 experiments for the study vary_arr_and_processors are created.

To construct the experiments, click on the Accept button.

Once study and experiment construction has been completed, the study editor window disappears.

2.7 Selecting Studies and Experiments for Solution

After the studies and experiments have been created, results can be obtained by either analytical solu-
tion or simulation. Asan illustration, the model will be solved anaytically and simulated in steady
state to determine utilization the faulty microprocessor model. First, the particular study(ies) and
experiment(s) must be selected.

‘ To select the var_arr_and_processors study just created, choose Study->Select. ‘

A window containing the study for the faulty_proc project appears as shown in Figure 2.19.

| Click on the label faulty proc and click on the OK button to complete the selection. |

Recall that experiments are generated for each combination of the values of the global variables.

To choose which experiments will be solved and/or smulated, choose
Experiment->Select from the Control Panel.

2-22 CHAPTER 2. GETTING STARTED

— usan

SELECT EXPERIMENTS

Study Mame: vary_arr_and_pracessors

expl k]
expe
expd
expd
ExpS
expb
exp7
exph
expd
expl0

- (E&Ea?mj [Cmmm] [(8].9] u

E 1

Figure 2.20: Select experiments window.

A window containing al the experiments appears as shown in Figure 2.20.

Experiments can be selected individually or all can be selected by clicking on the Select
A11 button. To select an experiment, click on the label of the particular experiment. Once
an experiment is selected, it is highlighted. To unselect an experiment, click on it again to
unhighlight it. After all experiments have been selected, click on the 0K button.

2.8 Solvingthe Mode

Once the study and experiments have been selected, the model can either be solved analytically
solved' or simulated. Since al timed activities are exponential in the faulty processor model, it is
possible to generate the underlying Markov process, then solve for the steady-state system utiliza-
tion. In addition, it is possible to simulate the model in steady state. The first step in obtaining an
analytical solution isto use reduced base model construction (RBMC).

2.8.1 Analytically Solving the M odel

RBMC generates the Markov process from the SAN representation.

To select RBMC, choose Solve->Reduced Base Model Generator. A window con-
taining the project name faulty proc and other options appears as shown in Figure 2.21.
Click on the OK button to continue.

The state space corresponding to each experiment is generated. Once the state space for all 36 exper-
iments has been generated, the model can be solved for the utilization variable specified in varedit.

! Although all SAN models can be simulated, analytical solutions can be obtained for certain classes of models. Such
restrictions are discussed in the chapter on analytical solversin Chapter 4.

2.8. SOLVING THE MODEL 2-23

s usan

REDUCED BASE MODEL GEMERATOR

Froject Name: faulty_proc

[verbose

EdFlag Absorbing States
[CJDaont Print Place Mames
[Owide Qutput Screen
[CJBuild Qnly (Do Mot Execute)

- '

Figure 2.21: Reduced based model generator.

Depending on the time scale of interest for the reward variables, different solution methods can be
used. For more detailed information about the applicability of different solvers, see Chapter 4. In
this example, isswill be used to solve for the steady-state utilization of the faulty microprocessor.

Toruniss, choose Solve->Iterative Steady State Solver.

A window containing the project name and options for iss appears as shown in Figure 2.22. For a
complete description of the possible options for iss, see Chapter 4.

| Click on the 0K button to continue. |

The results generated by iss appear in the Control Panel window and are also written to an output
file. Refer to Chapter 4 for more details.

2.8.2 Simulating the M odel

As mentioned above, UltraSAN also contains tools to simulate SANs. Just as for the analytical
solvers, there are several types of simulators. See Chapter 4 for details about the different simula-
tors available in UltraSAN. The steady-state simulator (SSm) will be used to compare the utilization
values obtained analytically using (iss).

Choose Solve -> Steady State Simulator.

Aswithiss, awindow containing the optionsfor the simulator appearsasshownin Figure 2.23. Refer
to Chapter 4 for adescription of the options for SSm.

| Click on the 0K button to continue. \

2-24 CHAPTER 2. GETTING STARTED

— usan

ITERATIVE STEADY STATE SOLVER

ACcuracy: D
Weight
M terations: |:|
Warbosity: |:|
Project Mame:
Output File Mame: |:|
Debug File Mame: |:|

Figure 2.22: Iterative steady state solver (iss).

. usan

STEADY STATE SIMULATOR

Project Mame:
Output File Mame: |:|
Trace Level: |:|
Batch/Rep Trace: |:|
Yarance Calc: |:|
Max Batch/Rep: []
min Batch/Rep: |:|

[JDant Print Place Mames
[(Iwide Output Screen
CJBuild Only (Do Mot Execute)

: :

Figure 2.23: Steady state simulator (SSm).

2.9. REPORT GENERATOR 2-25

- repgen Pa
titraSAN Version 3.0 Copyright (¢} Univ, of Arizona 1390-1334, Univ, of lllinois 1934
Report Generator

Report Style Packages
® 3-D Graph ® gnuplot
& 3-D Proj. on 2-0 Graph Drospinl
< 2-D Graph
» Table
- g

Figure 2.24. Report generator window.

Since there are multiple experiments, awindow with the message “ Multiple experiments on one ma-
chine. Runinforeground?’ appears. Ingeneral, the solversand simulatorsin UltraSAN allow results
to be generated either in the foreground or as a background UNIX process.

Click on the OK button to run the simulator in the foreground.

Results will appear in the Control Panel window.

2.9 Report Generator

Another useful feature in UltraSAN is the ability to view the results after a model has been solved
analytically or simulated. The report generator alows the user to create graphs or tables of data
based on results generated from the solvers or simulators. In the remainder of this tutorial, the re-
port generator will be used to create a three-dimensional graph of the number of processors and
job arrival rate versus utilization. The plot will contain results from al 36 experiments in the study
vary_arr_and_processors.

Choose General->Report Generator from thecontrol panel menu. Thereport generator
window containing the project name faulty_proc appears. Click on the OK button to continue.

At this point, awindow containing different options to create tables and graphs using results gener-
ated from the solvers/simulators appears as shown in Figure 2.24.

2-26 CHAPTER 2. GETTING STARTED

= repgen
Graph
Amis Default Source

Figure 2.25; Graph window.

29.1 CreatingtheGraph

To create a 3-D graph of the number of processors (num_processors) and arrival rate
(arr_rate) versus processor utilization (utilization), click on the label 3-D graph under the
Report Style heading.

To display 2-D graphs, UltraSAN provides an interface to splot and gnuplot; for 3-D graphs, gnuplot
isused. In addition, either ASCII (text) or LaTeX tables of results can be generated. For a detailed
description of the options used to create graphs and tables, refer to Chapter 5.

Click on the Edit button to begin specifying the 3-D graph.

After clicking on the Edit button, the Graph window appears shown in Figure 2.25. The Graph
window allows the user to specify the graph axes and variables.

Defining the Graph Axes

For the 3-D graph, the variables corresponding to the axes must be defined. The x and y axes will
represent the global variables num_processors and arr_rate, while the z-axis will represent the per-
formance variable utilization.

To definethex-axis, choose Axis->x-Axis fromthemenu. By default, Global Variable
isselected. Click onthe Accept button to continue. Now, awindow containing al the global
variables defined for the faulty_proc project appears as shown in Figure 2.26. To choose the
number of processors, select num_processors. Click on the 0K button to continue.

Todefinethey-axis, choose Axis->y-Axis fromthemenu. By default, Global Variable
isselected. Click onthe Accept button to continue. Aswas done for num_processors, select
arr_rate and click on the OK button to continue.

2.9. REPORT GENERATOR

= repJden

Global Variable Selector

access_rate

io_rate
num_pracessors
ok_prob
one_error_prob
proc_rate

size

I

:
E

Figure 2.26: Global variables list for x axis.

== repgen

Performance Variahle Selector

3
:
E

Figure 2.27: Performance variables list for z axis.

2-27

2-28 CHAPTER 2. GETTING STARTED

= repgen

Data Source Selector

¥
Default Source: iss

Figure 2.28: Data source selector window.

To define the z-axis, similarly choose Axis->z-Axis from the menu, click on the
Performance Variable label as shown in Figure 2.27, and click on the Accept button.
As with the global variables, a window containing al the reward variables defined in the
Performability Editor appears. Select utilization and click on the OK button to continue.

At this point, the graph contains the definition of both the x, y, and z axes.

Choosing the Solvers, Studies and Experiments

Recall that UltraSAN contains different solvers and simulators. As aresult, it is possible to create
graphs or tables results using results generated by different solversand simulators. Asanillustration,
the results generated using iss will be used.

To select the results generated by iss, choose Default Source->Iterative Steady
State Solver (iss) from the Graph window. When the window appears as shown in
Figure 2.28, click on the Add button.

The report generator aso supports selection of individua studies and experiments to be included in
agraph. The study vary_arr_and_processors will be used.

Select the study vary arr_and processors as shown in Figure 2.29. To choose different
experiments for the graph, click on the button Select Exp.

Different experiments can be included in agraph by clicking on each individual experiment label as
shown in Figure 2.30. To observe utilization values for all arrival rates and number of processors,
click on the button Select A1l or click on al the labels individually.

2.9. REPORT GENERATOR 2-29

k
e repgen
Study Selector
S
)
: -
E]

Figure 2.29: Report generator study selector window.

= repgaen

Experiment Selector
Study Mame: vary_arr_and_processors |_Select All

Figure 2.30: Report generator experiment selector window.

2-3

o

CHAPTER 2. GETTING STARTED

11
QE Ghostview, version 1.5 E a EJ

view.gps ; tlizat
Mon Apr 10 16:14; nuUm_processors ¥s arr_rate vs utlization

(196, 176)
File

Page
Magstep
Orientation

Media

0.85 4
0.8

075
o0r
0ES
0B
055

30
25

arr_rate
35

nuUm_processaors

13

Figure 2.31: Report generator graph: number of processors and job arrival rate versus utilization

After al the experiments have been selected, click on the Accept button to continue. Click
on the Accept button inthe Study Selector andData Source Selector windows.

Notice that theData Source Selector window contains the thirty-six experiments selected.

Click on the Accept button in the Graph window to continue.

2.9.2 Viewingthe Graph

Now all the components of the graph have been defined, the graph can be viewed.

To view the graph, click on the View button.

Before the graph is displayed, awindow asking for the gnuplot filename appears. Thisfilewill con-
tain the command file that can be used to view the graph using gnuplot directly. By clicking on 0K,
default file view.gpd is created and stored in the int subdirectory of the model project directory.
For more information, about saving and loading graphs with the report generator, see Chapter 5.

| Click on the 0K button to continue. |

A graph of utilization versus the number of processors and job arrival rate is shown in Figure 2.31.

Clearly, utilization decreases when the number of processors increases or the arrival rate of jobs de-
Creases.

2.10. WHERE TO GO NEXT 2-31

210 Whereto Go Next

Although this chapter hasillustrated how to build and solve asimple model, it is clear UltraSAN pro-
vides much more modeling power and flexibility than is possible to demonstrate in a short tutorial.
It isimportant to note that for successful use of the tool, the theoretical background behind SANS,
composed models and reward variables should be well understood. We suggest the reader whoisless
familiar with this to read Chapter 1 first. The user who is sufficiently comfortable with SAN model -
ing, is encouraged to start using UltraSAN for their own modeling studies. When using UltraSAN,
chapters 3 to 6 can be consulted to get information about specific UltraSAN commands and options
in the toal. In particular, Chapter 3 provides areference guide about al UltraSAN options.

2-32 CHAPTER 2. GETTING STARTED

Chapter 3

User Interface

This chapter is a reference guide containing a detailed discussion of the various options provided
by the Control Panel (CP). The CPisaunified graphical interface used for model specification and
solution. It isan X-window-system-based program which provides the user with pull-down menus
providing access to all editors and solvers in the package, as well as a set of utilities that simplify
common operations (such as documenting a project, copying projects, and many more features de-
scribed in the following subsections), and help users organize their work.

Starting UltraSAN To invoke the CP, type usan followed by acarriage return. This causes awin-
dow as shown in Figure 3.1 to appear on the user’sterminal. The CPisdriven by the use of amouse
and pop-up menus. As seen from Figure 3.1, the top portion of the window contains 8 menu items
namely: (1) General, (2) Project, (3) Subnet, (4) Study, (5) Experiment, (6) Machine, (7) Edit and
(8) Solve.

Each item has a pull-down menu that provides a variety of options. The CP menus along with
their pull-down options are shown in Figure 3.2. These menu items and their options help to specify
and solve the model on hand. The CP also contains acentral portion titled “Messages’ (also referred
to as the communication window), which it usesto communicate with the user (i.e., print appropriate
status and/or error messages). Thefull path for the project directory (whichissetintheuser’s . cshrc
file, see Appendix A) is printed at the bottom left hand corner. Since the user has not yet selected a
particular project intheir projects directory, the “Project,” “Subnet” and “ Study” portions of the CP
(at the very bottom) appear blank.

Navigating through the menu items To access the menus, position the cursor (which appears as
an arrow) on the desired menu item. Pressthe left mouse button on the menu item to produce alist of
options and hold it down (which highlights the particular option chosen) to walk through the menu
options. Click (release the left mouse button) on a particular option to select it.

3-1

3-2

CHAPTER 3. USERINTERFACE

= usan E a EJ
tHiraSAN Wersion 3.0 Copyright (c) Univ. of Arizona 1390-1334, Univ. of llinois 1934
Control Panel
General Project Subnet Study Experiment Machine Edit Solve
Messages
| kT
k)

Project Directory: ‘homesbobcatz/usan/projects

Project: Subnet: Study:

Figure 3.1: Control panel asit appears when first invoked.

GENERAL

Transfer Project
Bug Report
Display

Report Generator

EXPERIMENT

Select
Clean

PROJECT
Create SUBNET
Select
Copy
Delete Create STUDY
Archive Select
Unarchive Copy
Clean Delete Select
Document Document Clean
EDIT
MACHINE Subnet
Composed Model
Performability Variables
Edit IS Governor
Select Studies

SOLVE

Reduced Base Model Generator
Direct Steady State Solver
Iterative Steady State Solver
Transient Solver

Accumulated Reward Solver
Probability Distribution Solver

Deterministic lterative Steady State Solver

Steady State Simulator
Terminating Simulator
IS Terminating Simulator

Figure 3.2: Control panel menu items and their pull-down options.

3-3

34 CHAPTER 3. USERINTERFACE

== usan
BUG REPORT EDITOR

& copy of this form will be sent to the group maintaining UltraSan
(usan-problem-repot@crhc.uiuc.edu) and to you.
Flease answer all questions as completely as possible. Thank you for helping us improve the package.

Enter your name:

Enter your address and phone numhber:

Enter your email addrass:

Enter name of the UltraSAN tool in which bug is found:

Enter description of bug:

| S
)

Does it happen for all models, or just for a specific model?

[|

If it happens just for a specific model, what is it in that model that makes it different

or could cause faults to occur?

| S
B

If agked to, can you repeat the problem (yesimoy?

Specify architecture an which the problem occurs:

Figure 3.3: Bug report editor display.

Control panel description The notation Menu Item->Option isused to denote an option within
aspecific menu item. Thusthe option “ Create” under menu item “Project” isdenoted by Project->

Create.

3.1 General Menu

The General menu contains four options as shown in Figure 3.2. The options and their respec-
tive functions are listed below.

e General->Bug Report bringsup aformasin Figure 3.3 for reporting bugs. Enter the information
and click on Send to automatically forward it to usan-problem-report@crhc.uiuc.edu. A COpy
of thisform is also sent to the user filling out the bug information. Clicking on Cancel will not mail
the form, and the CP responds by printing the message Operation canceled on its screen.

e General->Transfer Project transfersa project from an Version 1 of UltraSAN to the current ver-
sion. The pop-up window displays a list of projects in the directory chosen. Highlight the desired

3.2. PROJECT MENU 35

- repgen Pa
titraSAN Version 3.0 Copyright (¢} Univ, of Arizona 1390-1334, Univ, of lllinois 1934
Report Generator

Report Style Packages
® 3-D Graph ® gnuplot
& 3-D Proj. on 2-0 Graph < onpioh
< 2-D Graph
» Table
- g

Figure 3.4: Report generator display.

project and click on Open to transfer it. The old version will be placed under the name project_old.
Clicking on Open without selecting a project or on Cancel exitsthisoption and the CP printsthe mes-
sage No name was specified on its communication window. The transfer operation is irreversible and
is performed in only one direction, namely a Version 1 UltraSAN project to the current version and not
vice-versa. Note that no conversion is heeded between Version 2 and 3.

e General->Display Filedisplaysall text, postscript and splot files associated with aparticul ar study
for agivenproject. A pop-upwindow appearsasking for the project and study names. Enter thedesired
namesand sel ect thetype of file (postscript, splot or text) that isto bedisplayed. The CP popsup another
window enlisting al files of that type. Select the particular file to be viewed. In the case of a postscript
file, the CP brings up a ghostview image of the selected file. (Ghostview, as specified in 1local.def
should beincluded in the user’ spath to view postscript files.) Incaseaninvalid project and/or aninvalid
study name is entered, the CP prints the message Directory does not exist or cannot access directory
on its communication window and cancels the display operation.

e General->Report Generator popsup awindow asshown in Figure 3.4. Thisoptionis extremely
helpful while documenting a project and preparing graphs. See Chapter 5 for a detailed discussion of
the features within this option.

3.2 Project Menu

TheProject menuisusedto create, select, delete, copy, archive, unarchive, clean and document
aproject. Each of these operations islisted as an option as shown in Figure 3.2, and is performed by
selecting the corresponding option. These options and their functions are listed below.

e Project->Create creates new UltraSAN projects. A pop-up window appears prompting the user for
aname. Project names must begin with aletter, and every other character must be a letter, number or
underscore. Also, no C keywords are alowed. Click on OK after entering a name to create the new
project. Click on Cancel to abort it, in which case the CP displays the message Empty project name
or operation canceled on its communication window. Once a project is created using this option, it
appears as the default project for subsequent commands.

3-6

CHAPTER 3. USERINTERFACE

e Project->Select selects a particular project from alist of projectsin the current project directory

and usesit asthe default project for every other command. A pop-up window listing al projectsin the
current directory appearsontheuser’sterminal. Highlight the desired project and click on Open to open
it and use it as the default project for further actions (such as editing subnets, performing a compedit,
or avaredit or selecting a study to conduct multiple runs). Click on Cancel to abort this operation, in
which case the message No name was specified appears on the communication window.

Project->Copy copiesoneproject to another. All subdirectoriesand filesexcept theresultsdirectories
in the source project are copied to the destination project. To copy the resultsdirectories, check the box
to duplicate results directoriesin the Copy->Project pop-up window described bel ow.

If Project—>Select was not exercised earlier, the entry corresponding to the project name appears
blank. Otherwiseit will carry the name of the selected project. Depending onthe project names entered
the following windows appear:

— if the project to be copied from exists and the project to be copied into does not exist, click on
Yes to proceed or No or Cancel to abort

— if the project to be copied from exists and the project to be copied into also exists, click on Yes
to proceed by overwriting the existing project or either Cancel or No to abort

— if the project to be copied from does not exist, click on 0K to abort

Project->Delete deletes an entire project. A pop-up window appears displaying al projectsin the
current directory. Highlight the project to be deleted and click on Open to del etethe project. Thiscauses
another confirmation window to appear on theterminal. Click on Yes to continuewith the option or No
or Cancel to abortit. (Clicking on Open without highlighting any project displaysthe message Project
does not exist and aborts the option.)

Project->Archiveis useful for taring, compressing and storing UltraSAN projects. Archiving the
project involves creating atar file for the project, compressing it and placing the resulting compressed
tar file called proj name.tar.Z within $USAN_PROJECT/archived projects, al of whichis per-
formed by the CP. A pop-up window displaying all projectsin the current directory appears. Highlight
the desired project and click on Open to archiveit, or Cancel to abort the archive option. Upon suc-
cessful completion of the archive operation, the CP asksif the original project isto bedeleted. Click on
thedesired selector to completethe archive option. Aswith all menu options, clicking on Open without
highlighting a project aborts the option with an appropriate message appearing on the communication
window.

Note: If the project to be archived was archived earlier, the CP asks the user if it should overwrite the
existing archived project. Click on No to abort repeated archiving of the project.

Project->Unarchive performs the reverse of the archive option. It uncompresses, untars and re-
trieves the project that was previously archived. A pop-up window appears listing all previously
archived projects. Highlight the desired project and click on 0K to unarchivethe project. Upon comple-
tion the CP asks the user if they wish to delete the archived project. Click onNo to retain the archived
project or Yes to removeit.

Note: If no projects have been archived, selecting this option brings up a window with the current di-
rectory listed on the top and an empty list below. Click on Quit to exit thisoption. Clicking on 0K will
produce no action and the window will not disappear. Hence click on Quit to get back to using the CP
for further actions.

Project->Cleanremovesall filesfromaproject that can be generatedlater by resaving and compiling
the project. Thefiles removed are (see Appendix B for a discussion of the file structure of a project):

3.2. PROJECT MENU 3-7

1. All *.c, *.h, *.ssim, *.tsimand *.sub filesin the project name/int directory

2. Allfilesintheproject name/subnets/subnet name/ARCHdirectory. Thisisdonefor all sub-
net names and all architectures. (The architectures currently included are: HP800, MIPSEL,
RS6000 and SUN4.)

3. All filesunder project name/studies/study name/exp name/bin/ARCH for:

— all architectures
— all studies defined for the current project
— all the experimentsin each of the above study directory

4. The CP providesthe user the option of either retaining or removing (i) the reduced base model,
(ii) the report generator files, (iii) the IS governor files, and (iv) the resultsfiles. Answering yes
to each of these options produces the following:

— Removal of the reduced base model involves removing the *.rbm, *.det, *.parm and
* . var filesinthe project name/studies/study name/exp name/int directory.

— Removal of the IS Governor filesinvolvesremoving the is/is . hfile, al filesinis/1ib/
ARCH/*, and al files in is/states/states_subdir/* for every subdirectory in is/
states/states_subdir and for every subdirectory in is/states.

— Removal of thereport generator filesinvolvesremoving thefollowing filesfromtheproject.
name/int directory:

(8 *.asc: whichareall the ASCII filesfor tables'

(b) *.aux, *.dvi, *.log: which aretheintermediate files for compiling latex

(c) *.gpc: whichareall the gnuplot command files

(d) *.gpd : which are all the gnuplot datafiles

(e) *.gps: whichareall the gnuplot postscript files

(f) *.rep: which areall the output files of the report generator

(9) *.sp: whichareall the splot files

(h) *.tex: whichareall thetex files for IATEX
Note: Executing Project->Clean with this option (i.e,, Remove Report Genera-
tor Files) turned on will remove al files generated from Project->Document and

Subnet->Document, because they generate files with the same extensions (namely,
.ps,.tex,*.aux,and x.log).

— Removal of theresultsfilesinvolves deleting all filesin the results directory.

A pop-upwindow listing all projectsin the current directory appears on selecting thisoption. Highlight
the project to be cleaned and click on Open to proceed or Cancel to abort. If Open is selected, the
CP pops up another communication window and asksiif the reduced base model, the Report Generator
Files, the IS governor files, and/or the result files are to be removed. Make the desired selections and
click on 0K to continue or Cancel to abort the option.

Note: If Open is selected without highlighting a project, the operation is aborted and the CP displays
the message Project does not exist. Furthermore, deleting a reduced base model implies no solver can
berun onitsassociated model. It should therefore be retained if further analytic solutions are required.
Finally, it is advisable to clean projects that are not in use and remove their reduced base models, as
thisfrees up disk space.

'tablesisamodule in UltraSAN that is used for producing *.tex files which are used with IATEX while documenting a
project.

3-8 CHAPTER 3. USERINTERFACE

e Project->Document documentsaselected project by producing alATEX file of the project inthe int
directory. It performsthis by invoking amodule called tables. Theresulting document contains details
of the composed model and of the various subnets that form the model, alist of al reward variables,
set and range definitionsfor the global variables defined, and simulation statistics (if conductingasim-
ulation study). A pop-up window displaying all projectsin the current directory appears on selecting
this option. Highlight the particular project to be documented and click on Open to proceed with doc-
umentation. This brings up another window with more options, namely,

— tiny format, with the default being small

— generate separate IATEX files for each SAN, with the default being one file for all SANs
— generate Postscript Directly

— generate Postscript Directly, with the default suppressing postscript generation directly

Make the desired selections from above. If Document->Separate LaTeX files for each SAN
is selected, the project level information is placed in files titled project_projdoc.tex and subnet
level information in project_subnet.tex. If not, al information is gathered into one file titled
project.tex. When the composed model figureis copied, the Rep and Join nodes are given numeric
labelsfor indexing. All the abovefiles are placed in the int directory.

Note: For this option to work, the style filesUSANpsfig. sty and USANieee. sty must belocated in
the appropriate path so that the IATEX file can be generated.

3.3 Subnet Menu

The Subnet menu isused to create, select, copy, delete and document asubnet. The options and
functions are as listed below.

e Subnet->Createcreatesa SAN. A pop-up window bearing two entry spaces, onefor Project name
and another for Subnet name appears. The naming convention for subnets is similar to that for
projects, i.e., they must begin with a letter and every other character must be a letter, number or un-
derscore. Also, no C keywords may be used. Fill in the desired names and click on 0K to create the
new subnet. The CP responds by printing the message Subnet “ new_subnet” is successfully created on
successful creation. Click on Cancel to abort this operation.

e Subnet->Select selects a particular subnet while editing or viewing a SAN. A pop-up window dis-
playing all previously created subnets appears. Highlight the desired subnet and click on Open to select
it or Cancel to abort the option. In the former case, the CP prints the message Subnet “ subnet_name”
is selected and in the |atter Operation canceled.

e Subnet->Copy copies a subnet from one project to another. A pop-up window bearing four entry
spaces, one each for the project and subnet names to be copied from and to appears. (Recall: Some
of these spaces might already have the default names entered when the pop-up window appears.) Fill
in the names and click on Open to proceed, else on Cancel to abort the subnet copy.

Note: The copy operation will be aborted causing an error message to appear on the communication
window under the following circumstances:

— if Select->Project is not exercised prior to Subnet->Copy and an invalid project name is
entered (i.e., an empty string, or the named project does not exist). The error message Source
project does not exist appears on the communication window.

34. STUDY MENU 39

34

— if Select->Subnet is not exercised and an invalid subnet name is entered (i.e., the specified
subnet does not exist). The error message Specified subnet does not exist appears on the commu-
nication window.

— if thesourceproject and subnet exist, but the project to be copied into doesnot. Theerror message
Destination project does not exist appears on the communication window.

— if al theabovearevalid but an invalid subnet nameisentered. (Recall: A valid name must begin
with aletter, and every other character must be a letter, number or underscore, and should not
include any C keywords.) The error message Invalid string for a subnet name appears on the CP.

e Subnet->Delete deletes a particular subnet within a project. Fill in the project and subnet name on

the pop-up window that appears with this option and click on 0K to proceed, or Cancel to abort. A
confirmation window appearsin theformer case. Click onthe appropriateselector. On successful com-
pletion, the message Subnet “ subnet_being_deleted” is successfully deleted appears on the CP.

Note: The delete operation is aborted and an appropriate error message appears on the CP if either an
invalid project name and/or an invalid subnet name is entered.

Subnet->Document documentsasubnet by producingalATEX file of the selected subnet. Theresulting
file contains al subnet level information and is placed in int/project/subnet.tex. The pop-up
window asks for a project and subnet name. Enter the names and click on 0K to continue or Cancel to
abort.

Study Menu

The Study menu contains two options, Study->Select and Study->Clean, which are ex-

plained below.

35

e Study->Select selects a particular study within a given project and makes it the default study for

subsequent operations. A pop-up window listing all studiesin the specified project appears. Highlight
the desired study and click on Open to make it the default study, or Cancel to abort the option.

Study->Clean removesall executablefiles associated with a study. Thefiles removed are:

1. dl files under project name/studies/study name/exp name/bin/ARCH for al the archi-
tectures (HP800, MIPSEL,, RS6000 and SUN4)

2. item 1 for al experimentsin the selected study

3. anoptional removeof (i) the reduced base model and (ii) the resultsfiles. Option (i) removesthe
.rbm,.parm,*.det, and *.var files in the project name/studies/study name/exp_
name/int directory, while option (ii) removesall result filesin the results directory.

A pop-up window listing al studiesin the selected project appears. Highlight the study to be cleaned
and click on Open to proceed or Cancel to abort. In the former case, the CP provides the option of
retaining the reduced base model. Make the desired selection and click on 0K to proceed. Successful
completionisindicated by displaying a corresponding message on the CP.

Experiment Menu

TheExperiment menu isused to perform operations on experiments within a selected study and

isinvoked after selecting a project and study. The options and their functions are;

3-10 CHAPTER 3. USERINTERFACE

- usan
EDIT MACHINES
Architacture Mame: SUMN4
bobcat Ky

5
A (MNext Arch] (Prev arch | [Add | [Delete | |

3 E

Figure 3.5; Menu option Machine->edit asit appears on the terminal.

e Experiment->Select selects some or all experimentsfrom alist of experiments defined for the se-
lected study. A pop-up menu displaying all previously defined experiments appears. Highlight the de-
sired experiment and click on 0K to proceed, or Select A1l if al need to be executed.

Note: The order in which the experimentsare selected determinesthe order in which they are executed.
For example, in a study consisting of five experiments, selecting exp5 first and then expl through exp4
will cause exp5 to be executed first followed by expl through exp4. Also, clicking on an experiment
twice in succession (adouble click) displaysthe global parameters of that particular experiment. This
isauseful feature and is used to view the global parameters while choosing experiments that need to
berunin aparticular order.

e Experiment->Cleanissimilar to Study->Clean and Project->Clean, with the difference being
that the executablesrelated only to the particular experiment selected are removed (as opposed to those
belonging to the entire study or project). A pop-up window displaying all previously defined exper-
iments appears. Highlight the experiment to be cleaned and click on Open to proceed further, else
Cancel to abort the operation. In the former case, make the desired selection with respect to the re-
duced base model.

3.6 Machine Menu

TheMachine menuisused to specify and sel ect available machines and allocate them for running
different experiments. The two options within this menu item and their functions are:

e Machine->Edit is used to specify the machines available on each of the following architectures:
HP800, MIPSEL , RS6000 and SUN4. A pop-up window asin Figure 3.5 appears. The architecturein
consideration appearson thetop portion of thiswindow. Click onNext ArchorPrev Archtobrowse
through available architectures. Use Add and Delete to add and remove machines from a particular
architecture list, respectively. In the example shown in Figure 3.5, bobcat is a SUN4 machine.

e Machine->Select selectsthe particular machine on which each experiment belonging to a particular
study will be executed. A pop-up window with the experiment number and alist of the available ma-
chines appears. Highlight the particular machine on which this experiment is to be run. Walk through

3.7. EDIT MENU 311

all the experimentsby clicking on Next and Prev and make the desired selections by highlighting the
machine for each of these experiments. Use unselect to change machine selection for a particular
experiment, and Display to list machine-experiment mappings. Click on Accept to proceed with this
machine-experiment mapping or Abort to cancel it.

3.7 Edit Menu

The Edit menu contains the various editors that are used while specifying a SAN model. They
are

¢ the subnet editor, or the SAN editor (sanedit)

the composed model editor (compedit)

the performability variable editor (varedit)

the IS governor editor (isedit)

the study editor (stdedit)

These editors are implemented as modules within UltraSAN and are discussed in Sections 3.9
through 3.13.

Before discussing these editors separately, the following comment appliesto all of them. Dueto
the sharing of data files between these modules, the order of execution is very important and should
be done in the order described below. Whenever achange is made to a subnet, compedit, varedit and
stdedit must be executed before attempting to execute any of the solution modules. Similarly, when
a change is made in the composed model, varedit and stdedit have to be executed before using any
of the solution modules. Likewise, after any changes are made to varedit, stdedit has to be executed
before attempting to use any of the solution modules. isedit only needs to be invoked if importance
sampling is used, as described in Chapter 6.

3.8 SolveMenu

The Solve menu contains the reduced base model generator, alist of analytic solvers and sim-
ulators as in Figure 3.2, which are used once the model is fully defined. After the model is defined
completely, the user has the option of solving it analytically or running a smulation. However, be-
fore any of the analytic solvers are executed, the reduced base model must be executed. Details of the
reduced base model generator aswell as each of the analytic solvers and the simulators are explained
in Chapter 4.

312 CHAPTER 3. USERINTERFACE

—=E sanedit

UltraSAN “ersion 3.0 Copyright (¢ Univ. of Arizona 1830-1334, Univ. of Illinois 1994

Project: faulty_proc Subnet: processor mag 1x

T T

Mowe |

Magnify] .
Text

Place |- - - o oo e

Inst. Activity [... A o T T T

Timed Activity |~ 0 00 T DA s e T
A [e e S e | e T aa® aaar e PIREERE

Output Gate | dUBE ~ 7T S A fasks Y Cdane oDl Bheek done

S
L

& L]
W =

Figure 3.6: SAN editor display.

3.9 SAN editor (Edit->Subnet)

Each model is composed of one or more submodels, aso referred to as subnets. Subnets
are created and edited with the SAN editor, which is caled sanedit. sanedit is started by using
Edit->Subnet from the CP. A pop-up window containing entry spaces for a project and subnet
name appears. These spaces contain default namesif Project->Select or Project->Create and
Subnet->Select Or Subnet->Create iSselected prior to Edit->Subnet. Otherwise they appear
blank, in which case, fill in the desired names. If a new project name is entered, sanedit pops up a
dialogue window with the message Project does not exist. Click on 0K to continue, and awindow as
shown in Figure 3.6 appears. This figure shows the resulting display when editing subnet processor
of the faulty_proc example project.

Thenamesof the sel ected project and subnet appear on thetop left hand corner. Thelarge gridded
areain the center isthedrawing area. Inthe case of anew model, thisgridded areaisblank. The pop-
up window also has four menu items listed horizontally on the top, and atool panel containing ahost
of options listed vertically on theleft. The menuitemsand tool panel options are used to create/draw
the subnet, and are discussed below.

39.1 Menuitemswithin Edit->Subnet (sanedit)

e FileMenu

3.9. SAN EDITOR (EDIT->SUBNET) 313

f £
s sanedit
CODE COMPILER
Input Gate: available
Input Predicate
pcode: C code:
fMaRKnumtasks) < 2 = finclude" sdp.h" -
check processor_IP_available{place, subhark)
Flace "place;
Mum *“subkdark;
{
return(tMAaRKNOTaConnectedPLACE) « 2
b8
¥ o
3 5]
errors:
“fhomesbobcatZ/usan/projects/faulty_proc/subnets/processor/processor_IP_available.c”, line 7: NOTaConn =
=
¥

Figure 3.7: Error in compilation.

The File menu contains three options, namely (a) File->Save, (b) File->Save All and
(c) File->Quit.

File->Save savesal new information related to a subnet, namely text, objects, lines and po-
sitions. In the case of anewly created subnet, it saves the entire subnet, else it compiles any
additions or changes made with respect to a prior save of an existing subnet. Compilation
status is printed on the CP as the model is being saved, i.e., for each activity, place or gate
redefined or added, it prints a compilation status message. Upon successful compilation, the
following is printed on the CP:

writing .h file

writing .afile

writing .san file

writing .act file

writing project global variable file
sanedit successfully saved the model

If acompiler error occurs, anew window as seen in Figure 3.7 appears with the compiler error
messages. In this specific case, place num_tasks was mistyped as numtasks.

In Figure 3.7, the window marked pcode is the actua code entered by the user. The win-
dow marked ¢ code is the C code that the editor generates. The 7th line of C code shows

314

CHAPTER 3. USERINTERFACE

MARK(NOTaConnectedPLACE). The string NOTaConnectedPLACE is inserted if the place
is not connected to the component or if no such place exists. The error is fixed within this
window by inserting the missing _ (in this case) in the p code window, followed by clicking
on Accept, after which compilation continues. Compilation is stopped with Abort, in which
case the component becomes undefined. Note that undefined components become dotted in-
stead of having asolid outline, except for aplace, which alwaysremains solid. Compiler errors
may extend beyond the screen. Therest of the error is seen by clicking on the error and drag-
ging the mouse to theright, or by positioning the cursor at the end of the visible portion of the
error message and hitting aRETURN, which causes the remainder of the error message to be
printed on the following line.

File->Save Allforcesarecompileof al componentsinthemodel. Thisisuseful if the dates
on the files are corrupted, as may happen when amodel is copied by hand from one place to
another, or, if editing on a different architecture than when last saved. A save may be done at
any time, but the files needed for the composed model will not be written until a save is done
successfully with all components completely defined.

File->Quit exitsthe SAN editor. If it is chosen before saving the model, the CP asks if the
model is to be saved before quitting. Click on either Yes or No to save before quitting or, exit
without performing a save.

Edit Menu
Contains two options, namely: (i) Edit->Delete and (ii) Edit->Select All.

Edit->Delete deletes an object and removesall filesassociated with it from the project direc-
tory. Theoperation isirreversible. To delete an object click on Select, pick out the particular
object to be deleted upon whichits handles (small boxes around the object) become visible and
click onDelete.

Edit->Select Allisuseful if the entire subnet isto be selected. (e.g., when the entire SAN
needs to be repositioned, do aSelect All and use the mouse to reposition the SAN.)

Font M enu Containsalist of available fonts that can be used while constructing asubnet. The
default font is Helvetica 12. To change the font, first click on Select and then click on the
object or text whose font isto be changed. This causes the selected objects or text to have their
handles (small boxes around objects) visible. Highlight the desired font from within this menu
item to make the change.

Option Menu

Has a few miscellaneous options which are mainly for user convenience. They are;

3.9. SAN EDITOR (EDIT->SUBNET) 315

Option->Grid Visible/Invisible turnsthe grid either on or off. Default is on. The off
and on toggle.

Option->Grid Spacing.. changes the grid spacing. The default spacing is 8 points. A
pop-up window displaying this default spacing appears on selecting this option. Enter the new
number in place of the default and click on 0K to effect the change. Decreasing the number
causes the points to appear closer and increasing it causes them to appear more spread out.

Edit->View global variables printsall objectsin which global variables are defined in
the following format. For every global variable defined, the internal name employed by Ultra-
SAN, the type of this variable and the names of all objects that this global variable is used in,
are printed on the CP. A dialogue box with the message The global variable list was printed
on stdout appears in the end.

Edit->Check global variable types verifies that the same global variable is not de-
fined as a short in one place and as a double in another.

3.9.2 Tool pandl options

Thetool panel (column on the left side of sanedit, see Figure 3.6) contains a variety of options.
Starting with the option at the very bottom, they are:

e Drawing area panner

The panner is at the bottom of the tool panel. The box within the shaded region represents the
position of the currently visible drawing areawithin the entire drawing area. Different sections
of the drawing area are made visible by clicking on the smaller box with the left mouse button
and dragging it to the desired destination. Thiscan aso be donewith thefour arrowsjust above
the panner. Thetwo arrowsjust to their right are for zooming inand out. Once the maximum or
minimum levels of magnification are reached, selecting the corresponding arrow has no effect.
If the model to be edited is not visible, then zoom out to find the model, center it in the display
(by doing aSelect All followed by aMove), and then zoom in again. The sanedit window
may be resized using whatever method is used for the user’s window manager.

Note: Some errors have been reported if the window isresized while the SAN is being loaded.

e Drawingarcs

Continuing upwards in the tool panel, the next set of options are the two arc tools that are
used for drawing straight or curved lines. They are used by first selecting one of the arc tools
with the left mouse button. Move the mouse to the desired point of origin of the line, click the
left button and release. Move the mouse to each intermediate point, click the left button and
release. When the destination is reached, click the center button. If one of the end points of

3-16

CHAPTER 3. USERINTERFACE

the line cannot be identified as an appropriate object, an error message appears. This can be
avoided by placing the end points clearly within the boundaries of the desired endpoint objects.
Lines may overlap objects or other lines. While drawing an arc, if the mouse is moved to the
edge of the window, the drawing areawill automatically scroll in that direction.

Note that lines may only be drawn between certain objects in a certain order as listed below:

— from place to activity
— from place to input gate
— from activity to place
— from activity to output gate
— from input gate to activity
— from output gate to place
Any other combination or order causes an error message to appear. An arrow isautomatically

placed at the head of the arc when connecting a place directly to an activity, or an activity
directly to aplace.

Thetool doesnot insist that the arcs be drawn to aparticul ar side of an object, but thefollowing
conventions exist:

arcs entering activities go to the left side of the activity

— arcs leaving activities come from the right side of the activity

arcs entering gates go to the vertical side of the gate

arcs leaving gates come from the point of the gate

SAN mode primitives
These are the next set of tools just above the drawing area and are used for placing new SAN
model primitives into the drawing area. The set contains:

— Place represented by acircle

— Instantaneous Activity represented by asolid vertical bar. If the activity has mul-
tiple cases, they appear as small circles on the right side of the vertical bar.

— Timed Activity represented by ahollow vertical bar, and has small circlesonitsright
sideif it has multiple cases

— Input Gate represented by atriangle with its point pointing to the left

— Dutput Gate aso represented by atriangle with its point pointing to the right

3.9. SAN EDITOR (EDIT->SUBNET) 317

A SAN model primitive is selected by clicking the left button while the cursor is on the name.
If the button is held down while the mouse is moved, a rectangular outline of the component
appears. Move this component to the desired location and place it by releasing the button.
A window appears requesting a name for the component. The name must be unique for that
type of component. For activities, the number of casesis given by following the name with a
space and the number of cases. If no number is given, the default is one. The name of each
object appears beneath the object. When an object is placed, small black boxes called handles
become visible around its border. The area within an object’s handles may not overlap with
any other object. Thiswill cause an error message to be displayed.

When components are placed, their outlines areinitially dotted (except for places). Thisim-
pliesthat the particular component is undefined. The method for defining objects is discussed
in the following subsection. Finally, models can be saved with undefined components, but
such models cannot be used in the composed model editor.

e Additional tools

Thetop part of the tool panel contains options for selecting and modifying components of the
drawing. They are selected by using the left button of the mouse, just as described with the
earlier tool options. The tool options and functions are as listed below.

— Select selectsobjectsincluding arcs, within the drawing area. To select an object, place
the cursor on the object and click on the left mouse button. To select severa objects,
click near the desired objects and drag the resulting box over them. Additional objects
will have their handles visible. If all the abjects within the subnet have to be selected,
useEdit->Select All. Selectisalsowiredinto theright hand mouse button. Position
the cursor over an object and click the right button to select it.

— Define definesall components of the model. After selecting Def ine, select the desired
component that isto be defined from the drawing area. A pop-up window whose format
depends on the type of component being defined appears.

Definitions require acombination of functions and expressions except for places. A func-
tion is a series of C statements, each ending with a semicolon, that modify the mark-
ing of the model. An example statement is*++MARK(queue);”. MARK isamacro that
converts the expression to the variable holding the marking of the specified place. This
sample statement increments the marking of place queue. An expression isany valid C
expression. Examples of expressions are 10.0 (floating point), MARK(queue) (integer),
and(MARK(queue) < 5) (Boolean). It isvery important to use the correct type of expres-
sion for a given definition.

3-18

CHAPTER 3. USERINTERFACE

== sanedit

Specify initial marking

w Scalar
v iGlobal Wariahle

{ & @ |

Figure 3.8: Place editor.

An expression can be given by itself, or a series of statements can be used. For instance,
afew statements may be needed to calculate atiming parameter. In this case, the fina
expression must be given as the argument of a return statement. sanedit distinguishes
between these two formats by searching for asemicolon in the definition. If asemicolon
is found, the code is compiled by itself. If no semicolon isfound, areturn is automati-
caly inserted before the specified expression. All code is compiled using the compiler
specified in $USAN/setup/ARCH/compile .def (See Appendix A).

Thefollowing paragraphs discuss the Def ine procedure for the various SAN primitives.

Defining places When aplace is defined, awindow similar to Figure 3.8 appears. Just
theinitial marking is requested. This value must be a non-negative short integer, which
implies that place markings are limited to non-negative integers less than or equa to
32,767. Theinitia marking however may be defined as a scalar value, or agloba vari-
able. In case theinitial marking needs to be aglobal variable, use GLOBAL_Svariable)
todefineit. If places are not defined, they are assumed to have an initial marking of zero.
The following points should be noted while using global initial markings:

* globa variables for places MUST be of type short (i.e., they must be defined as
GLOBAL _S(global _var) and not GLOBAL _D(global _var))

* global variables for initial markings should not be any arithmetic expressions, or
functions of other initial global markings

Defining activities For timed activities, awindow similar to Figure 3.9 appears. The
steps involved in defining activities are:
* Specify an activity distribution function by clicking the selector next to the desired
distribution inthe box titled Time Distribution Functions. For anaytic solu-
tions, only exponential and deterministic distributions may be selected.

* Next, enter the parametersfor the distribution chosen in the box below Parameters.
The headings on the parameter windows change depending on the distribution cho-

3.9. SAN EDITOR (EDIT->SUBNET) 319

== sanedit

TIMED ACTIVITY EDITOR

Timed Activity: processing

Time Distribution Functions:

@ exponential Crnormal gamma < hinomial
Crdeterministic 2 lognarmal Crheta rnegative hinamial
rgeametric rerlang 3 uniform Oy hyperexponential
Cvweibull Crtriangular

Farameters:

rate

jGLOBAL_D(proc_rate)

el
=
&

Case Distribution:

racase 1

Jf (MARKNUM_tasks) == 1)
returngl.0y;
else return(GLOBAL_D(ok_proh));

3
Reactivation Function
Activation Predicate:
e
T
Reactivation Predicate:
<
2

Figure 3.9: Activity editor.

3-20

CHAPTER 3. USERINTERFACE

sen. For the exponentia distribution, only the rate is required, which is the recip-
rocal of the mean. Table 3.1 gives alist of the distribution functions for timed ac-
tivitiesin UltraSAN together with their parameters. The 1st column titled “Parame-
ter(s)” displays the parameters that is needed by UltraSAN when the corresponding
distribution is chosen. The 2nd column titled “Comments’ has a brief explanation
about the parameters requested. The reader is referred to [1] for details regarding
the parameters and distributions. The 3rd column titled “Range” contains the range
of values that the activity time can take.
The parameters can be expressions (double-precision numbers), global variables of
type GLOBAL_D, or aseries of statements. In this example, the rate is specified as
aglobal variable, namely, proc_rate, and is of type double. If statements are used,
areturn statement is needed with a double-precision value equaling the parameter.
If more than one case is specified, an additional subwindow is present for specifying the
case probabilities. Only one case is visible at a time, but the remaining cases can be
stepped through by clicking on the label of the case number.
Some points to be noted are:

* Thefirst case probability corresponds to the top circle on the activity.

* Case probabilities can be expressions (double-precision numbers between zero and
one), or if aseries of statementsisused asin Figure 3.9, areturn statement is needed
with the desired value.

* Case probabilities must sum to one.

x A value of ZERO should be returned for probabilities equa to exactly zero. This
keeps the state space generator from creating a zero rate path for the case. Note:
ZERO is defined internally as negative two, so be careful not to include itsvalue in
any mathematical calculations, such asreturning asum of probabilities with one of
them equal to ZERO.

* Case probabilities may depend on the marking of places but need not be connected
to those places.

« Case probabilities can be defined to be global variables by using GLOBAL _D(case-
probability), or can aso be functions of global variables.

* Case probabilities can be made marking dependent on another place whose marking
isaglobal variable, defined by using GLOBAL _D(MARK (mar kingdependent_place)).

* When defining instantaneous activities, only the case probabilities need be specified.

If reactivation of activitiesisdesired, it is done with the activation and reactivation pred-
icates. The points to be noted here are:

x |If an activity isactivated in amarking where the activation predicate holds, thenitis
reactivated when a stable marking is reached where the reactivation predicate holds.

+ Both activation and reactivation predicates must be specified as Boolean expres-
sions.

Defininggates When defining input and output gates, windowssimilar to Figures3.10
and 3.11 appear, respectively. The points to be noted while defining gates are:

+ When defining input gates, a predicate and function must be given.

3.9. SAN EDITOR (EDIT->SUBNET) 3-21
| Distribution | Parameter(s) Comments | Range

beta al>0 a1 - shape parameter [0,1]
61>0 (1 - shape parameter

binomial te€{1,2,3,...} | t=number of independent Bernoulli trials {0,1,...,t}
0<p<l1 p = success probability for each trial

deterministic value > 0 [0, >0)

Erlang m € {1,2,3,...} | =mean of each exponential stage [0, >0)
8>0 m x [= mean of the m-stage Erlang

exponential rate > 0 mean = Urate [0, o)

gamma a>0 « - shape parameter [0, o)
8 >0 [- scale parameter

geometric 0<p<l1 p = success probability in independent {0,1,...}

Bernoulli trials

hyperexponential | ratel > 0 exponential servicel with mean = Lratel [0, o)
rate2 > 0 exponential service2 with mean = 1/rate2
0<p<l1 p = branching probability

lognormal p € (—o0,00) - scale parameter [0, o0)
o, a>0 « - shape parameter

negative binomial | s € {1,2,3,...} | s =number of failures before the sth success | {0,1,...}

in independent Bernoulli trials

0<p<l1 p = success probability for each trial

normal mean > 0 distribution istruncated and rescaled sothat | [0, oo)
variance > 0 only values > 0 are generated

triangular a,b,c a - location parameter [ab]
a>0 ¢ - shape parameter
a<c<b (b — a) - scale parameter

uniform lowerbound : a | a - location parameter [ab]
upperbound : b | (b — a) - scale parameter
0<a<bd

Weibull a>0 « - shape parameter [0, >0)
8>0 [- scale parameter

Table 3.1: Table of activity time distribution functions in UltraSAN.

3-22 CHAPTER 3. USERINTERFACE

E E
s sanedit
INPUT GATE EDITOR
Input Gate: availahle
Input Predicate:
FARK{nUm_tasks) < 2 =
3
Input Function:
}* do nothing */ ks
1 S
13 E
Figure 3.10: Input gate editor.
I
e sanedit
OUTPUT GATE EDITOR

Output Gate: check_done

Output Function:

f* when KO done, reset ready
if (MARK(done) == 0)
raRKready) = 1;

Figure 3.11: Output gate editor.

3.9. SAN EDITOR (EDIT->SUBNET) 323

+ When defining output gates, only afunction is needed.

* Input predicates must return a Boolean value. They may be an expression or a se-
guence of C statements.

* Input functions and output functions are a sequence of C statements.

* No return statements are needed in function specifications, since their action is to
change the marking of the SAN, not to return avalue.

x If no actionisdesired in afunction (the identity function), thisis specified by alone
semicolon.

+ |f predicates or functions depend on the marking of a place, the place must be con-
nected via an arc to the gate.

* Global variables may be used while defining input and output gates.
Below are afew general points about defining objects:

* Once any abject is defined, its outline switches from dotted to solid lines. This
change indicates that the object is defined, and will be compiled when asaveisdone
on the SAN.

* All the editorsthat require text to beinserted have expandabl e, size buffers. A dialog
box appears each time the buffer size is to be increased, with each increase being a
factor of 2.

+ Each editor givesan Accept and Abort selector. If Accept ischosen, filesarewrit-
ten to disk, making this operation irreversible.

— Move relocates selected components and all components connected to them within the
drawing area. If asingle component isto be moved, it must be disconnected from therest
of the components by deleting al connecting arcs. To move an object, first select Move,
then click on the object to be moved with the left button, drag it to its desired location
and release the button. This can also be done with the center mouse button and using
Select. A box appears while an object is being moved. If Move is used on an object
that isnot currently selected, that object becomes selected and can be moved. If Move is
used on an abject that is currently selected, that object and all currently selected objects
will be moved.

— Magnify enlarges objects within the drawing area. To enlarge an object, select Magnify
and click on the object to be magnified. The magnified model now becomes scaled such
that the selected object fills the drawing area. To revert back to origina size, click on
the bigger arrow that points downwards just above the panner (i.e., the zoom-in arrow),
till the origina size (magnification size 1, as indicated in the top right hand corner) is
reached.

— Text places text at the selected point within the drawing area and is also a useful tool
to document parts of the model. To enter text within the drawing area, first select Text
by clicking on the left mouse button. Next, place the cursor (which appears as an arrow)
by the object within the drawing areawhere the text isto be entered and click on the left
button again. The cursor turnsinto avertical bar. Enter the desired text, using the desired
font from the Font menu item. Note: Thetext that is entered may aso be treated as an
object, and can be selected with Select and relocated with Move.

3-24 CHAPTER 3. USERINTERFACE

£ E
== compedit Pa

UftraSAN Version 3.0 Copyright {c) Univ, of Arizona 1830-1334, Univ. of lllinois 1934
Project: faulty_proc mag 1x

File Edit Font Option

Define
Move
Magnify

Text

Subnet

Replicate |
Jon |

Figure 3.12: Composed model editor display.

3.10 Composed Model Editor (Edit->Composed model)

Once dl the subnets are defined and successfully compiled, they are joined together and de-
fined with the composed model editor, also caled compedit. The composed model is created or
edited with Edit->Composed Model. The pop-up window that appears will have an entry in it if
Project->Select was exercised prior to this option, elseit will be blank. Fill in the project name
in the latter case and click on OK to proceed.

Figure 3.12 shows the display when editing the faulty_proc composed model. In this example,
the processor submodel is replicated and joined with one copy of the buffer submodel. An error
message is displayed if the subnets are not fully defined.

The editor is similar to the SAN editor, except that the available primitives are now Subnet,
Replicate,and Join. Eachisused by selecting the option with theleft mouse button, moving to the
desired location, and clicking on the left mouse button again. Aswith sanedit objects, if the button
is held down, an outline of the component appears. This can then be moved to the desired location
and placed by releasing the button. If placing a subnet, awindow listing all available subnets appears
and requests for the name of the particular subnet. Choose the desired subnet by highlighting it. An
outline of the subnet appears. Place the box within the drawing area with the mouse.

The Replicate tool is useful for creating copies or replicas of a particular subnet. Thisis a
very powerful tool and reduces the state space of the resulting model. The Join tool isused to join

3.10. COMPOSED MODEL EDITOR (EDIT->COMPOSED MODEL) 3-25

or connect the various subnets that form a project. Details of each of these tools is discussed after
briefly discussing the remaining tools and menu items, which are similar to those in the SAN editor.

The remaining tool options, namely, Select, Define, Move, Magnify and Text aong with the

drawing arc, panner and zoom-in-and-out arrows are similar to those described in sanedit, and the
reader isreferred to Section 3.9 for adiscussion of their details. Also, since the menuitemsFile,
Edit, Font and Option, paralel their counterparts in sanedit, the reader is referenced to Section
3.9 for their discussion with only the differences being mentioned here:

e File containsonly the Save and Quit options, whose functionsare similar to their counterpartsin the
SAN editor. File->Save saves the drawing and the associated project files, while File->Quit exits
the composed model editor. If Quit ischosen before saving the model, the user isasked if the model is
to be saved before quitting. Unlike sanedit, however, if Quit is chosen before saving, al changes are

discarded including changes accepted in the Replicate and Join editors (which are discussed Section
3.10).

e Edit issimilar to that in sanedit in Section 3.9

e Font issimilar to that in sanedit in Section 3.9

e Optionissimilar toits counterpart in sanedit in Section 3.9

The structure of the composed model must be atree with only one node at the top level, and al
the leaves of the tree must be subnets. Rep nodes can be placed above subnets, Join nodes, or other
Rep nodes. Join nodes can be connected to one or more subnets, Rep nodes, and other Join nodes.
If no Rep or Join nodes are desired, the entire composed model will be just a subnet (as is the case
if the project contains only one subnet).

The nature of each connection relates to the use of common places. The common places are

specified by defining the Rep and Join nodes using the Define tool, as explained in the following
sections. A few points to be noted here are:

e Subnet nodes cannot be defined in the composed model editor.

¢ A node cannot be defined until the entire subtree below the node is fully defined.

¢ Defining anode will aso undefine all nodes above that node.

¢ Nodesthat are not defined have a dotted line border.

The following paragraphs discuss the procedure for defining and using Replicate and Join in de-

tail.

Rep nodes When defining a Rep node, awindow similar to Figure 3.13 appears. The desired num-
ber of replicamust be given, and the common places must be specified. A placeismarked ascommon
by clicking on the box to its left. This makes the place a single place shared by all replica

3-26 CHAPTER 3. USERINTERFACE

] 13
= compedit

REPLICATE EDITOR

Specify Number of Replicas

> 3calar
® Variable

BAL_S{num_processors

Select Common Places

done :
num_tasks::
queue i
ready

Figure 3.13: Replicate editor.

Inthefaulty_proc model, since all processors removetasks from the same queue, queue ismarked
as common by clicking on the box next toit. This causes an x to appear in the corresponding box. If
asubnet is being replicated, the list of possible common placesis al places in that subnet. If a Rep
or Join nodeis being replicated, thelist of possible common placesisthe set of common places from
the node bel ow.

Summarizing, a Rep node is defined by specifying the number of Repsto be the desired number
and checking off the common places by clicking on the tiny squares beside them.

Join nodes When defining a Join node, awindow similar to Figure 3.14 appears. A list of placesis
presented for each connected subtree, consisting of all common places from the top of that subtree.
A maximum of fifteen subtrees is permitted per Join node, although more can be joined by joining
Join nodes. The lists are ordered |€eft to right, top to bottom according to the left to right ordering
of the subtrees in the composed model. In order to avoid confusion, it is recommended that the user
not crossarcsin themodel. Sets of common places can then be chosen from the given lists, although
places within one set must have the same name. Places with the same name that are not chosen are
considered different places in the composed model. Even a single place can be marked as common
by itself. Thisis done for the purpose of making that place eligible for being common in the level
above the Join.
A few useful points while navigating through compedit are;

e The sets of common places is viewed by clicking the Prev and Next selectors.
e A common set is added by selecting the places desired in the set, and then selecting Add.

e Add Set isused to select al places with the same name after one place is selected.

3.10. COMPOSED MODEL EDITOR (EDIT->COMPOSED MODEL) 3-27

s compedit

JOIN EDITOR

Current Common Set: nane

((add &l] [Add3et | [add] [Prev][Mext | [Delete]
b

Figure 3.14. Join editor.

e Add Allisusedto add all possible sets, except singletons.

¢ Whenaset isdefined, all placeswith that name become disabled, because places with the same
name cannot be in more than one set.

e Todelete aset, find the set by using Prev and Next, and select Delete.
Some rules concerning common places and global variables:
e Common places must have the same initial marking.

e Places connected to the input side (through an input gate or not) of an instantaneous activity
may not be made common. Note: Thisrule prevents an activity completion in one subnet from
putting another subnet into an unstable marking (one or moreinstantaneous activities enabled).

After changing a subnet and starting compedit, one or more Rep or Join nodes may be marked
as undefined. Thiswill happen if:

e A place is added to a subnet.
e A place isdeleted from a subnet.
e Aninitial making is changed.

Inthis case, al nodes along the path from the changed subnet to the root node become undefined
and must be redefined. The composed model can be saved at any time, but the model cannot be used
with the performability variable editor (varedit) until al nodes are successfully defined.

3-28 CHAPTER 3. USERINTERFACE

= varedit | il
UltraSAN Version 3.0 Copyright () Univ. of Arlzona 1930-1334, Univ. of llincis 1994
Performability Variable Specification

Reward Variahle Selector
probability non-blocking 1

utilization

number of tasks in queue
number of tasks in system 50
number of tasks in system 100
fraction of time in
humber of tasks processer

K

Add (EditRate] (Editimpuise | (Edit stats]

Activity Variahle Selector

[z

T E

Figure 3.15: Performability variable editor display.

311 Performability variable editor (Edit->Performability Variables)

Once the composed model is defined, appropriate performability variables must be defined. This
isdonewithEdit->Performability Variables which brings up the performability variable ed-
itor, also called varedit. Aswith sanedit and compedit, if Project->Select isexercised prior to
invoking varedit, the entry corresponding to the project name in the pop-up window will be filled,
else it appears blank. Fill in the name in the latter case. An error message is displayed if the com-
posed model is not up-to-date. The composed model will not be up to date if a change was made to
one of the subnets in the composed model, and the user did not save the composed model. Figure
3.15 shows the display when editing the faulty_proc model.

The screen in Figure 3.15 is divided into the reward variable selector and the activity variable
selector. Reward variables (as discussed in Chapter 1) can be split into different categories. instant-
of-time, interval-of-time, and time-averaged-interval-of-time. |nstant-of-time variables are further
divided into steady-state (¢ — oo) and terminating or transient (¢ < oo). Activity variables measure
the mean and variance of times between the completion of a certain activity. They are also divided
into instant-of-time, interval-of-time, and time-averaged-interval-of-time.

Themethod of choosing avariabl e type depends on the method of solution that isused. When us-

3.11. PERFORMABILITY VARIABLE EDITOR (EDIT->PERFORMABILITY VARIABLES) 3-29

ing analytic solvers, thetype of variable is specified by executing the appropriate solver, as described
in Chapter 4. In the case of simulation, the Edit Stats button is used to specify information spe-
cific to simulation. In either case, however, reward variables must be defined viaEdit Rate and
or Edit Impulse. Thefollowing paragraphs describe the procedure for adding and deleting these
reward variables, and specifying their meaning.

Adding and deleting variables Both reward and activity variables are added and deleted using
Add and Delete. To add areward variable, just the name of the variable is needed. Names can have
any format, including spaces, although spaces are trand ated to dashes for filename purposes. To add
an activity variable, enter the name of the subnet followed by a space and the name of the activity.
Any variable can be selected by clicking on it with the left mouse button. Delete will delete the
currently selected variable. No variable renaming is currently supported.

Editingraterewards of reward variables If Edit Rate isselected, awindow similar to Figure
3.16 appears. Thiswindow has a Predicate editor and a Function editor. When the predicate is true,
reward is accumulated at the rate defined in the function. Both the predicate and function are ex-
pressions in varedit. To get conditional values, multiple predicate-function pairs must be specified.
Reward is summed over all predicates that hold.

The present window is a view-only window. The set of predicate/function pairsis viewed by
clicking on Prev Rate and Next Rate, which display al the pairs for a submodel. Use Prev
SubModel and Next SubModel along with Prev Rate and Next Rate to navigate through and
view al the rate reward variables defined for al the subnets in the composed model.

The predicate and function can depend only on place markings for that submodel. (See aso the
note below on frequently encountered error message with respect to this.) Use Add Rate to add a
new predicate-function pair, Edit Rate to edit aprevioudy entered predicate and/or function, and,
Del Rate to delete a predicate-function pair from the currently defined set. A few points worth
noting in this context are:

e When multiple predicate-function pairs are defined for aparticular submodel, the reward value
returned is the sum of al theindividual predicate-function definitions.

¢ If the place for which the reward structure is being defined belongs to a subnet that has been
replicated n times (via the Rep option), the reward value returned will be multiplied by the
number of replicas that satisfy the predicate.

Note: A frequently encountered error message while defining reward variables is the following
message that might appear on a pop-up window while compiling the reward variables.

There were errorsin compilation. Operation Aborted

The CP then prints a message similar to the one below:

3-30 CHAPTER 3. USERINTERFACE

s varedit

Rate Reward Specification

Yariable: probability non-blocking

SubModel: hufier [Prev SubModel | [Next SubModel |

[&dd Rate | (Edit Rate] (DelRate] [Prev Rate] [Mext Rate |

Fredicate:

MARK(queue) < MARK(size) -

=
Function:
£
fi
4 B3 s

Figure 3.16: Rate reward specification.

3.11. PERFORMABILITY VARIABLE EDITOR (EDIT->PERFORMABILITY VARIABLES) 3-31

== varedit

Impulse Reward Specification

Figure 3.17: Impulse reward specification.

“path name up to project in consideration/int/project_name.c”, line 14: NOTaPLACE
varedit: Exit status = 2 (failure) Performability variable editor isincomplete; can't ac-
cess study editor.”

This means that the particular place is not present in the subnet where the reward variable is de-
fined, though it may be present in another subnet, and hence in the composed model. Thisisafairly
common error and may be corrected by invoking varedit (i.e., Edit->Performability Variable
Specification)and using Prev SubModel and Next SubModel to arrive at the appropriate sub-
net (the subnet that contains the placein consideration) and then defining the reward in that particular
submode!.

Editing impulse rewards of reward variables If Edit Impulse is selected, a window similar
to Figure 3.17 appears. Thelist of al the timed activities in each submodel will be given. Impulse
rewards can then be specified for each activity.

For instant-of-time variables, the value of the impulse reward is the impulse reward associated
with the last activity that completed. If one activity has an impulse reward of one, the rest are zero,
and no rate reward variables are defined, this equates to the probability that this activity was the last
one to complete before the specified instant of time. For interval-of-time variables, the value of the
impulse reward is the accumulated impulse reward over the interval. Given the same scenario, this
equates to the number of times that this activity completed during the interval.

3-32 CHAPTER 3. USERINTERFACE

= varedit

Reward Variable Simulator Statistics

Wariable Mame: probability non-blocking

B Estimate Mean
[Estimate variance

Confidence Level 0.95
Relative Confidence Interval [0.10

Steady State:

Initial Transient [1000.0
Batch Size 1000.0

Transient:
@ Instant of Time
O Interval of Time Start of Interval [100.0
3 Time Averaged Interval of Time Length of Interval [100.0

Figure 3.18: Reward variable smulator statistics.

Editingreward variable statistics To edit parametersrelated to simulation, useEdit Stats. A
window similar to Figure 3.18 appears. Within the reward variable statistics editor, there are sev-
eral things to specify. The type of variable must be specified, i.e. Instant-of-time, Interval-
of-time, or Time-averaged-interval-of-time. Looking ahead, there are three smulators: the
steady-state simulator (SSim), theterminating simulator (TSim), and the Importance Sampling termi-
nating ssmulator (ITSim). ITSimisdiscussed in Chapter 4, while the other two are discussed briefly
below.

If SSim isused on an instant-of-time variable, the time instant is assumed to beinfinity. If TSim
is used on an instant-of-time variable, thetime instant istaken fromthe Start of Interval field.
If TSim isused on an interval-of-time variable, the start of the interval istaken from the Start of
Interval field, and the length of the interval istaken from the Length of Interval field.

The user may specify the mean and/or variance to be estimated. There are boxes for the confi-
dence levdl, relative confidence interval, initial transient, and batch size. Valid confidence levels are
0.80, 0.90, 0.95, 0.98, and 0.99. Any relative confidence interval can be chosen. These values are
used asfollows.

For steady-state simulation, the simulator uses atechnique called iterative batching. The simu-
lator starts by scheduling and executing events for the duration of theinitia transient, which is spec-
ified in the same time units as the user’'s modd, i.e., if the user measures timed activities in seconds,
so are theinitial transient and batch size. The next interval of time is the first batch and extends for
the length of the specified size of the batch. Successive intervals are different batches of the same
simulation. Batch sizes should be long enough that results for different batches are uncorrelated.

312, ISEDITOR (EDIT->IS GOVERNOR) 3-33

— varedit

Activity Variable Simulator Statistics sccept Ahart

Yariable MName: processor processing

[Estimate Mean
] Estimate variance

Confidence Lavel 0.95
Relative Confidence Interval 0.10

Steady State:
Initial Transient (1000
Batch Size 1000
Transient:
First Completion [0
Last Campletion 100 u

1 E

Figure 3.19: Activity variable simulator statistics.

For interval-of-time and non-steady-state instant-of-time variables, the simulator uses a tech-
nique called independent replications. For each replication, the ssmulation starts from time zero,
and proceeds until all variables, whether instant- or interval-of-time, have been observed once. Each
replication constitutes one observation of the variables.

The simulation terminates when the maximum number of batches or replications is reached, or
when the result is within the relative confidence interval with a probability equal to the confidence
level [1].

Editing activity variable statistics Edit Stats optionisused for editing parameters related to
simulation. A window similar to Figure 3.19 appears. Within the activity variable statistics editor,
there are several thingsto specify. Theuser can specify if the mean and/or variance isto be estimated.
There are boxes for the confidence level, relative confidence interval, initial transient, and batch size.
They are used in away similar to that of reward variables, except now theinitial transient and batch
size arein units of activity completions, as opposed to time. The counterparts of the start and length
of interval fields for reward variables are the first and last completion fields for activity variables.

3.12 |Seditor (Edit->IS Governor)

Thiseditor is used while using Importance Sampling if simulation is used as the method of solu-
tion. Itisdiscussed in detail in Chapter 6. (Notethat it does not need to be invoked if the importance
sampling simulator is not used.)

3-34 CHAPTER 3. USERINTERFACE

= stdedit bo i)
UitraSAM “ersion 3.0 Copyright (c) Univ, of Arizana 1930-1334, Univ, of lllinois 1834
Global Variable Assignment

Study Selector
vary_arrival_rate iy
vary_error_prab

)
E E

Figure 3.20: Study editor display.

3.13 Study Editor (Edit->Studies)

After the performability variables are defined, multiple studies each with one or more experi-
ments may be created for the project in consideration, using the study editor stdedit. Studies may be
created to examine the effect of the various model parameters on the system performance. For each
study created, experiments are defined based on the different values that the parameters may take.

The study editor isinvoked by using Edit->Study, which causes awindow asin Figure 3.20 to
appear. Thisiscalled the glabal variable assignment editor, and it provides optionsto add, delete and
edit studies. It displays alist of studies that were previously defined (if any), or is blank otherwise.
To add or create a new study, select Add. A dialogue window asking for the name of the new study
appears. Enter the desired study name and select OK to create the new study. To remove an existing
study (i.e., delete al experiments and results associated with astudy), select Delete, which pops up
a confirmation window. Click on 0K to delete the selected study or No to abort the operation.

Onceastudy isadded, multiple experiments may be defined using either the Range or Set selec-
tors. Range isused while defining multiple experiments which might have arange of global variables
that change in some fixed additive or multiplicative increments. Set on the other hand isuseful when
the global variables do not change in an additive or multiplicative manner, but need to be specified
explicitly.

To use the Range or Set editor, a study must first be selected. Figure 3.21 shows the set edi-

3.13. STUDY EDITOR (EDIT->STUDIES) 335

e stdedit

Set Editor f.-‘-\ccept] [&hort]

Experiment: expl

ane_arrar_prab: double: | 0.24

access_rate: double: |IZ| |
arr_rate; double: | 10 |
io_rate: double: | 10 |
ok_prab: double: [0.75 |

|

|

proc_rate: double: | 1

((add) [Delete | [Edit | [import | [Export | [Prev | [Mest]

Figure 3.21: Set editor display.

tor. Experiments are added by selecting Add in Figure 3.21. A pop-up window listing all the global
variables with values initialized to O appears. Fill in the desired values and click on Accept to add
this newly defined experiment. To delete an experiment, use Prev and Next to display the desired
experiment, whose number is displayed on the top left hand corner, and click onDelete to remove
the experiment. To edit an existing experiment, choose the Edit selector. A pop-up window bearing
the old parameters appears. Edit the desired variables and click on Accept toreflect the change. The
Prev and Next selectors are also used to navigate through the experiments in a particular study.

The set editor also provides for reading and writing formatted files of globa variables and
their assigned values via the Import and Export selectors. The following paragraphs describe the
Import and Export featuresin detail. In particular, Export makes it possible for the user to write
the list of global variable values to an export file outside of UltraSAN in the following format:

e Thefirst line in the file contains all globa variables defined in the subnets for the selected
project separated by blank spaces.

e The second line contains the types for these variables (i.e., short or double).

¢ The subsequent lines contain the values for these global variables in the order listed in line 1.
The values in each line correspond to one experiment.

Thus experiments can be added (or deleted) by editing thisfileviaa“vi” for example, and adding
(or deleting) as many lines as the desired number of experiments. Upon editing the desired export
file, use the Import facility to generate the corresponding added experiments. The import and ex-
port files have the same format. The set editor reads the import files and generates the corresponding

3-36 CHAPTER 3. USERINTERFACE

e stdedit

Range Editor

Type: DOUBLE
Yariahle Mame: access_rate

= Fixed YValue | [l

Range Walue
Initial
Final |:|
: additive
kultiplicative

(Eait] [Prev] [MNest |

E 1

Figure 3.22: Range editor display.

experiments. Once the file has been imported (and thus the experiments generated), the added ex-
periments may be traversed by selecting Next and Prev. After reading inthe global variable assign-
ments through the import file, the user can add, delete or edit any of the experiments. The origind
export file can aso be edited and then imported back through thisimport facility. Also note that that
the import files could be generated by auser program, should this prove convenient.

To use the import and export facilities, click on the appropriate selectors. A small window bear-
ing directory path information appears. If Export is selected and no export files exist, add the name
of thefile to be exported in the directory path information space. If no file exists and Accept isse-
lected, a pop-up window informing that the export operation can not proceed appears. An export file
with the format mentioned earlier appears in the corresponding study directory. The user can edit
thisfileand import it by using the Import selector subsequently and entering the name of the partic-
ular fileto beimported (full path name) in the pop-up window that appears when Import is selected.
Finally, just as with the export facility, if the user selects Import and clicks Accept without having
created the import file, a pop-up window informing that the import operation can not proceed will
appear.

The range editor as shown in Figure 3.22. may also be used to define studies and their exper-
iments. Unlike the set editor, the range editor alows a user to specify either a range of numerical
values or afixed value for each global variable. The range of numerical values for any global vari-
able can be specified by selecting an initial value, afina value, and an increment factor. The incre-
ment factor can be additive or multiplicative. It is necessary to assign either a fixed or a range of
numerical values to each global variable. The range editor creates the various experiments by iter-

REFERENCES 3-37

studi es

vary_arrival _rate vary_error_prob

expl exp2 exp3 expd exp5 exp6 expl exp2

access_rate 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
arr_rate 5.0 10.0 15.0 20.0 25.0 30.0 10.0 10. 0
io_rate 10.0 10.0 10.0 10.0 10.0 10.0 10.0 7.5
ok_prob 0.81 0.81 0.81 0.81 0.81 0.81 0.75 0.77
one_error_prob 0.18 0.18 0.18 0.18 0.18 0.18 0. 24 0.21
proc_rate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 3.23: The studies subdirectory for the faulty processor model.

ating over the specified ranges and making one experiment for each tuple of numerical values. The
iteration stops when the range valueis equal to or larger than (if the last valueis not an exact additive
or multiplicative factor of the increment size) the final value specified. Thus the number of experi-
ments for a study generated by assigning values through the range editor is computed by evaluating
the Cartesian product of the ranges specified for al the global variables.

In addition to generating studies and their experiments, the study editor maintains the studies sub-
directory in the project directory structure. Within this studies subdirectory, the study editor further
creates a subdirectory for each study defined. Each of the directories corresponding to a particular
study in the studies subdirectory further contains subdirectories that correspond to the various ex-
periments defined for that particular study. For an existing study, it creates or deletes experiment
subdirectories for added or deleted experiments, respectively. Figure 3.23 shows the directory struc-
ture for the studies subdirectory for the faulty_proc project.

REFERENCES

[1] A. M. Law and W. D. Kelton, Smulation Modeling and Analysis, McGraw-Hill, New York, 1990.

3-38 REFERENCES

Chapter 4

Solvers

This chapter describes the various analytic and simulation solvers that are available. The solvers
are selected through the Solve button, and must be run after the model has been fully specified by
applying the various editors under the item Edit (see Chapter 3). General suggestions about which
solvers to apply for specific model and measures are presented preceding the detailed description
of the specific solvers. This chapter uses the classification of measures and models asintroduced in
Section 1.4 of Chapter 1.

4.1 Choosing an Appropriate Solver

Applicability of both the analytic solvers and simulators depends on the type of performability
measure and model classconsidered. All measures and model classes are described in detail in Chap-
ter 1. Given amodel and measure, achoice between analytic solution and simulation hasto be made.
There are some basic rules when analytic solvers and simulators can be applied:

e Analytic solvers only can be applied to the two model typesin Section 1.4 of Chapter 1, i.e.,
to models with all exponentia activities or with at most one enabled deterministic activity at
the time. Simulation can be applied to al model classes.

e Models must have afinite state space for anaytic solution.

o If activity variables are used, only simulation can be applied.

Table 4.1 gives the measure and model classes for which analytic solvers can be applied, and
Table 4.2 gives this information for the simulators. Use the tables as follows. First, identify which
model class a mode belongs to and which measure type is to be derived. The solver that can be
applied can then be found in the right-side column. So, for instance, the ars solver gives the mean
of transient interval-of-time measures for models where al timed activities are exponentialy dis-
tributed. The abbreviations used in Table 4.1 for the anaytic solvers have the following meaning
(we give the names as they appear in the menu items of the control panel):

4-1

CHAPTER 4. SOLVERS

4-2
\ Analytic Solvers (for reward variables only) |
Steady-state | Instant-of-time Mean, Applicable
or or Variance or Analytic
Mode Class Transient Interval-of-time Distribution Solver
All activities Steady-state | Instant-of-time® | Mean, Variance || dssandiss
exponential and Distribution
Transient Instant-of-time | Mean, Variance trs
and Distribution
Interval-of-time Mean ars
Distribution pdf
Exponential and | Steady-state | |nstant-of-time® Mean, diss
deterministic Variance
activities and Distribution

“if only raterewards are used, the time-averaged interval -of -time steady-state measure isidentical to theinstant-of-time

steady-state measure (if both exist).

bprovided the instant-of-time steady-state distribution is well-defined. Otherwise, the time-averaged interval-of-time

steady-state variable is computed and only results for rate rewards should be derived.

Table 4.1: Models and measures versus the applicable analytic solver.

\ Simulators (for all models)

Steady-state | Instant-of-time Mean,
or or Variance or Applicable
Transient | Interval-of-time | Distribution Variable Simulator
Transient I nstant-of-time Mean Reward variable TSm
and and and ITSm
Interval-of-time | Variance Activity Variable TSm
Steady-state | Instant-of-time | Mean and Reward Variable SSm
Variance | and Activity Variable

Table 4.2: Measures obtainable with different simulation solvers.

4.1. CHOOSING AN APPROPRIATE SOLVER 4-3

dss. Solve -> Direct Steady-State Solver

isS: Solve -> Iterative Steady-State Solver

diss: Solve -> Deterministic Iterative Steady-State Solver

trs. Solve -> Transient Solver

e ars. Solve —-> Accumulated Reward Solver

e pdf: Solve -> Probability Distribution Solver

For the smulators in Table 4.2 we use the following abbreviations:
e S9m: Solve -> Steady-State Simulator
e TSm: Solve -> Terminating Simulator

e |[TSm: Solve -> IS Terminating Simulator (Importance Sampling).

An important difference between how the analytic solvers are applied and how the simulators
are applied is the precise specification of the performability measure. For analytic solutions, the
choice of the solver determines the specific performability measure which will be computed. In other
words, given a specified reward structure, the performability measure (including aspects as mean
or variance, transient or steady-state, etc.) is specified by the choice of the solver. For simulation,
on the other hand, the precise specification of the performability variable is carried out separately
under Edit->Performability Variables, by selecting Edit Stats inthe Performability
Variable Specificationwindow. Only whether transient or steady-state resultswill be obtained
is determined by the choice of the simulator.

It must be understood that the Tables 4.1 and 4.2 give the potential use of the solvers; it isnot to
say that the results will always be derived in a reasonable time span or can be fit into standard size
memory. These considerations are of primary importance for the practical application of the solvers
and are therefore discussed in some more detail. Advantages and disadvantages of the use of the
different solvers provided by UltraSAN are presented in four lists. advantages and disadvantages of
analytic solutions and advantages and disadvantages of simulation. The lists are not claimed to be
exhaustive, but try to capture the problems most likely to be encountered in the practical application
of the UltraSAN solvers.

Advantages of analytic solution

e Exact computation of asolutioniscarried out, i.e., opposed to simulation the outcome does not depend
on agenerated stream of pseudo-random numbers.

o For theinstant-of-time performability variables, distributions can be obtained without extracost in ad-
dition to their mean and variance.

4-4 CHAPTER 4. SOLVERS

e Accuracy of the solution can, for most solvers, be increased without excessive increase in the compu-
tation time, except for the limitations stemming from machine accuracy. This does not hold for the
performability distribution solver pdf but it typically doesfor dss, iss, diss, trsand ars.

Disadvantages of analytic solution

e Analytic solvers are not available for al models. The models must belong to the two model classes
presented in Section 1.4 of Chapter 1.

e Resultsfor activity variables cannot be obtained.

e The state space size of the generated model must be finite. Moreover, it cannot be too large relative to
the memory of the used computer. Theiterative solversiss, trsand ars can usually deal with models of
up to several hundred thousand states. The other solvers demand additional memory besidesthe storage
of the transition matrix. See the discussion in the sections dedicated to the different solvers for more
details.

e Itisachallengeto create models from which all the desired performability results can be derived, but
which have a small enough state space to alow for analytic solution. Considerable pay-off can be ex-
pected from exploring state space reduction approaches. In this respect the use of the Rep construct in
the composed model can be avery helpful tool.

e Theanalyticsolutionistimeconsumingif onedealswith stiff models. A prominent classof stiff models
isthose with large differencesin the expected activity completion time. An exampleis a dependability
model in which there are long periods until component failures and relatively fast repairs.

Advantages of smulation

e Simulation can be applied to any SAN model and is thus not restricted to the types of stochastic pro-
cesses presented in Section 1.4 of Chapter 1. The most prominent difference, compared with analytic
solvers, isthat generally distributed activities can be used.

e Simulation does not require the generation of a state space and therefore does not require afinite state
space. So, much more detailed models can be solved.

¢ Resultsfor activity variables can be obtained in addition to those for reward variables.

Disadvantages of simulation

e Simulation provides an estimate of the performability measure. An approximate confidenceinterval is
constructed which contains the actual result with some user-specified probability. However, it always
ispossiblethat thetrueresult is not within the confidenceinterval. Furthermore, the confidenceinterval
is based on an estimator itself and thus may be incorrect.

e Higher desired accuracy dramatically increases the necessary simulation time. As arule, to make the
confidenceinterval n times narrower, the simulation hasto be runn? times aslong. Compare thiswith
the much more attractive result to be reported in the specific sections for the analytic solvers.

o Full distributionscannot be obtained by the UltraSAN simulators. However, it isoften possibleto derive
percentiles of certain distributions by specifying rewards 1 and O in the appropriate way.

4.2. ANALYTIC SOLVERS 4-5

e Therareevent problem may arise. If smulationisused to estimate asmall probability, such asthereli-
ability of a highly-reliable system, extremely long simulations may have to be performed to encounter
the particular event often enough. A reliable estimate cannot be obtained with standard simulation ap-
proaches such as SSmand TSm. For transient measures UltraSAN therefore is equipped with an im-
portance sampling simulator I TSim (see Chapter 6).

e Complicated models can demand long simulation times, even if the rare event problem does not come
up. The simulatorsin UltraSAN perform the necessary event scheduling very efficiently but it should
be realized that simulation is not a panacea.

4.2 Analytic Solvers

All the analytic solvers require the explicit generation of the state space and the state transi-
tions of the stochastic process. Therefore, before being able to apply any of the anaytic solvers,
the state space generator (under Solve -> Reduced Base Model Generator)must beexecuted.
The output of the generator isan ASCII filewhich the solvers subsequently use asinput file. Thefor-
mat of thisfileisgivenin Appendix C. If desired, thisfile can betheinput of other solversthan those
provided by UltraSAN.

Throughout the coming sectionsthe abbreviation Genwill beused for caling Solve-> Reduced
Base Model Generator,whilethe abbreviationsin Section 4.1 will be used for the solvers. These
abbreviations correspond to the commands executed when clicking OK in the various solver menu’'s
and can also be used for calling the generator and solvers from the command line or in ashell script.
Furthermore, man-pages exist for these commands. These pages contain part of the information also
available in the coming sections and can be read by typing man commandname on the command line.

421 Reduced Base Moddel Generator

Before running any of the analytic solvers, the state space must be generated, following the
reduced base model construction approach in [3]. This is done with the Solve->Reduced Base
Model Generator menu option of the control panel, which executes Gen. When thisis done, the
window in Figure 4.1 appears with the following available options.

e TheProject Name must be specified. No default is assumed. However, if a project has previously
been selected in Project->Select, it will show upintheProject Name field.

e IfanOutput File Name isgiven, theresultsareputinthefile expi.Gen.filenameinthestudy’'sre-
sults directory projects/projectname/studies/studyname/results. |If no output fileis given,
the output goes to the control panel aswell asto thefile expi.Gen. out.

e IfRun in the Backgroundisselected, other control panel optionscan be used while the state space
isbeing generated. An output file must be given in this mode.

e If Verbose is selected, each generated state and its associated reward for each variable are displayed
during generation.

CHAPTER 4. SOLVERS

-

Lsan

REDUCED BASE MODEL GEMERATOR

Froject Name:
Ctput File:

[verbose

-

[JRun in the Background

[JFlag Absorhing States
[CJDaont Print Place Mames
[Owide Qutput Screen
[CJBuild Qnly (Do Mot Execute)

Figure 4.1: Control panel Gen options.

e If Flag Absorbing States is selected, all markingsin which no activities are enabled will be dis-
played. Detection of these “absorbing states’ is useful for debugging the model.

e If Don’t Print Place Names is selected, Gen turns off the printing of place names next to their
markings. The markings are still printed in the lexicographic order of the associated place names.

e If Wide Output Screen isseected, Gen assumes awider output screen. The default screen widthis
80 columns. This option adds 30 columnsto that width.

e If Build Only (Do Not Execute) isselected, an executablefor the generation of the state spaceis
created. The state space is not generated in that case. To generate the state space, select the desired
experiments and apply Solve->Reduced Base Model Generator again.

As states are generated, adot is printed after every 1,000 states, and a message is printed after

every 5,000 states. For large state spaces, there will be a delay after the final state count is reported

as the state space is being written to disk.

Throughout this section example results for the faulty multi-processor are presented. These re-

sults will be given in separate boxes. For the description of the model see Section 1.1.3 of Chapter

1

Pitfallsand Hints

e Make sure the model has a finite state space by putting limits on the number of tokens in the places.
In the faulty-proc example the global variable GLOBAL_S(size) in the input gate capacity limits the

number of jobsin the system.

¢ Redlizethat the state space sizein reduced base model construction depends on theintroduced impulse
rewards. The reported state space size may therefore be higher than in a case without or with lessim-
pulse reward variables. See Section 1.4 of Chapter 1.

4.2. ANALYTIC SOLVERS 4-7

= Construct the faulty_proc state space by selecting Solve->Reduced Base Model
Generator within the control panel. Choose experiment exp2 of the study
vary_arrival_rate. This experiment has the following parameters, which will be dis-
played for Gen and for every solver applied to this experiment:

Global variable settings for this run:

access_rate = 20
arr_rate =10
io_rate=10
numM_processors = 3
ok_prob=0.81
one_error_prob = 0.18
proc_rate=1

size=5

Thesizeof thestate spacewith theprocessor submodel replicated threetimesis 1,920
states. On a SUNA4, it will take afew seconds to generate the state space for this ex-
ample.

e Exploreall possibilitiesto reducethe state space size, asasmaller state space size speedsup all anaytic
solvers. Especially, try to model the system with the help of replicate in the composed model. Using
the replicate option an automatic state space reduction will be performed.

4.2.2 Common Features of All Analytic Solvers

Each solver is executed by selecting its entry in the Solve menu of the control panel. After
which, awindow will appear with more options. Thefollowing optionsarecommonto al the solvers:

e TheAccuracy isan integer representing the number of digitsto the right of the decimal point that are
desired to be accurate. Usually nine digitsis the default. If the number of specified digits exceedsthe
machine accuracy, then the machine accuracy becomes the default. Note that it depends on the solver
what the accuracy setting precisely means. We will state the precise meaning of the Accuracy when
we discuss the individua solvers.

e TheProject Name must be specified. No default is assumed, but if a project has been selected this
project name appearsin the Project Name field.

e IfanOutput File Nameisgiven,theresultsareputinthefileexpi.solver.filename, wheresolver
isthe name of the solver being executed and i isthe experiment number. Thisfileisputinthestudy’sre-
sults directory projects/projectname/studies/studyname/results. If no output fileis given,
the output goes to the control panel window aswell asto thefile expi.solver.out.

e IfaDebug File Nameisgiven,debuginformationiswritteninthefileexpi.solver.filename. This
fileis put in the study’s results directory projects/projectname/studies/studyname/results.
If no debug file is given, no debug information is generated. The debug information is essentiadly a
file with detailed information regarding the solver. 1t can be useful for determining whether a solution
converges, but usually thisinformation can more naturally be obtained by setting the Verbosity. The
Verbosity option will be discussed with each individual solver.

4-8 CHAPTER 4. SOLVERS

Thefollowing markingisthe marking printout for thethird generated marking in the examplemodel that would
be given in verbose mode with place names being printed.

MARKING #3

Variable Name Rate Reward Impulse Reward
probability non-blocking 1.000000 0.000000
utilization 0.333333 0.000000
number of tasksin queue 0.000000 0.000000
number of tasksin system 1.000000 0.000000
fraction of timein|_O 0.000000 0.000000
number of tasks processed 0.000000 0.000000
Subnet Name # Marking

processor 2 { done: 0, num_tasks: O, queue: O, ready: 1 }
processor 1 { done: 0, num_tasks: 1, queue: O, ready: 1}

buffer 1 {queue: 0}

Thetop section lists the rate and impul se rewards corresponding to the present marking. The bottom section
gives the marking. It is given as the number of subnetsin a particular marking. In this example, two of the
three processor submodels are in one marking, and the other one isin adifferent marking.

e IfPlot Complementary Distributionisset, thecomplementary distributionfunctioniswrittenin
splot format to the file projects/projectname/studies/studyname/results (the complemen-
tary distribution gives the probability the performance variable is greater than some value z). The
complementary distribution can be displayed by choosing the General->Display option in the Con-
trol Panel. They can also be created by hand by executing splot -x expi.solver.variable.PDF.
splot. Besidesthe (complementary) PDF a so the density function (pdf) can be plotted. See the man-
ual pages of splot for details about its operation.

e IfRun in the Background is selected, other control panel options can still be used while the solver
is running. If no output file is specified, output automatically goes to the file expi.solver.out in
the results directory projects/projectname/studies/studyname/results, where solver isthe
name of the solver being executed.

The output file of each solver will contain various information. It will first itemize the options
that were used, including defaults, and will contain the results of the solution process. It will also
contain the following information:

e Theproject, study and experiment for which the results are derived.

e The Global variable settings, which are the values assigned to al the global variables in the chosen
experiment.

e The Number of statesin process, which isthe number of states that were generated by Gen.
e The Number of non-zero elements, which isthe number of non-zero elementsin the transition matrix.

e The Computation Time, which is the total execution time, equa to the sum of user time and system
time.

4.2. ANALYTIC SOLVERS 4-9

== usan
DIRECT STEADY STATE SOLVER
Tolerance: 0.0
Stability: 0
Rows: oL

Werbosity:

Praoject Mame: faulty_prac

CQutput File Name:

Debug File Name:

[IPlat Complementary Distribution
[IRun in the Background

| 0 @@= |

Figure 4.2: Control panel dss options.

e The User Time, which is the total amount of time spent executing in user mode.

e The System Time, which is the total amount of time spent executing in system mode.

4.2.3 Direct Steady-State Solver

The direct steady-state solver (dss) solves for instant of time variables with ¢ — oo, using anu-
merically stable version of L-U decomposition [6]. Thisis done by solving the system of equations
given by pA = 0, with the additional constraint that the sum of al elements in the vector p sum to
one. p isthe state occupancy probability matrix, and A is the generator matrix. The generator ma-
trix is obtained from the SAN by using the reduced base model generator (see Section 4.2.1). The
solver uses two methods to reduce the fill-in (non-zero elements) of the matrix during solution: the
improved generalized Markowitz strategy, which selects a next pivot element based on a heuristic
that can reduce fill-in, and a technique that sets elements that are less than some value (tunable, see
the options below) to zero during the execution of the solution algorithm [6]. If the problem is not
too large, the solver then usesiterative refinement to reach acorrect final solution. The solver calcu-
lates the mean, variance, probability density function, and probability distribution function of each
performability variable. The means and variances are given in textual form in an output file, and the
probability density and distribution functions are given in splot format. When selected in the control
panel, awindow like Figure 4.2 appears with the available options. The options are as follows:

e TheAccuracy isan integer representing the number of digitsto the right of the decimal point that are
desired to be accurate for the steady-state probabilities. The accuracy is approximated analyticaly [6].
Note that the accuracy of the obtained performability measure depends on the number of statesin the
model aswell as the value of the rate rewards.

e TheTolerance isadouble which, when multiplied by the smallest matrix element, is the threshold
at which elements will be dropped in the LU decomposition. 0.0 is the default, which implies that no

4-10

CHAPTER 4. SOLVERS

dropping takes place. In general, it is recommended [6] to choose the drop tolerance to be two to five
orders of magnitude smaller than the smallest matrix element, i.e., choose the Tolerance between
10~2and 1075,

TheStabilityisashort integer representing the“ grace” factor by which elements may become can-
didatesfor pivots. 0 isthe default, meaning pivoting isturned off. A stability factor between 4 and 16
isrecommended in literature, see[6].

TheRows isaninteger representing the number of rowsto search for apivot. OL isthe default, meaning
pivoting is turned off by default. A value of 2 or 3 isrecommended [6]. (OL is anotation convention
taken over from the C programming language and can be replaced by 0 aswell.)

TheVerbosity (n) setsthetracelevel forintermediate output. The defaultisnointermediateoutput. If
n > 0, thenthe message compl eted column number nisprinted after every n iterationswhile computing
LU decomposition, forward substitution, backward substitution, and iterative refinement.

= Obtain the steady-state solution for the instant-of-time variables of the faulty_proc
model by selecting Solve->Direct Steady State Solver within the control
panel. Specify the Project Name and an Output File Name. You should also select
Runinthe Background, sinceit should take on the order of an hour to solvethismodel
with dss. Theresults should be asfollows:

Performability variable
probability non-blocking
utilization

number of tasksin queue
number of tasksin system
fraction of timein1_O
number of tasks processed

Mean

4.522711e — 01
8.438868e — 01
4.068240e + 00
1.036334e + 01
1.507570e — 01
3.119777e — 01

Variance

2.477220e — 01
4.404171e — 02
1.694523e + 00
1.885128¢ + 00
4.267070e — 02
2.146476¢e — 01

Note that the number of tasks processed variable does not make sense for any of theinstant-
of-time solvers, sinceit is an interval-of-time variable.

= Try viewing one or more of the .splot files that were generated, using the
General->Display option in the Control Panel.

The output file will contain the means and variances of the performability variables. It will also

contain the following information:

whether iterative refinement was used or not,

the drop tolerance,

the number of non-zero elementsin the original matrix,
the number of non-zero elementsin the factorized matrix,

if iterative refinement was used, it gives the maximum difference between the cellsin the pA and zero
matrices, if iterative refinement was not used, the relative error is given,

the number of correct decimal digitsin the state probabilities,

the number of zerosin the factorized matrix,

4.2. ANALYTIC SOLVERS 4-11

— usan

ITERATIVE STEADY STATE SOLVER

Accuracy: |
Weight: 1.0
Max lterations:

Werbosgity:

Froject Mame: faulty_proc

Cutput File Mame:

Cebug File Mame:

[JPlot Complementary Distribution
[JRun in the Background

l @« @@= H

Figure 4.3: Control panel iss options.

o the number of elements dropped,

o the number of new pivots selected.

Pitfallsand Hints

e dsscan be used if the steady-state distribution of the Markov model exists of asingle class of recurrent
non-null states. For instance, dss can not be applied to a model with multiple absorbing states. In that
case the message invmnorm: zero diagonal element will appear and the performance variable will take
the NaN (Not a Number) value. To find out whether the model has absorbing states apply the Flag
Absorbing States optioninthestate spacegenerator Solve->Reduced Base Model Generator.

e dss is useful when relatively small models are considered because in the process of computing the
steady-state probabilitiesthe original transition matrix is transformed into amatrix with many non-zero
elements. Sparse matrix methods, which use the fact that elements equal to 0 do not have to be stored,
can then no longer be profitably applied. Thisis known as the fill-in problem. Especially when large
modelsare considered fill in will become a serious bottle neck because the order of non-zero element is
in general quadratic in the size of the state space. For the running exampl e the state space size of 1920
stateswill result in storage of about 4,000,000 doubles(comparethiswith the 11,182 non-zero elements
in the sparse original transition matrix). Consequently, dss can not be applied for models larger than
several thousand states. Note that the setting of the drop tolerance might be used to partially overcome
fill-in of the matrix.

e The CPU time required by dss also increases in the number of states (with power of 3). The iterative
solver iss often becomes faster than the direct solver dss when the state space size increases.

4.24 Iterative Steady-State Solver

Theiterative steady-state solver (iss) solvesfor instant of time variables with ¢ — oo, using suc-
cessive over relaxation (SOR). Thisis done by solving the system of equations given by pA = 0,

4-12 CHAPTER 4. SOLVERS

where p is the state occupancy probability matrix, and A is the generator matrix. The agorithm
guesses at p, calculates pA, and then comes up with a new guess related to the difference between
the answer and the zero matrix. This continues until the maximum difference between the cellsin
the two matrices iswithin error bounds. Theinitial guessfor p isequa probability for all states. The
acceleration factor used must be selected by the user. Because of its more modest space require-
ments, this solver can be applied to larger systems than dss, but it is not guaranteed to converge for
all reduced base models and initial conditions. It calculates the mean, variance, probability density
function, and probability distribution function of each performability variable. The means and vari-
ances aregivenintextual forminan output file, and the probability density and distribution functions
are given in splot format. When selected in the control panel, awindow like Figure 4.3 appears with
the available options. The options are as follows:

e TheWkight isadouble representing the acceleration factor. 1.0 is the default. A value of 1.0 reduces

the SOR method to Gauss-Seidel. Values between 1.0 and 2.0 may accelerate convergence. Values
between 0.0 and 1.0 are less subject to divergence.

e TheMax Iterationsisan integer representing the maximum number of iterationsthat will be performed
before terminating the solver. 300,000 is the default.

e The Verbosity (n) sets atrace level of intermediate output. The default is no intermediate output. If
n > 0, then the accuracy is printed after every n iterations.

= Obtain the steady-state solution for the instant-of-time variables of the faulty_proc
model by selecting Solve->Iterative Steady State Solver within the con-
trol panel. Specify the Project Name and an Output File Name. It should only take
afew seconds to solve this model with iss. The results should be the same as was
givenfor dss.

The output file will contain the mean and variance of the performability variables. It will also
contain the following information:

o the number of iterations required for convergence,

¢ the maximum difference, which isthe maximum difference (over al the states) between the solutionin
thelast two iterations.

Pitfallsand Hints

e Theisssolver can be used for many modelsthat arisein practice. A sufficient conditionisthe so-called
ergodicity of aMarkov model. If the model containsone or more absorbing statesiss cannot be applied.
It will givethe message iss_solver: zero on the diagonal and quit. To find out whether the
model has absorbing states apply the Flag Absorbing States option in the state space generator
Gen.

e Theissagorithm stopswhen the largest difference of the state probabilities between two iterations (at
that moment not yet normalized to sumto 1) islessthan the specified error. Thisstopping criterion does
not directly relate to the error between the derived and the real state probabilities, let alone between

4.2. ANALYTIC SOLVERS 4-13

the derived and the real performability variables. A value of 10~ for the Accuracy will usually be
sufficient.

¢ Asaruleof thumb, the additional timeto get ann timesas accurateresult isof the order log, , n. Hence,
increased accuracy tendsto be not too costly. Of course, the machine accuracy can never be exceeded.

o first try iss with Weight equal to 1. Thisusualy leads to quick solutions. A higher weight may de-
crease the number of iterations, however, an (even dightly) too high weight can dramatically increase
the necessary number of iterations. If issdoesnot convergefor weight equal to 1, try valueslower than
1. Typically, taking Weight < 1 improves convergence while Wweight > 1 decreases the number of
iterationsif convergenceis aready assured. Note that the value of Weight should be chosen between
Oand 2.

e Theisssolver usually derivesresultsin areasonabletime. If the state spaceislarge, more computation
IS necessary per iteration, but the number of iterations is often relatively low. Therefore, in the begin-
ning, leave the default for the number of iterations as high as given. If iss does not convergewithin a
reasonable number of iterations, the accuracy may have been chosen too high for the machine. Be care-
ful with choosing an accuracy smaller than 10~1° (i.e., avalue of 10 in the box Solve->Iterative
steady state solver->Accuracy). The progressin convergence of iss can be checked by using
the Verbosity option.

e Somemodelsmay requirevery many iterations. Theseare called stiff models, and important in the case
of issisthe class of nearly-decomposable models. They, for instance, occur when the performance of
a system quickly reaches steady-state for any system configuration, but in which changes in system
configurationstake place very infrequently.

4.25 Deterministic Iterative Steady-State Solver

The deterministic iterative steady-state solver (diss) solves for instant of time variables with
t — oo, using uniformization and successive over relaxation (SOR) [5]. diss should be used for
the steady-state solution when thereis at |east one deterministic activity in the model. Solutionisre-
stricted to models in which there is at most one deterministic activity enabled in each process state.
Gen will detect states in which more than one deterministic activity is enabled. The solution algo-
rithm is similar to that used by iss, but uniformization is used to compensate for the deterministic
activities. The acceleration factor used must be selected by the user. diss calculates the mean, vari-
ance, probability density function, and probability distribution function of of each performability
variable. The means and variances are given in textua form in an output file, and the probability
density and distribution functions are given in splot format. When selected in the control panel, a
window like Figure 4.4 appears with the available options. The options are as follows:

e TheWeight isadoubleprecisionfloat representing the accelerationfactor. 1.0isthedefault. A valueof

1.0 reducesthe SOR method to Gauss-Seidel. Valuesbetween 1.0 and 2.0 may accel erate convergence.
Values between 0.0 and 1.0 are less subject to divergence.

e TheMax Iterationsisanunsignedlong representing the maximum number of iterationsthat will be
performed before terminating the solver. 300,000 is the default.

4-14

CHAPTER 4. SOLVERS

— usan

DETERMINISTIC ITERATIVE STEADY STATE SOLVER

Accuracy: 9

Error Tolerance: 11

Weight:

Max lteration: 300000
Warhosity:

Praject Mame: faulty_proc

Output File Mame:

Debuy File Mame:

[JDetect Steady State

O5ave C matrix in file

zave P matrix in file

[JPlot Complementary Distribution
[JRun in the Background

| 1

Figure 4.4: Control panel diss options.

TheError Tolerance isashort integer representing a negative power of 10 (i.e. error tolerance) for
truncation of infinite series while calculating Poisson probabilities. 11 is the default value. Increasing
the error tolerance may increase the solution time. The solution time can be reduced if more error can
be tolerated.

If Detect Steady State isselected, the solver detects the steady-state earlier than the right trunca-
tion point, if possible[5]. It canreducethe solutiontime, but the user should make surethat steady-state
isnot falsely detected by comparing the results obtained with and without this option.

If Save C matrix in file is selected, the solver saves rows of the C matrix in afile rather than
keeping them in memory. Saved rows are read back at appropriate times. This option should be used
when the solver complains about a shortage of memory while solving abig state-space.

If Save P matrix in file is selected, the solver saves rows of the P matrix in afile rather than
keeping them in memory. Saved rows are read back at appropriate times. This option should be used
when the solver complains about a shortage of memory while solving abig state-space.

TheVerbosity (n) setsatracelevel of intermediate output. The default is no intermediate output. If
n > 0, then the accuracy is printed after every n iterations.

The output file will contain the means and variances of the performability variables. It will also

contain the following information:

e Theindex of deterministic activity considered, which is an index into an internal data structure of the

deterministic activity that isbeing processed. The number itself isnot useful, only thefact that progress
is being made.

e Theleft truncation point, which isthe number of iterations bel ow which uniformization doesnot collect

results.

4.2. ANALYTIC SOLVERS

4-15

e Theright truncation point is the number of iterations above which uniformization does not collect re-

sults.

e The number of iterations required for convergence.

e The maximum difference is the maximum difference between the cellsin the pA and zero matrices,
which represents the error. The truncation error is not reported, but is bounded by the specified error

tolerance.

= Copy the faulty_proc model to a model called faulty_determ. Within the buffer sub-

model, change activity arrival to deterministic, and set its value to 0.01. Save the
submodel, and savethe model in compedit and varedit, and regeneratethe state space.

= Obtain the deady-state solution for the instant-of-time variables
of the faulty_determ model by selecting Solve->Deterministic Iterative
Steady State Solver within the control panel. Specify the Project Name and an
Output File Name. You should aso select Run in the Background, since it should
take around thirty minutes to solve this model with diss. The results should be as
follows:

Performability variable
probability non-blocking
utilization

number of tasksin queue
number of tasksin system
fraction of timein|_O
number of tasks processed

Mean

4.535857e — 02
8.448689%¢ — 01
4.951837¢e + 00
1.127829¢ + 01
1.511952e¢ — 01
9.322693e — 01

Variance

4.330117e — 02
4.368852¢ — 02
5.160808e — 02
6.320603e — 01
4.277844e — 02
2.489587¢ — 01

Pitfallsand Hints

e Thediss solver suffers from the fill-in problem, albeit to alesser extent than the dss solver. For every
marking in which a deterministic activity is enabled, the transition probability to all the markings that
can be reached during the deterministic time are computed. Depending on the model, this gives con-
siderablefill in if a high percentage of the markings enable a deterministic activity. One example that
leadsto highfill in isasingle buffer with a deterministic server; the deterministic activity isenabled in
all markingswhich represent at least onejob in the buffer. Consequently, considerablefill inwill occur
inthis case.

The instant-of-time steady-state measure is not necessarily defined for models with deterministic ac-
tivities because periodic behavior may exist. The outcome of diss can in that case be interpreted as
the time-averaged interval-of-time steady-state measure. However, thisisonly valid when only ratere-
wards are considered (i.e., no measures with impulse reward are defined). Furthermore, the variance
and distribution which are derived do not have any meaning for the interval-of-time variables.

diss can not solve for deterministic activities with a value for the delay that is marking dependent. If
the specified model containsa marking dependent deterministic activity, the obtained results should be
discarded.

4-16 CHAPTER 4. SOLVERS

— usan

TRANSIENT SOLVER

ACCUracy: 9

Tirme:

Werhosity:

Project Mame: faulty_proc

Cutput File Mame:

Cebuy File Mame:

[C1Piot Complementary Distribution
[JRun in the Background

|l @ @ |

4 E

Figure 4.5: Control panel trs options.

426 Transent Solver

The transient solver (trs) solves for instant of time variables with ¢ < oo, using randomiza-
tion (also known as uniformization). It calculates the mean, variance, probability density function,
and probability distribution function of each performability variable at particular time points. This
method isbased on the idea of subordinating aMarkov chain to aPoisson process. It iscomputation-
aly efficient, preserves matrix sparsity, and solves to user specified tolerances. Furthermore, both
computing state probabilities in the uniformized Markov chain and computing Poisson probabilities
can bedonein anumerically stable manner. The means and variances are given in textual formin an
output file, and the probability density and distribution functions are given in splot format. When se-
lected in the control panel, awindow like Figure 4.5 appears with the available options. The options
are asfollows:

e TheTime isadouble precision float representing atime point of interest. There may be multiple times
separated by spaces, but at least one must be specified.

e TheVerbosity (n) setsatrace level of intermediate output. The default is no intermediate output. If

n > 0, then an intermediate statement is printed after computation of every n columns of the power
transition matrix.

The output file will contain the means and variances of the performability variables. 1t will also
contain the following information:

e Therate of the Poisson process used to do the uniformization.
e The number of state with positive rewards.

e The number of time poaints.

4.2. ANALYTIC SOLVERS 4-17

e For each time point, the left truncation point, number of iterationsand error. The probability that more
jumps occur in the Poisson process than number of iteration plusthe probability that less jumps
occur than left truncation point islessthan or equal to error.

= Obtainthetransient solution for theinstant-of-timevariablesof thefaulty_proc model
by selecting Solve->Transient Solver within the control panel. Specify the
Project Name and an Output File Name, and give the Timeas“1 10 100”. It should
take around one minute to solve this model with trs. Theresultsfor time equal to 10

should be as follows:

Performability variable
probability non-blocking
utilization

number of tasksin queue
number of tasksin system
fraction of timein|_O
number of tasks processed

Mean

4.522712e — 01
8.438868e — 01
4.068240e + 00
1.036334e + 01
1.507570e — 01
3.119777e — 01

Variance

2.477220e — 01
4.404171e — 02
1.694523e + 00
1.885129e + 00
4.267070e — 02
2.146476¢e — 01

The results for ¢ = 100 are equal to the steady-state results, so steady- state behavior is
observed in this model within 100 time units.

Pitfallsand Hints

e Thecomputationtimeof trsisprimarily determined by the number of iterations. A simpleruleof thumb
to estimate the number of iterations is to multiply the required time instant by the rate of the Poisson
process. Therate of the Poisson processis equal to the highest outgoing rate over al the states of the
Markov process (the outgoing rate of astateisgiven by the sum of all theexponential ratesof transitions
out of the state). As a consequence the time-complexity of the algorithm increases linearly with ¢.

e From the previousitem, it follows that trs will be more time consuming for models with high rates of
the exponential distribution relative to the time point of interest. A class of models having this kind of
stiffness can be found in reliability evaluation if repairs occur relatively fast and failures occur rarely.
Therate of the Poisson process will then be dictated by the fast repairs, but the time points of interest
are often of the order of the time between failures. For instance, for a system in which component
failures occur on the average ones every ten days and repairs take on the order of an hour, the interest
will typically be in the transient behavior over relatively long periods (e.g., the probability the system
isup at the end of the year).

e For large values of ¢ the result becomes identical to the steady-state result, and will not change any
longer if ¢ increases. Use the iss solver to detect when this occurs.

e Attimet = 0the SAN model isintheinitial marking with probability 1. In UltraSAN it isnot possible
to specify another initia distribution. To changethe state at ¢t = 0 ater theinitial marking of placesin
the SANs by applying Edit-> Subnet->Define to the different places.

427 Accumulated Reward Solver

Theaccumulated reward solver (ars) solvesfor transient interval of time variables, i.e., for inter-
vals [to, t1] where both ¢y and ¢; are finite. It gives the expected accumulated reward, as well as the

4-18 CHAPTER 4. SOLVERS

— usan

ACCUMULATED REWARD SOLVER

ACCUrACY: 9

Time Interyals:

Werhosity:

Project Mame: faulty_proc

Cutput File Mame:

Cebuy File Mame:

[JRun in the Background

|l @ @ |

4 E

Figure 4.6: Control panel ars options.

expected time-averaged accumulated reward over theinterval. Theresults are derived by uniformiza-
tion. When selected inthe control panel, awindow like Figure 4.6 appears with the available options.
The options are similar to the trs options, except that now an interval instead of an instant of time
must be specified.
e TheTime Intervals denote couples of double precision floats separated by a colon representing a
timeinterval of interest. So, ¢y : t; would denotetheinterval [to, t1]. There may be multiple intervals

separated by spaces, but at least one must be specified. Furthermore, if one desires an interval starting
fromty = 0.0, one can either specify thisas0 : ¢; or ast;.

The output file will contain the means, both time-averaged and accumulated, of the performabil-
ity variables. It will also contain the additional information similar to that given for the trs solver.

Pitfallsand Hints

e Thearssolver is an extension of the trs solver and the remarksfor trs apply here as well.

4.2.8 Probability Distribution Solver

The probability distribution solver (pdf) solvesfor interval of time and time averaged interval of
time variables with ¢ < oo, using randomization (also known as uniformization). It calculates the
probability distribution function of each performability variable. The probability distribution func-
tion is given in splot format. When selected in the control panel, awindow like Figure 4.7 appears
with the available options. The options are as follows:

e TheTime isadouble precision float representing the desired interval of observation. An interval must
be specified. No default is assumed.

4.2. ANALYTIC SOLVERS 4-19

= Obtain the accumulated reward solution for the interval-of-time variables of the
faulty_proc model by selecting Solve->Accumulated Reward Solver withinthe
control panel. Specify the Project Name and an Output File Name, and give the
Time as “10 100 10:100". It then computes the accumulated reward for the inter-
vals [0, 10], [0, 100] and [10 : 100]. Notethat the results for the interval [0, 100] has
to be the same as the sum of the results for the other two intervals. It takes around
two minutes to solve this model with ars. The results for time interval [0, 100], ac-
cumulated and time-averaged should be as follows:

number of tasksin queue
number of tasksin system
fraction of timein1_O

4.021994e + 02
1.028515e + 03
1.498986€ + 01
4.496959¢ + 02

Performability variable Accumulated Time-averaged
probability non-blocking 4.600592¢ + 01 4.600592¢ — 01
utilization 8.414133e + 01 8.414133e — 01

4.021994e + 00
1.028515e + 01
1.498986e — 01
4.496959¢ + 00

number of tasks processed

Note that opposed to trs the time-averaged accumul ated reward has not yet convergedto the
steady-state results at ¢ = 100. In other words, the time-averaged accumulated converges
slower to steady-state than the instant-of -time measures.

Weight isavariableto instruct the solver to discard paths with conditional probabilities less than the
specified weight (e.g., if the weight equals 4, paths are discarded if the conditional probability isless
than 10~*). The default does not discard any paths.

Lower Range isadouble, which specifiesthelower valuefor whichthe probability distributioniseval-
uated. No default is assumed.

Upper Range isadouble, which specifiesthe upper valuefor which the probability distributioniseval-
uated. No default is assumed.

Points isaninteger and specifiesthe number of pointswithin therange. If the number isone, then the
probability distribution is evaluated only at the upper value. The default considers only two points, the
lower and upper values.

Verbosity (n) setsatraceleve of intermediateoutput. Thedefaultisnointermediateoutput. Ifn > 0,
then an intermediate statement is printed for every performancevariable after every n transitions of the
subordinated Poisson process.

The output file will contain the values of the distribution at the selected points. It also contains

the following information:

e The number of expanded states is the number of states, including the added states needed to preserve
self-loops.

e The path truncation error is the error due to path truncation. This value can be changed by varying the
weight.

e The depth truncation error is the error due to depth truncation. This value can be changed by varying
the accuracy.

e Thetotal error bound is the sum of the path truncation and depth truncation errors. The weight and
accuracy should be set, such that the two error sources are of the same order of magnitude.

4-20 CHAPTER 4. SOLVERS

s usan

PROBABILITY DISTRIBUTION SOLVER

Accuracy: 9

Time:

Lower Range: CI
Upper Range:

Paints: 2

Werhosity:

Project Mame: faulty_proc

Output File Mame: |:|
Debug File MName: |:|

[JRun in the Background

| |

] !

Figure 4.7: Control panel pdf options.

Pitfallsand Hints

e The pdf solver is hard to apply asit is both very time intensive and memory consuming. To apply the
pdf solver with reasonable success limit the use to small models or small time points. For more details,
see the paper of Qureshi and Sanders[2].

4.3 Simulators

Three simulators are provided in UltraSAN:
e Steady-state simulator (SSm) —for ¢ — oo.
e Terminating smulator (TSm) —for ¢ < oo.

¢ Importance-sampling terminating simulator (ITSm) —for importance sampling if ¢t < oo.

The programs perform discrete event smulation using a method that makes use of a dynamicaly
varying number of future events lists [4]. Confidence intervals are generated for the requested vari-
ables using the batch means method for steady-state simulation and the replication method for ter-
minating simulation [1].

Each simulator is executed by selecting its entry in the Solve menu of the control panel. When
thisis donewindows like Figure 4.8 and Figure 4.9 appear with the available options. Thefollowing
options are applicable to both simulators, athough their actions may vary depending on which is
used.

e TheProject Name must be specified. No default is assumed.

4.3. SIMULATORS 4-21

= We will now modify the faulty_proc model, so that it can be used easily with pdf.
Copy the faulty_proc model to a model called faulty_forpdf. Within the processor
submodel, delete components done, | _O, check_done, and ready. Also take the line
changing place done out of gate correct. Thisjust removesthe 1/O component of the
model. Resave the model in compedit, but this time specify the Number of replica-
tionsasone. Invaredit, specify just onevariablecalled number of arriving tasks, and
giveit an impulsereward of 1.0 on activity arrival.

= Obtain the transient solution for the interval-of-time variable by selecting Solve->
ProbabilityDistribution Solver withinthecontrol panel. Specify the Project
Nameand an Output File Name. Specify thetimeasO0.1, theaccuracy as4, theweight
as 6, the upper range as 5, and the points as 6. It should only take a few seconds to
solve this model with pdf. The results should be as follows:

y =0.000000e + 00 perf = 3.678786e — 01
y = 1.000000e + 00 perf = 7.357531e — 01
y =2.000000e + 00 perf =9.196777¢ — 01
y = 3.000000e + 00 perf =9.809654e — 01
y =4.000000e + 00 perf =9.962667e — 01
y =5.000000e + 00 perf =9.994597e — 01

e IfanOutput File Name isgiven,theresultsareputinafilewiththenameexpi.solver.filename,
for SSmand TSmrespectively. Thisfileisputintheproject’sresultsdirectory. If nooutput fileisgiven,
the output goes to standard out.

e If aTrace Level isgiven, the markings of the submodels and the lists of future eventswill be traced
during simulation. There are threetracelevels. A tracelevel of one prints only the markings of each
submodel after activity completion. A tracelevel of two will aso show the earliest event time for each
future eventslist plus the activities scheduled to complete in each list. A trace level of three will, fur-
thermore, show the potential completion times for each compound event in each future eventslist.

e IfBatch/Rep Trace (n)isgiven, thecurrent estimatesfor all variablesare printed out every n batches
or replications.

e If Variance Calc (n) is given, the confidence interval of a variance estimator is only calculated at
every n batches or replications. Jackknifing is used to calculate confidence intervals about variance
estimators, which can be quite computationally expensive.

e TheMax Batch/Rep is the maximum number of batches or replications. The partial results will be
printed out if thisnumber isreached. Thedefaultis1000 batchesin steady-state simulation and 100,000
replicationsin terminating simulation. Specifying 0 causesthe number of batches/replicationsto beun-
limited. The smulatorswill run until al variables have been estimated within specified relative errors,
no matter how long it takes.

e Themin Batch/Repistheminimum number of batchesor replicationsthat should be executed. Confi-
denceintervals are compared to the requested rel ative width only after the minimum number of batches
or replications are executed. The default valueis 4.

e If Run in the Background is selected, other control panel options can be used while the simulator
isrunning. An output file must be given in this mode.

e If Don’t Print Place Names isselected, the simulator turns off the printing of place names next to
their markings. The markings are still printed in the ASCII order of the associated place names.

4-22

— usan

STEADY STATE SIMULATOR

Project Mame: faulty_proc

Qutput File Mame: |

Trace Level:

Eatch/Rep Trace:

YWariance Calc:

Max Batch/Rep:

min Batch/Rep:

[JRun in the Background
[JDant Print Place Mames
[Iwide Output Screen
[JEuild Only (Do Mot Execute)

Figure 4.8: Control panel SSm options.

— usan

TERMINATING SIMULATOR

Froject Mame: faulty_proc

Qutput File Mame: |

Trace Level:

Batch/Rep Trace:

YWariance Calc:

Max Batch/Rep:

min Batch/Rep:

[JRun in the Background
[JDant Print Place Mames
[Iwide Output Screen
[JEuild Only (Do Mot Execute)

Figure 4.9: Control panel TSm options.

CHAPTER 4. SOLVERS

4.3. SIMULATORS 4-23

e If Wide Dutput Screen isselected, thesimulator assumesawider output screen. The default screen
width is 80 columns. This option adds 30 columnsto that width.

= Obtain the steady-state simulation results for the variables of the faulty_proc model
by selecting Solve->Steady State Simulator withinthecontrol panel. Specify
the Project Name and an Output File Name. Also specify Batch/Rep Trace as 10 and
Variance Calc as 10. It should only take around a minute to solve this model with
SSm. Theresults should be as follows:

Performability variable Mean Variance

probability non-blocking 4.551306e — 01 2.479906e — 01
utilization 8.447065¢ — 01 4.417886e — 02
number of tasksin queue 4.060285¢ + 00 1.714063e + 00
number of tasksin system 1.034938e + 01 1.905456¢€ + 00
fraction of timein|_O 1.498543e — 01 4.274883e — 02
number of tasks processed 3.075447e — 01 2.129670e — 01
processor : |_.O 2.214705¢ — 01 8.278872¢ — 02
processor : processing 3.956595e — 01 1.231333e — 01

Thefollowing isatypica batch output:

Variable Name : utilization

Batch Number : 10

Simulation Time : 1.100000e + 04

Time (CPU seconds) 41

Batch Mean . 8.467695e — 01

Mean : 8.447065e¢ — 01 + / — 1.516121e — 03
Variance © 4.417886e — 02 4+ / — 5.035103e — 04

The Batch Mean isthe mean for thisbatch. The Mean and Variance are the current mean and variance
estimates. You can track the progress of the simulation by comparing the values of the Mean and
Variance to their half-width, which is given after the +/—. When every half-width is less than the
relative confidence interval (specified invaredit) multiplied by the Mean/Variance for each variable,
the simulation is done.

The output file will contain the means and variances of the performability variables. 1t will also
contain the system, user, and total computation time, which were described in the solver section. It
will also contain the final simulation time, indicating the simulation time at which all batches were
complete.

Thefollowing isatypica replication output:

Variable Name : utilization
Replication Number © 2400
Simulation Time : 1.000000e + 02

Time (CPU seconds) D 1498

4-24 CHAPTER 4. SOLVERS

= Consider the number of tasks in system at time 50.0 and 100.0, by adding two vari-
ables called number of tasksin systemt50 and number of tasksin systemt100. Define
them the same way as before, but give the Instant of time the corresponding value.
Thisisaway to look at multiple times within one simulation run.

= Obtain the transient simulation results for the variables of the faulty_proc model by
selecting Solve->Terminating Simulator within the control panel. Specify the
Project Name and an Output File Name. Also specify Batch/Rep Trace as 100 and
Variance Calc as 100. You should also select Run in the Background, since it should
take around thirty minutes to solve this model with TSm. The results should be as

follows:

Performability variable Mean Variance
probability non-blocking 4.629167¢ — 01 2.487285¢e — 01
utilization 8.466667¢ — 01 4.196934¢ — 02
number of tasksin queue 4.051250e + 00 1.724342¢ + 00
number of tasksin system t50 1.036792¢ + 01 1.864164¢ + 00
number of tasksin system t100 1.034125e + 01 1.864742¢ + 00
fraction of timein|_O 1.473611e — 01 4.121854e — 02
number of tasks processed 4.500079¢ + 02 6.003021e + 02
processor : 1.0 2.274973e + 01 6.544460e + 00
processor : processing 3.978761e + 01 1.159418e + 01

Current Value : 1.000000e + 00

Mean : 8.466667¢ — 01 4+ / — 8.196275e — 03

Sample Variance D 4.196934e — 02

Variance o 4.196934e — 02 + / — 2.588252e — 03

The Current Value is the value of the variable at the end of the replication. The Sample Variance is
the variance for al replications performed thus far. The Mean and Variance are the current mean and
variance estimations. You can track the progress of the simulation by comparing the values of the
mean and variance to their half-width, which is given after the +/—. When each half-width isless
than the relative confidence interval (specified in varedit) multiplied by the mean/variance for each
variable, the smulation is done.

The output file will contain the means and variances of the performability variables. 1t will also
contain the system, user, and total computation time, which were described in the solver section.
It will also contain the number of replications, indicating how many replications were needed to
achieve the requested confidence intervals.

Pitfallsand Hints

e Thebatch sizein SSmhasto belarge enough to assure sufficient independence of the batches. Further-
more, the number of batches should not betoo low in order to computethe confidenceinterval correctly.
Simulatefor at least 30 batches, and compare the confidenceintervalsfor different batch sizes. For in-
stance, compare the confidence interval of 100 batches with a certain length with 50 batches of twice

REFERENCES 4-25

that length. Noticethat the size and the number of batchesnever influencestheresultsof the simulation,
only the confidence interval.

To get afeeling for how long the simulation will take, monitor the width of the confidence interval
by setting the Trace option. Asarule of thumb, if the confidence interval width is monitored after k
batches or replications, the simulation will take kn? additional batches or replications to decrease the
width of the confidenceinterval with afactor n.

If the terminating simulator TSm is used for estimating small probabilities the simulation might take
excessively long. Investigatein that case the applicability of theimportance sampling simulator ITSm.
ITSmis discussed separately in Chapter 6.

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

A. M. Law and W. D. Kelton, Smulation Modeling and Analysis, McGraw-Hill, New York, 1990.

M. A. Qureshi and W. H. Sanders, “Reward Model Solution Methods with Impulse and Rate Rewards:
An Algorithm and Numerical Results.” In Performance Evaluation 20, 1994, pp. 413-436.

W. H. Sanders and J. F. Meyer, “Reduced Base Model Construction Methods for Stochastic Activity
Networks,” in |EEE Journal on Selected Areas in Communications, special issue on Computer-Aided
Modeling, Analysis, and Design of Communication Networks, vol. 9, no. 1, Jan. 1991, pp. 25-36.

W. H. Sandersand R. S. Freire, “ Efficient Simulation of Hierarchical Stochastic Activity Network Mod-
els” in Discrete Event Dynamic Systems: Theory and Applications, vol. 3, no. 2/3, July 1993, pp. 271—
300.

B. P. Shah, “Analytic Solution of Stochastic Activity Networkswith Exponential and Deterministic Ac-
tivities,” Master's Thesis, University of Arizona, 1993.

J. E. Tvedt, “Matrix Representations and Analytical Solution Methods for Stochastic Activity Net-
works,” Master's Thesis, Dept. of Electrical and Computer Engineering, Univ. of Arizona, 1990.

4-26 REFERENCES

Chapter 5

Graphs and Tables with the Report
Generator

UltraSAN is equipped with a module called report generator which is used to generate graphs and
tables of the results obtained. Both 2-D (using splot and gnuplot) and 3-D graphs (using gnuplot)
as well as tables (IATpX and ASCII) can be generated with the report generator, displaying perfor-
mance variables computed with the solvers as functions of the global variables. The report generator
therefore provides a very flexible way of documenting output results.

UltraSAN also provides other documentation possibilities besides the report generator. The
Project->Document option isused to document all the SAN models, the composed model, the per-
formance variables and the range and set definitions for al the studies and experiments defined for
agiven project. The output of the solversis provided in the form of ASCII files and the distribution
of performance variables are provided in the form of splot-files. Further, the General->Display
option can be used to view and print the above files. See Chapter 3 for a detailed discussion of the
other documenting features.

This chapter explains how to use the report generator. It is organized as sections, with each sec-
tion describing thefollowing: (1) Creating agraph using output from one solver, (2) Creating atable
using output from one solver, (3) Using data from different solvers and creating agraph or table, and
(4) Saving and loading graphs and tables.

51 CreatingaGraph

This section describes how to create a single graph using the faulty multi-processor as an exam-
ple. InvoketheReport Generator of Figure5.1 by selecting General->Report Generator and
follow these steps:

1. ChoosetheReport Style 3-D, 3-D projection on 2-D, or 2-D. For our example, select 3-D
Graph.

51

CHAPTER 5. GRAPHSAND TABLESWITH THE REPORT GENERATOR

e repgen E a fi

UiftraSAN Version 3.0 Caopyright (c) Univ. of Arizona 1930-1334, Univ. of llinois 1334
Report Generator
Report Style Packages
® 3-D Graph @ gnuplot
& 3-D Proj. on 2-D Graph oy
& 2-D Graph
2 Table
- .
E E
Figure 5.1: Report generator.
E E
—=E repgen
Graph
Axis Default Source

M- Axis 0 G-num_processors
- Axis . G-arr_rate
Z-Axis : P-number of tasks in queus

Figure 5.2: Graph definition window.

2. Choose the Package gnuplot or splot for graphs. Click on gnuplot and Edit to create the
first graph. This causes the Graph window asin Figure 5.2 to appear. Note that 3-D plots can
be generated only with gnuplot.

3. Enter the globa and performance variables on the Axis by selecting Axis. This produces
thewindow Axis Type. Note that this window will be blank when opened for the first time.
Select the axis of your choice. Next choose the desired global variable or performance variable
fromthelistinthe Global Variable Selector Or Performance Variable Selector,
respectively. In Figure 5.2, the global variables num processors and arr _rate form the X
and Y-axis and the performance variable number of tasks in queue is plotted on the Z-
axis.

4. DeterminetheDefault Source, i.e., the solver for which the results are to be plotted. Select
Default Source in the Graph window, and choose Iterative Steady State Solver

52 CREATINGA TABLE 5-3

I
i repgen
Data Source Selector
) kel
vary_arr_and_processors-expl-iss
vary_arr_and_processors-expZ-iss
wary_ar_and_processors-expd-iss
vary_ar_and_processors-expd-iss
ary_art_and_processors-expa-iss
vary_art_and_processors-exphi-iss
Wary_arr_and_processors-expi-iss
vary_arr_and_processars-expii-iss
vary_arr_and_processors-expi-iss
wary_art_and_processors-expl0-iss
vary_arr_and_processors-expll-iss
vary_arr_and_processors—expl2-iss E
Default Source: iss
. X
F F

Figure 5.3: Solver selection window.

(iss) for the current example. TheData Source Selector of Figure 5.3 pops up, and ap-
pears blank when invoked for the first time.

5. Choose the study and experiments to be incorporated in the plot. Select Add in the Data
Source Selector window followed by selecting the desired study. In our example, we se-
lect vary arr_and processors. Nextselect Select Exp.,whichpopsuptheExperiment
Selector window. Select All will use al the available data in the plots. Return to the
Report generator window by selecting a series of Accepts. In the process the Data
Source Selector andthe Graph window will display the chosen experiments and variables,
asdepicted in Figure 5.2 and 5.3. Finally, select View followed by 0K to view the resulting fig-
ure asin Figure 5.4.

5.2 CreatingaTable

The following procedure should be used to create a table with data collected by the solvers. Se-
lect Report Style Table from the Report Generator window and Package IATEX or ASCII
Table. A IATEX table will be created in this example. The ASCII table is especialy useful as input
for auser’s own preferred plot or spreadsheet program. ChooseEdit to start the table specification.

The Table window in Figure 5.5 appears. The table presents sources (solvers) versus variables.
The sources can be chosen to be either on thetop (Source on column) or ontheleft side (Source
on row) Of the table. We choose Source on column. Choose Select Source to pick the de-
sired solver fromtheTable Source window of Figure5.6. UponselectingtheIterative Steady
State Solver and clicking Accept, theData Source Selector window of Figure 5.3 appears
in our example. The procedure after this step isidentical to that described in Section 5.1.

5-4 CHAPTER 5. GRAPHSAND TABLESWITH THE REPORT GENERATOR

—=E Ghostview, version 1. E 2 EJ

view.gps
Thu Mar 2 14:05:
(82, 152)

File

num_progessors WE arr_rate ve number of tasks in gueue

Page
Magstep
Orientation

Media

O = MW
LR = 0 B O) O s 0

30

Z5

arr_rate

Figure 5.4: A 3D graph.

= repgen

Table

_Select Source
@ Source on column
-1 | Select Variahle 3 SOoUrce on row ”

Figure 5.5; Table definition window.

52 CREATINGA TABLE

repgen

Tahle Source

f.’-‘«cu:ept] [Ahor]

Transient Salver

o o0 o 00 ® O

Direct Steady State Solver

lterative Steady State Solver

accumulative Reward Solver
Deterministic Iterative Steady State Solver
Steady State Simulator
Terminating Simulatar

|5 Terminating Simulator

Figure 5.6: Selection of the solver.

repgen

Table Variable Selection

&
G - NuUmM_processors
G - arr_rate
F - number of tasks in gueue

2

Figure 5.7: The selected variables.

55

5-6 CHAPTER 5. GRAPHSAND TABLESWITH THE REPORT GENERATOR

= repgen

Table Variable Selector
Table Specifier Type : performance Select All

prabability nan-blacking
utilization
numhber of tasks in queue

number of tasks in system
raction of time in [_O
number of tagks processed
processor: _O
processor: processing

2
k
Figure 5.8: Selection of variables.
Source vary_arr_and_processors-Expl
G-num_processors 1.000000
G-arr_rate 5.000000

P-number of tasksin queue | 4.490981

Table 5.1: Table for Experiment 1

Having chosen the desired experiments and solvers, a series of Accept results in the Table
window of Figure 5.5. Choose Select Variable to select the desired global and performance
variables. Next, select Add in the Table Variable Selection window of Figure 5.7. Then,
chooseGlobal Variable Or Performance VariableandSelect VarintheTable Specifier
Selector. Highlight the desired variable in the Table Variable Selector window of Figure
5.8. Intheexample, resultsfor the performance variable number of _tasks_in_queue Will appear in
thetable. Notethat the selection of avariable resultsintheremoval of the variable fromthelistinthe

Table Variable Selector. To delete a chosen variable select Delete in the Time Variable
Selection window.

Finally, select Accept inthe Table Variable Selection window if the displayed variables
are correct. The global variables num processors and arr_rate and the performance variable
number_of_tasks_in_queue appear in the table, as shown in Figure 5.7. The table can be viewed
by selecting View inthe Report Generator window of Figure 5.1. Table 5.1 shows the table cre-
ated for the first experiment in this example.

5.3. DIFFERENT SOLVERSIN A SINGLE GRAPH OR TABLE 57

13 3
—‘E repgen

Change Source

Change Default

Change Previous

lterative Steady State Solver (iss)

®
o
> Direct Steady State Solver (dss)
®

> Deterministic [terative Steady State Solver (diss)
{ Steady State Simulator (55im)

Figure 5.9: Change the solver.

5.3 Different Solversin a Single Graph or Table

The report generator also makes it possible to plot in asingle graph data obtained from different
solvers. Thiswill beimportant if simulation and analytic methods both have been used for different
experiments.

In the report generator one solver is considered the default source. For newly selected experi-
ments, theresultswill betaken from the output of the default solver. IntheData Source Selector
(Figure 5.3) the default source can be substituted by another source. To do this, select the experiment
which has to be changed and choose Change, leading to the Change Source window of Figure 5.9.
Choose anew source from the highlighted solvers. Notice that steady-state and transient solvers can
only substitute a solver within their own category. If Change Previous ischosen, the previousy
selected experiments will take their results from the chosen solver. If Change Default ischosen,
all the future sources will assume the new default solver.

Thereisasecond way to combine results from different solversin onegraph or table. Change the
default source, either inthe Change Source window of Figure5.9 or in the Graph window in Figure
5.2. Then Delete the experiments to be changed in the Data Source Selector. Select Add and
add the experiments, automatically taking data from the new default source. Use Info which high-
lights the parameters associated with an experiment, to check which experiments have been chosen.

Finally, note that the tool does not alow for displaying results from two different solversfor the
same experiment. To havethese resultsin asingle graph separate experiments haveto be defined. On
the other hand, it is possible to have results from different studiesin asingle table or graph by choos-
ing Add intheData Source Selector and choosing the desired study in the Study Selector.

5-8 CHAPTER 5. GRAPHSAND TABLESWITH THE REPORT GENERATOR

54 Saveand Load Graphsand Tables

The Import and Export buttons can be used to open and save plots created in the report gener-
ator. To savethe graph or tablein afile, click Export intheReport Generator window in Figure
5.1 and define afile name. The graph or table aswell as all the editing information from the report
generator isloaded in the specified file. Toload the graph or table click Import and Open the desired
file. Because dl the report generator information is now available the graph or table can easily be
adjusted in the report generator.

Thereisasecond way to save graphsor tables. If Accept ischosenfromtheReport Generator
window it acts asif Export ischosen. The saved graph or table can be opened again by the Import
option as described above.

5.5 Hints

e For 3-D plotsitisusually best to put global variables on the X- and Y-axis and a performance
variable on the Z-axis. However, it is possible to take other settings in the report generator.

e To start a new graph or table with a clean report generator, click Abort in the Report
Generator window and restart the report generator by General->Report Generator. Of
course, it isalso possible to create a new graph without exiting the report generator. However,
earlier selected study, experiments, and solvers will then remain valid which implies that these
have to be deleted separately fromtheData Source Selector window if they arenolonger
required.

¢ Notethat graphs and tables from transient results for different time points cannot be generated
directly inthe current report generator if these results are al generated asthe output of asingle
experiment. For the transient solvers the report generator will take the data belonging with
the first specified time point or interval. Note that these results can beincorporated in asingle
graph or table if they are obtained in different experiments.

¢ Intermediate files and generated postscript plot representations can be found in the directory
projects/faulty_proc/int. Thesefilescan be used for advanced use of gnuplot and IATEX
or for use of one's own plot or spreadsheet program. Especialy useful in this regard is the
ASCI|I table output which can serve as input for most spreadsheets.

Chapter 6

| mportance Sampling

In this chapter we discuss importance sampling (1S), atechnique that in some cases can increase the
speed of a simulation. Because the application of IS in UltraSAN demands particular actions not
necessary if you use the other solvers, IS isdiscussed in much more detail in this chapter. To apply
IS UltraSAN is equipped with an IS Governor editor to be found under Edit->IS Governor. An
informal description of 1S will be followed by instructions on how to use the IS governor. A more
rigorous treatment of the technique can be found in Obal and Sanders[1, 2].

6.1 Introduction to Importance Sampling

Direct simulation of a model can in some cases lead to excessively long simulation times. Al-
though in general the UltraSAN simulators will turn out to be particularly efficient (using efficient
event scheduling mechanisms as reported in [3]) some problems inherently take much CPU time.
The most prominent case one is likely to encounter when evaluating the performance of a system
is the problem of rare events. This problem occurs when one tries to obtain areliable estimate of a
very small probability. For example, think of asystem’s unreliability if it is of the order 10~°, or the
blocking probability of abuffer if it isof the order 10Y.

Thebasic problem inrare event simulation isthat the event of interest occurs sorarely that it takes
many runs before the event passes by and to obtain areliabl e estimate many of these events must have
taken place, thus asking for long simulations. Toillustrate the potential problem compute the unreli-
ability U of asystem at instant of time ¢ (reliability at timet isthe probability the system has not been
downintheinterval [0, ¢]). Model thesystemin UltraSAN and apply theTerminating Simulator.
Thiswould result in creating IV independent simulation runs (replications) of the model, every run
keeping track whether the system is down or up at moment ¢. Some straightforward mathematics
will then reveal that it will take on the order of % runs to be 95% percent certain that the actual

answer is within 10% of the simulation outcome. So, if U = 1075, it demands for 100, 000, 000
replications, and if U = 107, it grows to 100, 000, 000, 000 replications.

6-1

6-2 CHAPTER 6. IMPORTANCE SAMPLING

Theideabehind ISisto increase the number of timesthe rare event occursin the simulation. For
instance, one might increase the failure rate of components in amodel of ahighly-reliable system.
IS creates abiased model, and in UltraSAN an IS Governor isused to specify the biasing scheme.
Of course, when smulating the biased model, one introduces an error in the outcome. Therefore
part of ISisto correct for thisintroduced error by computing the so-called likelihood ratio, whichis
the ratio of the probability that a certain system evolution occurs in the new model and the probabil-
ity that the same evolution would have taken place in the old model. The|S component in UltraSAN
automatically computesthislikelihood ratio for the specified biasing scheme and correctsthe ISsim-
ulation result accordingly. In other words, after the user has specified the IS Governor, the tool takes
care to obtain the correct answer.

In successful biasing schemes, often the introduced bias is dependent on the evolution of the
simulation run. In the IS Governor it therefore is hot only possible to specify bias on activities and
cases, but also to let the bias change depending on the evol ution of the simulation run. In other words,
there isinteraction between the simulation execution of the SAN model and the IS Governor. In this
way ahighly flexible mechanism is created for specifying IS biasing schemes.

6.2 1S Governor

The IS governor supplies the following basic features:
e the definition of governor states,!

— for every governor state, one can define abiasfor any activity (provided the activity time
distribution iseither exponential, uniform, Weibull, triangular, or hyper-exponential) and
for any case probability.

e the definition of governor-transitions between governor-states,

— for every governor-transition one can define a predicate determining when the transition
between governor states will take place.

Furthermore, new global variables can be introduced in the IS governor (and earlier introduced ones
can of course still be used).

Wewill discuss the mechanics of the IS governor by adapting the example of the multi-processor
in the paper on UltraSAN Version 3.0 [4]. In Figure 6.1 we show one submodel, the model of the
CPU for which activities will be biased in the following discussion. We use the multi-processor ex-
ample because the “rare event” problem isnot present in the running example of the faulty micropro-
cessor. However, a detailed discussion of the complete multi-processor model would consume too

1 On purpose we use in this place the adjective governor for states and transitions to distinguish it from states and tran-
sitions in astochastic process. In the rest of this chapter, however, we will simply use the short terms state and transition.

6.2. ISGOVERNOR 6-3

s sanedit

tHitraSAN “Version 3.0 Copyright (¢} Univ. of Arizona 1930-1394, Univ. of |llinois 1934

* Project multi_proc Subnet: cpu_module mag 1x
File Edit Font Option

Select
Define

Magnify
Text

Place
Inst. Activity
Timed Activity
Input Gate
Cutput Gate

Figure 6.1: SAN model of the CPU in amulti-processor model.

much space, so we refer to [4] for details. Basicaly, the rare event problem in the multi-processor
model is caused by the high reliability of the system, and the biasing strategies aim at speeding up
the occurrences of failures, similar to the ideas discussed above.

Building the I S Governor

Open the IS governor editor by opening Edit -> IS Governor. The Importance
Sampling Governor Editor window that then appearsis given in Figure 6.2. In this window one
can Add andDelete statesinthe governor, specify thestatesby Edit State, and specify transitions
between governor states by Edit Trans. Funct.

After Add-ing astate, doEdit State,resultingintheIS Governor State Specification
window as given in Figure 6.3 and then highlight the activity to be biased. It is important to ver-
ify in which submodel the activity is located which one wants to bias. If the desired activity is not
listed, go to another submodel by Next or Prev Submodel. Select Add/Edit Bias for an activity,
and the Timed Activity Editor window popsup, asin Figure 6.4. There the parameters of the
distributions can be biased, as well as the case probabilities. One can choose any of the displayed
distributions. If the Timed Activity Editor isopened for thefirst time, the parameter definitions
of the origina model will appear.

Figure 6.4 shows part of arelatively complicated expression for the rate of an exponentia dis-

CHAPTER 6. IMPORTANCE SAMPLING

= isedit Fa b

UltraSAN ‘Version 3.0 Copyright (c) Univ, of Arizona 1930-13834, Univ. of Illinois 1984

Importance Sampling Governor Editor Accept Ahort

Project: multi_proc

Gowvernar State Selector

ate Forcing

2

Add Edit State Edit Trans. Funct. | [+

1 E

Figure 6.2: 1S Governor Editor

s isedit

IS Governor State Specification

State: Approximate Forcing

Submodel cpu_module (Prev Submodel | [MNext Submodel |

Select an activity to bias:

cpu_tailure EFy

|

(Add/Edit Bias | (Remove Bias | -

Figure 6.3: 1S Governor state specification editor.

6.2. ISGOVERNOR 6-5

I £
s isedit
TIMED ACTIVITY EDITOR
cpu_failure
Time Distribution Functions
@® exponential Cweibull 3 unifarm O hyperexponential
O deterministic Cririangular
Parameters:
rate
[0 * (GLOBAL_Difarce_ - | = | =
£((7.0 * GLOBAL_S(rum
£ £ £
Case Distribution
Sicase 1
|p.3333 &
1 =h
T F

Figure 6.4: 1S Governor timed activity biasing editor.

tribution. For the full expression see[4]. Theideabehind it isto speed up the failures in such away
that al different failuresin this complicated model become equally likely (astrategy called balanced
failure biasing). To that end the case probabilities are all made equal. Figure 6.4 shows the biased
probability 1/3 for case 1, out of the three belonging with activity cpu_failure in Figure 6.1. Note
that the next case can be selected by clicking the rotating arrows. Click Accept to let the new bias
take effect.

IntheIS Governor State Specificationwindow reached after doing AcceptintheTimed
Activity Editor window ancther activity to bias can be chosen, possibly in another submodel.
Clicking Accept in the IS Governor State Specification returns to the Importance
Sampling Governor Editor, where the previously defined bias belongs with the highlighted gov-
ernor state (Approximate Forcing in Figure 6.2). For the other states follow the same procedure.
The state Unbiased for instance would correspond to no biasing at all (see [4]).

During the simulation, changesinthe SAN markings can trigger transitions between the governor-
states. It isimportant to note that the biasing scheme selected to start with (i.e, at time ¢ = 0) is
the upper state in the window IS Governor State Specification. To define when the state
changes in the governor take place, highlight one of the statesand doEdit Trans. Funct. The
IS Governor Transition Function Specification window popsup (seeFigure 6.5) denot-
ing which governor state is chosen. First, select a next state, then define a Predicate
Specification for the given Submodel. Choose the submodel belonging with the places the gov-
ernor transition depends on. Repeat the procedure for all desired submodels. The total predicate
specification isonly true if the predicates for al submodels are true. Because it isimportant to pre-

6-6

CHAPTER 6. IMPORTANCE SAMPLING

1] 11
s isedit

IS Governor Transition Function Specification

State: Approximate Forcing

Select next state:

IAEEroximate Forcini hj}.

Predicate Specification for Submodel: cpu_modulef Prev. Submodel | [Next Submodel

Bl — K]

=l

[Add Trans.] [Del Trans. | [Prev. Trans.] [Mext Trans.] -

Figure 6.5: IS governor transitions editor

cisely understand the working of the governor transitions, the following rules are listed:

1.
2.
3.

Transition predicates must be expressions. No semicolons or return statements are allowed.
Global variables may be used in transition predicates.

If apredicateis defined on a SAN that is replicated in the composed model, then the predicate is true
if it holdsfor at least one replicate.

All predicatesmust hold for atransition to be taken. When the transition istaken, the governor changes
to the specified state. If predicates are only defined for a subset of the SANs in the composed model,
the nil (unspecified) predicates are treated as alwaystrue.

If there are several transitions from one state to another governor-state, the new state will be reached if
for any of the transitions all predicates hold.

A governor isnot well-specified if thereis morethan onetransition that holdsand they do not all point to
thesamenext state. (Anill-specified governor isnot detected by thetool. Basically, theimplementation
followsan “if-then-else” construction; thefirst transition that holdswill be chosen, with the transitions
ordered in the order they are specified by the user.)

To add or change transitions in the IS Governor Transition Function Specification
window, take some extra care. Thereis no separate Edit window and consequently the method for
adding or changing transitions is dightly different from most other editors.

To add transitions between states, you should follow these steps:

1. Click on the destination state in the top window.

6.3. STARTING THE IS TERMINATING SIMULATOR 6-7

2. Click in the bottom window.

3. Typethe predicate for the displayed SAN.

4, PushtheNext Submodel button.

5. Repeat last two steps for each SAN you want to define a predicate on.

6. Press Add Trans button.

7. Browse your transitions from the current state using theNext Trans and Prev Trans buttons.

8. Pressthe Accept button to save your changes, or Abort to exit with no changes.

To change transitions, the steps are a bit different:

1. Scroll to the transition you want to change using the Prev Trans and Next Trans buttons.
2. Scrall to the predicate you want to change using the Prev and Next Submodel buttons.

3. Edit the predicate like you would a gate predicate.

4. PresstheNext Submodel button.

5. Pressthe Add Trans button.

6. Scroll through the transitions. The transition you changed is visible in both the old and new form. If
the new form is preferred, scroll to the old one and presstheDel Trans button.

7. PressAccept to save your changes, press Abort to abandon the changes.

6.3 StartingthelS Terminating Simulator

Having specified the governor, and assigned parameter valuesto the global variablesinthe Study
editor, the final step isto run Solve->IS Terminating Simulator. The pop-up window is
identica as the other simulators, as isthe output on the Control Panel or output file.

6.4 Pitfallsand Hints

Successful application of importance sampling is, in general, a difficult matter. One can only
expect to be able to define a working governor if one has a thorough understanding of the original
model and its dynamics. Creating a successful governor is an art in itself. The following remarks
should be considered when using the IS governor.

e Although IS can result in dramatic variance reduction, it can result in exploding variance if an incor-
rect biasing schemeis defined. Thisis especially important since the tool might not catch the variance
increase, ssimply because the confidence interval is also based on an estimator (obtained from the sim-
ulation), and can therefore be incorrect. Always check the strategy for simple models with analytic
results.

6-8

REFERENCES

Study the available literature in detail before applying importance sampling. The literature provides
biasing schemes with proven variance reduction properties and, equally important, provides useful
heuristics for the definition of a governor. See[2] for aliterature overview.

In the scientific literature, importance sampling has been applied to solve the rare event problem and
successismost likely when dealing with this problem. The application of importance sampling to speed
up other time consuming simulations has not been devel oped.

Activitiesin IS simulations are reactivated according to the activation and reactivation predicatesin the
original model. However, an activity will also be reactivated when agovernor state transition resultsin
adifferent activity time distribution or in the same distribution with different parameters.

Make sure all possible evolutions of the original model are till possible in the biased model and vice
versa, otherwise the biasing scheme might be incorrect?. The tool will only be able to detect an in-
correctly specified governor if the IS simulation reveals a path that has likelihood O of occurring in the
original model.

Note that the definition of the desired accuracy and thetime point of interest till hasto becarried outin
Edit StatsinEdit->Performability Variables,whilethelimitsonthenumber of replications,
etc, isdonein Solve ->IS Terminating Simulator.

REFERENCES

(1]

(2]

(3]

(4]

W. D. Obal Il and W. H. Sanders, “Importance Sampling Simulation in UltraSAN,” Smulation, vol. 62,
no. 2, Feb. 1994, pp. 98-111.

W.D. Obal Il and W.H. Sanders, “An Environment for Importance Sampling Based on Stochastic Activ-
ity Networks,” Proc. 13th. Symposiumon Reliable Distributed Systems, DanaPoint, CA, October 1994,
pp. 64-73.

W. H. Sandersand R. S. Freire, “ Efficient Simulation of Hierarchical Stochastic Activity Network Mod-
és,” in Discrete Event Dynamic Systems: Theory and Applications, vol. 3, no. 2/3, July 1993, pp. 271—
300.

W. H. Sanders, W. D. Obal, M. A. Qureshi, and F. K. Widjanarko, “The UltraSAN Modeling Environ-
ment,” accepted for publication in Performance Evaluation Journal, special issue on Performance Mod-
eling Tools, 1995.

2Theoretically, it only is allowed to not specify evolutions that contribute reward O.

Appendix A

| nstallation

This appendix givestheinstallation steps of UltraSAN for the system administrator and the environ-
ment setup for users of the toal.

A.1 Installation

The received package consists of aset of compressed tar files. Thesefilesand their approximate
sizes arel

e usan.v3.0.demos.tar.Z—demo files (approximately 3 MB)

e usan.v3.0.execs.HP800.tar.Z— executables for the HP80O architecture (approximately
6.5 MB)

e usan.v3.0.execs.MIPSEL. tar.Z— executables for the DECstation architecture (approxi-
mately 6.5 MB)

e usan.v3.0.execs.RS6000.tar.Z — executables for the RS/6000 architecture (approxi-
mately 6.5 MB)

e usan.v3.0.execs.SUN4.tar.Z — executables for the SUN/4 architecture (approximately
6.5 MB)

e usan.v3.0.general.tar.Z—generd files (approximately 66 K)

e usan.v3.0.tar.Z— entire package for all architectures (approximately 29.5 MB)

Thelast fileis the combination of the rest of thefiles. You can either install using thisfile, or if you
will only be using one architecture, and disk space is short, you can install using the general, the
demos, and the appropriate execs tar files. The present release of UltraSAN supports the HP, DEC-
station, RS/6000, and SUN/4 architectures. All software components related to these architectures
are labeled HP800, MIPSEL, RS6000 and SUN4, respectively.

Givenjust onerequested architecture, the compressed tar fileswill take approximately 6.5 MB of
disk space, but an additional 16 MB should be available for the expanded UltraSAN tree. UltraSAN

A-1

A-2 APPENDIX A. INSTALLATION

will run on many different system configurations, although aminimum of 16 MB of RAM is needed.
The graphical interfaces run within the X Window System'.
Follow these stepsto install UltraSAN:

1. Chooseadirectory inwhichtoinstall the UltraSAN tree, and make surethereisno entry called
usan.v3.0. Thisdirectory will hereafter be called the installation directory. Change the cur-
rent directory to the installation directory.

2. Uncompress and untar the UltraSAN tree as follows. If you are using the file usan.v3.0.
tar . Z, execute the command:
zcat usan.v3.0.tar.Z | tar xvf —

and skip to step 5. If you have the separated files, execute the command:
zcat usan.v3.0.generdl .tar.Z | tar xvf —

Details of the zcat and tar commands can be found in their respective man pages. This will
create ausan.v3.0 directory with more directories beneath it and some general files. Files
and directories are created relative to the current working directory, so it isimperative that all
tars be done from the installation directory.

3. If you only want to install UltraSAN for a specific architecture, uncompress and untar usan.
v3.0.execs.ARCH. tar.Zthe same way, where ARCH isthe desired architecture. Thiswill
put the executables into the appropriate directories.

4. Uncompress and untar usan.v3.0.demos . tar.Zthe same way. Thisinstalls a set of demo
projects. Demo ingtalation is optional but is recommended for new users.

5. Make asymboalic link in the installation directory called usan with the following command:
In-susan.v3.0 usan
Thiswill allow new versions to be installed without the users having to change their environ-
ment variables.

After installation, the file structure seen in Figure A.1 should be present. The directory usan.v3.0
was created along with six subdirectories. The purpose for each of these directories is as follows:

e Thebin/ARCH directories contain the executables for each of the modules.

e Thedemo directory contains a set of sample projects, which will be explained later in this ap-
pendix.

e The include and 1ib/ARCH directories contain header files and libraries respectively, used
by the performability variable editor when generating the model executables.

1X Window System is atrademark of the Massachusetts Institute of Technology.

A.2. ENVIRONMENT SETUP FOR ULTRASAN USERS A-3

demo| [include |

e |]]
s] wpoe][]
- roio0] Sl i

Figure A.1: File structure of the UltraSAN tree.

e Theman directory contains the manua pages for the different modules of UltraSAN.

e The setup/ARCH directory contains four subdirectories for the four architectures (HP80O,
MIPSEL, RS6000 and SUN4). Each of the these subdirectories contain two files: compile.
def and local.def. The compile.def file specifies the compiler to be used and contains
the flags used by UltraSAN when compiling. These flags and the specified compiler should be
checked for compatibility with your system, although no changes will probably be required.
The local.def file has information about the shell variable, the documenting, viewing and
plotting packages used.

To use the automatic documentation and viewing facility in UltraSAN, IATpX ghostview and
gnuplot and/or splot are required. If you do not have them, they can be obtained by anony-
mous FTP. Next, even if you do have IATEX you will need to obtain two style files needed by
UltraSAN: USANieee.sty and USANpsfig.sty. These files must be put somewhere where
IATEX can find them. This can be either the directory where IATEX will be executed, or some-
where public, such as /usr/local/tex/macros. Ghostview is used to preview documents before
printing while gnuplot and splot may be used to generate graphs.

A.2 Environment Setup for UltraSAN users

Before running UltraSAN, a few changes must be made to your UNIX environment. All Ultra-
SAN executables are located in usan/bin/ARCH, where usan is the symbolic link to the UltraSAN
tree that was created during installation, and ARCH is the architecture that you are using. This direc-
tory should be added to your path. Also, usan/man should be added to your manpath, so that the
manual pages can be consulted. Three additional environment variables must be set. CPU must be
set to either HP80O, MIPSEL, RS6000, or SUN4. USAN must be set to the path of the top of the
UltraSAN tree (installation directory). Also, adirectory must be created within the user’s file space,

A-4 APPENDIX A. INSTALLATION

where al project fileswill be put. Thisdirectory can have any name, although projects isacom-
mon choice. USAN_PROJECT must then be set to the full path of this directory. Different project
directories may be created, but UltraSAN will only search for projects in the directory specified by
the USAN_PROJECT ervironment variable.

All of these assignments can be done in your . cshrc file (assuming use of C shell). Thisisa
filein your home directory that is executed for every shell that is started. Hereis an example of lines
that could be added to someone's . cshre.

setenv PATH “$PATH :/tools'usan/bin/SUN4”
setenv MANPATH “$MANPATH :/tools'usan/man”
setenv CPU SUN4

setenv USAN /tools/usan

setenv USAN_PROJECT /usr/jack/projects

After changing the .cshrc, it must be executed so that the new variables are set for the current shell.
The command to do thisis:
source $SHOME/.cshrc
Thisis done automatically for all new shells.

A.3 Demo projects

There are a set of sample projects within the UltraSAN tree with which the user can and should
experiment. They arein the $USAN/demo directory. To use ademo, the entire project tree should be
copied into the user’s own project directory. This can be done with:

cp -rp SUSAN/demo/proj _name SUSAN_PROJECT

The copied project can then be used with the tool the same way as a user’s own projects. Sub-
sequent chapters will step through the description and solution of the faulty_proc demo. You can
either build the project from scratch or copy this demo into your project directory.

Below isalist of the currently available demos with the references to the papers in which they
are mentioned.

¢ database_a — database availability model [1]

o faulty_proc — faulty microprocessor model [2] (also used as the running example in this man-
ual)

e |lan—local area network model [3]

e multi_proc — multi-processor model [1]

REFERENCES A-5

REFERENCES

[1] W. H. Sanders and L. M. Mdlhis, “Dependability Evaluation Using Composed SAN-Based Reward
Models,” in Journal on Parallel and Distributed Computing, special issue on Petri Net Models of Par-
alel and Distributed Computers, vol. 15, no. 3, July 1992, pp. 238-254.

[2] J. F Meyerand W. H. Sanders, “ Specification and Construction of Performability Models,” Proceedings
of the Second International Workshop on Performability Modeling of Computer and Communication
Systems, Mont. Saint-Michel, France, June 28-30, 1993.

[3] J. Couvillion, R. Freire, R. Johnson, W. D. Obal, A. Qureshi, M. Rai, W. H. Sanders, and J. E. Tvedt,
“Performability Modeling with UltraSAN,” Int. Workshop on Petri Nets and Performance Models, pp.
290-299, Melbourne, Australia, December 2-5, 1991, pp. 290-299.

REFERENCES

Appendix B

Tool Organization and File Structure

This appendix gives theinternal organization of UltraSAN and its file structure. A knowledge of the
organization and file structure can be helpful in understanding error messages and can also provide
insight about the operation of the tool.

The components of UltraSAN can be divided into four categories. model specification, global
variable assignment, study construction and study solution. Figure B.1 shows all the components
and their interdependencies.

The rectangles in this figure represent executable programs that are accessed from the CP, per-
forming specific modeling functions. They can be run directly from the command line prompt or
from the CP. The ovals represent data files used as intermediate communication between the pro-
grams. Both rectangles and ovals are dotted if they are created during modeling, and solid if they are
static, i.e., used but not created or destroyed during modeling.

Figure B.2 gives the directory structure for a typica modeling project. The int subdirec-
tory holds a description of the composed moddl in thefilesproj.h, Gen.c,SSim.c,TSim.c and
ITSim.c. Thefile proj.h specifies the structure of the composed model, and the various . c files
comprisetheinitial routines of the resulting model construction and solution programs. Theinternal
description of the specified performability variablesiscontained inthefilesproj.ve, projvar.c,
projvar.h, proj.ssim, and proj.tsim.

The graphical description of the composed model is stored in the file proj at the top level.
The subnets subdirectory contains a subdirectory for each subnet in the composed model labeled
subnet1 through subnetN. The .h, .c and communication filesfor the SAN associated with each
subnet are placed in the corresponding subnet subdirectory.

Information regarding studies is stored in the studies subdirectory, which has a subdirectory
for each study. Each study subdirectory in turn has a subdirectory for every experiment associ-
ated with it. The particular values assigned to each global variable in an experiment are stored in
experiment.h in the int subdirectory for the experiment in consideration. The ARCH (HP80O0,
MIPSEL, RS6000 or SUN4) subdirectory within bin for each experiment contains the executables

B-1

APPENDIX B. TOOL ORGANIZATION AND FILE STRUCTURE

Model Specification

SAN Composed Performability IS
Editor MOQeI Van?hle Govgrnur
//’/\ Editor Editor Editor
SAN - SAI\;“ - SAN 'C(;r‘;lposed Moa.e.l - erformab
. Description T : Description Variable Governor

. Description . Description

escription Description

Global Variable Assignment

Study
Editor

Study 1) ’ e Study N

Experiment 1 Experiment 2 Experiment M

Study Construction

Study Soluti

SimulaloryGeneration Reduced Bﬁie Generation Reduced Base Model
Control Panel Control Panel Library

Reduced
Base Model
Generator

L

Reduced Base"
Model

Steady-State
Simulator

- —— Direct Iterative Deterministic Iterative Transient PDF Expected
Tgfmn:azmg 1S ?rm; nating Steady-State Steady-State Steady-State Instant-of-time Interval-of-time Interval-of-time
imutator imulator Solver Solver Solver Solver Solver Solver

Figure B.1: Organization and data flow of UltraSAN version three

studies

B-3

proj
proj subnets
StudyN int subnetl . subnetN
SUN4 subnet 1 (s)
results int subnetl.act (s)

subnetl.h (s)
subnetl.san (s)
component files (s)

subnetl.a (s)
object files (s)

out.Gen.expl (cp)
out.SSim.exp2 (cp)

out.SSim.expN (cp) proj.std (se)

int
Study1 Study?2
proj.h (c) y Y
projvar.h (v)
projvar.c (v)
Gen.c (c) '
SSim.c (c) expl exp2 ... expM
TSim.c (c)
ITSim.c (c)
proj.rbm (r)
proj.ssim (v)
proj.tsim (v)
proj.sub (c) int)
proj.var (r) bin
prof.ve (v) I
SUN4
experiment.h (se)
rvinfo.rtl)(s?)b) |
expl.rom (rbmc Gen (¢
expl.var (rbmc) SSim((EI)J)
expl.det((rbmc) TSim (cp)

expl.parm (rbmc)
status.HP800 (cp)
status.MIPSEL (cp)
status.RS6000 (cp)
status.SUN4 (cp)

var.std (se)

proj.eps (cp)
proj_subnetl.eps (cp)

proj_subnetN.eps (cp)

HP800.map (cp)
MIPSEL.map (cp)
RS6000.map (cp)
SUN4.map (cp)

(s) created by SAN Editor

(c) created by Composed Model Editor

(v) created by Performability VVariable Editor

(se) created by Study Editor

(cp) crerated by Control Panel

(rbmc) created by Reduced Base Model Generator

Figure B.2: Directory structure of atypica modeling project

B-4 APPENDIX B. TOOL ORGANIZATION AND FILE STRUCTURE

associated with it, namely Gen, SSim or TSim, depending on the solution method employed. If
the method of solution is analysis, the following additiona files, namely, exp.rbm, exp.var and
exp.det arecreated and stored in the int subdirectory for each experiment, and the model is solved
by executing aparticular analytic solver onit. Resultsof thesolution arestored inaseparate results
directory for each study.

Appendix C

Output File Formats of the Reduced
Base Model Generator

Thisappendix givestheformat of theexp . rbm, exp.var and exp . det filesthat are generated while
using analytic solvers. An understanding of these files may prove helpful while debugging SAN
models, and can aso be used to link to one’s own solvers.

If the intended solution method is analysis, a state-level representation known as reduced base
model must be generated using the reduced base model constructor for each experiment, before an
analytic solverisused. Thereduced basemodel isheldinthefilesexp.rbm, exp.varandexp.det
which are stored in the int subdirectory for each experiment.

The exp.rbm file contains details about the total number of states, the connectivity between
states and their rates (if all activities are exponential) or probabilities (if deterministic activities are
used). The format and contents of thisfile are as follows, with each enumerated item appearing on
anew line starting from line No. 1inthe exp.rbmfile

1. Alinlinel.

2. Thetotal number of statesin the model under consideration.
3. State number of current state.

4. The next possible state.

5. Therate from the current state to the state specified in item 4, if the associated activity is ex-
ponentia. If it is deterministic, a minus sign precedes the number in this line and should be
interpreted asfollows: The absolute value of the number in thisline now gives the conditional
probability given that the deterministic activity completes, of going from the current state to
the state specified in item 4. The time of the deterministic activity is stored the exp . det file
(see below).

C-2APPENDIX C. OUTPUT FILE FORMATSOF THE REDUCED BASE MODEL GENERATOR

6. Items 4 and 5 (each on a separate line) for all possible next states and rates from the state in
item 3.

7. A 0to mark the end of the possibilities from the state in item 3.
8. Items 3 through 7 for all statesin the mode.

Theexp . var filecontainsinformation about the performance variables and the rewards (rate and
impulse) for al the states. The format and contents of thisfile are as follows, with each enumerated
item appearing on a separate line, beginning from line No.1.

1. Nameof performance variable asit appearsin varedit, one per line for each performance vari-
able defined in the model.

2. State number.
3. Impulse reward for performance variable when in the state specified initem 2.
4. Ratereward for performance variable when in the state specified in item 2.

5. Items 3 and 4 for each of the performance variables defined, beginning with the first perfor-
mance variable.

6. Items 2 through 5 for all statesin the model.

The format of the exp.det fileis as follows. If the model does not contain any deterministic
activity, thisfile contains asingle 0. If the model has one or more deterministic activities the format
is asfollows, with each enumerated item appearing on anew line starting from line No. 1.

1. A 1to denote that the model has deterministic activities.

2. Thetimefor the deterministic activity.

3. All statesin which adeterministic activity can complete with the time value in item 2.
4. A 0to mark the end of the possible states with time value in item 2.

5. If morethan one deterministic activity exists, items 2 through 4 for each deterministic activity.

Appendix D

Bibliography

D.1

1

Theory and Algorithm Development

J. D. Diener and W. H. Sanders, “Empiricall Comparison of Uniformization Methods for
Continuous-Time Markov Chains,” Computations with Markov Chains, W. J. Stewart (ed.),
Kluwer Academic Publishers, Boston, 1995, pp. 547-570.

Provides a comparison and a discussion of implementation aspects of different variations of
adaptive uniformization (see the paper of Van Moorsel and Sanders).

. R.German, A. P. A. van Moorsdl, M. A. Qureshi, and W. H. Sanders, “ Solution of Stochastic

Petri Nets with Genera Distributions, Rate and Impulse Rewards,” Research Report 95G01
CRHC. Submitted for publication.

Computes reward measuresfor Petri netswith general distributions. Furthermore, the method
of supplementary variables is enhanced to derive transient solutions of models with general
distributions.

J. F. Meyer, A. Movaghar, and W. H. Sanders, “ Stochastic Activity Networks. Structure, Be-
havior, and Application,” Proc. of the Int. Conf. on Timed Petri Nets, Torino, Italy, July 1985,
pp. 106-115.

Paper containing formal SAN definitions, as they existed in 1985.

J. F. Meyer and W. H. Sanders, “ Specification and Construction of Performability Models,”
Proceedings of the Second International Workshop on Performability Modeling of Computer
and Communication Systems, Mont. Saint-Michel, France, June 28-30, 1993.

Discusses specification and construction of performability models, with emphasis on SANs
and UltraSAN.

A.P A.van Moorsd, L. Kant, and W. H. Sanders, “Computation of the Asymptotic Variance

for Determining Simulation and Measurement Times,” Research Report 94M01 CRHC. Sub-
mitted for publication.

D-1

D-2

10.

11.

12.

APPENDIX D. BIBLIOGRAPHY

Gives a numerical method for computing the asymptotic variance for large Markov models.
The asymptotic variance determines the simulation or measurement time necessary to reach
the desired accuracy in the output measure.

. A. P A. van Moorsel and W. H. Sanders, “Adaptive Uniformization,” Communications in

Satistics. Stochastic Models, val. 10, no. 3, August 1994, pp. 619-648.

Discusses an efficient method of doing uniformization, particularly for stiff systems. A formal
definition of adaptive uniformization is given, along with a proof that it yields correct results,
and examples of its use on simple systems.

. A.P. A.van Moorsel and W. H. Sanders, “Adaptive Uniformization: Technical Details,” Re-

search Report 93M03 CRHC.
Technical details complementing the above paper.

A. Movaghar and J. F. Meyer, “Performability Modeling with Stochastic Activity Networks,”
Proc. of the 1984 Real-Time Systems Symp., Austin, TX, Dec. 1984.

Paper introducing stochastic activity networks. Contains an application to real-time systems.

W. D. Obal Il and W. H. Sanders, “An Environment for Importance Sampling Based on
Stochastic Activity Networks,” Proc. of the 13th. Symposium on Reliable Distributed Sys-
tems, Dana Point, CA, October 1994, pp. 64-73.

Describesthe theory underlying the implementation of importance sampling in UltraSAN, and
provides an example application.

M. A. Qureshi and W. H. Sanders, “Reward Model Solution Methods with Impulse and Rate
Rewards: An Algorithm and Numerical Results” Performance Evaluation vol. 20, 1994, pp.
413-436.

Uses uniformization to determine the probability distribution function of interval-of-time vari-
ables over finite utilization periods.

M. A. Qureshi, W. H. Sanders, A. P. A. van Maoorsel, and R. German, “Algorithmsfor the Gen-
eration of State-Level Representations of Stochastic Activity Networks with General Reward
Structures,” Research Report 95Q02 CRHC. Submitted for publication.

This paper discusses the generation of the stochastic process underlying a SAN, including the
algorithm for the “ well-specified check” Furthermore, a general reward structure is intro-
duced that can represent all reward variables defined on the marking behavior of a SAN.

W. H. Sanders and J. F. Meyer, “Performability Modeling of Distributed Systems Using
Stochastic Activity Networks,” Prac. of the Int. Workshop on Petri Nets and Performance Mod-
els, Madison, WI, August 1987, pp. 111-120.

Early paper describing the use of reward model solution methods and stochastic activity net-
works for performability evaluation.

D.1.

13.

14.

15.

16.

17.

18.

19.

THEORY AND ALGORITHM DEVELOPMENT D-3

W. H. Sanders, “Construction and Solution of Performability Models Based on Stochastic Ac-
tivity Networks,” Doctoral Dissertation, University of Michigan, 1988.

W. H. Sanders and J. F. Meyer, “Variable Driven Construction Methods for Stochastic Activ-
ity Networks,” Computer Performance and Reliability (ed., G. lazeolla, P. J. Courtois, O. J.
Boxma), North-Holland, 1988, pp. 383-398.

An early paper discussing state space reduction techniques for stochastic activity networks.
Later, this technique came to be known “ reduced base model construction.”

W. H. Sanders and J. F. Meyer, “Reduced Base Model Construction Methods for Stochastic
Activity Networks,” Proc. of the Third International Workshop on Petri Nets and Performance
Models, Kyoto, Japan, Dec. 11-13, 1989, pp. 74-84.

Conference version of paper with same title.

W. H. Sanders and J. F. Meyer, “A Unified Approach for Specifying Measures of Perfor-
mance, Dependability, and Performability,” Dependable Computing for Critical Applications,
\ol 4: of Dependable Computing and Fault-Tolerant Systems (ed., A. Avizienisand J. Laprie),
Springer-Verlag, 1991, pp. 215-237.

Theory behind reward variable specification, asimplemented in UltraSAN. This paper laysthe
foundation for specifying performance, dependability, and performability variables as SAN-
based reward variables, and gives examples of specification of variables of each type.

W. H. Sanders and J. F. Meyer, “Reduced Base Model Construction Methods for Stochastic
Activity Networks,” 1EEE Journal on Selected Areas in Communications, special issue on
Computer-Aided Modeling, Analysis, and Design of Communication Networks, vol. 9, no. 1,
Jan. 1991, pp. 25-36.

Discusses reduced base model construction. This method, which isimplemented in UltraSAN,
makes use of symmetriesin SAN models to reduce the size of the state space that need be con-
sidered for an analytic solution.

W. H. Sandersand R. S. Freire, “Efficient Simulation of Hierarchical Stochastic Activity Net-
work Models,” Discrete Event Dynamic Systems. Theory and Applications, vol. 3, no. 2/3,
July 1993, pp. 271-300.

Discusses algorithms for state change and future eventslist management in UltraSAN simula-
tion. Multiple future events lists are used to reduce operations required on each state change.

B. P. Zeigler and W. H. Sanders, “Frameworks for Evaluating Discrete-Event Dynamic Sys-
tems,” Discrete Event Dynamic Systems: Theory and Applications, vol. 3, no. 2/3, July 1993,
pp. 113-118.

Discussion of the relationship of representation methods for discrete event dynamic systems.

D-4

D.2

APPENDIX D. BIBLIOGRAPHY

Tool Development

. J. Couvillion, R. Freire, R. Johnson, W. D. Obal, M. A. Qureshi, M. Rai, W. H. Sanders, and J.
E. Tvedt, “Performability Modeling with UltraSAN,” |EEE Software, voal. 8, no. 5, Sept. 1991,
pp. 69-80.

Overview paper on UltraSAN. Provides a basic introduction to the package.

J. Couwvillion, R. Freire, R. Johnson, W. D. Obal, M. A. Qureshi, M. Rai, W. H. Sanders, and
J. E. Tvedt, “Performability Modeling with UltraSAN,” Int. Workshop on Petri Nets and Per-
formance Models, Melbourne, Austraia, December 2-5, 1991, pp. 290-299.

Conference version of above paper.

W.D. Obal Il and W. H. Sanders, “Importance Sampling Simulationin UltraSAN,” Smulation,
vol. 62, no. 2, Feb. 1994, pp. 98-111.

A description of the implementation of importance sampling in UltraSAN.

W. H. Sanders and J. F. Meyer, “METASAN: A Performability Evaluation Tool Based on
Stochastic Activity Networks,” Proc. of the IEEE-ACM Fall Joint Comp. Conf., Dallas, TX,
November 1986, pp. 106-115.

Overview paper for METASAN. METASAN wasthefirst stochastic activity network based eval-
uation package.

W. H. Sanders and W. D. Obal I, “Dependability Evaluation Using UltraSAN,” Proc. 23th
Annual International Symposium on Fault-Tolerant Computing, Toulouse, France, June 22-
24, 1993, pp. 674-679.

Overview of UltraSAN modeling software with applications to dependability evaluation.

W. H. Sanders, W. D. Obal, M. A. Qureshi, and F. K. Widjanarko, “The UltraSAN Model-

ing Environment,” Performance Evaluation Journal, special issue on Performance Modeling

Tools, 1995.

Overview of version 3.0 of UltraSAN.

. W. H. Sanders, W. D. Obal I, M. A. Qureshi, and F. K. Widjanarko, “UltraSAN Version 3:
Architecture, Features, and Implementation,” Proc. AIAA Computing in Aerospace 10 Con-
ference, San Antonio, TX, March 28-30, 1995.

UltraSAN User’s Manual, Version 3: Center for Reliable and High-Performance Computing,
Coordinated Science Laboratory, University of Illinois.

The manual is updated regularly.

D.3.

D.3

APPLICATIONS D-5

Applications

. Y. Alsafadi, R. Martinez, and W. H. Sanders, “Definition and Evauation of the Data Link

Layer of PACnet,” Proc. of the /Medical Imaging V, SPIE Conference on Medical Imaging,
San Jose, CA, Feb. 23-Mar. 1, 1991, pp. 129-140.

Performance evaluation of a new media-access control protocol for PACS application.

. L. Kant and W. H. Sanders, “L oss Process Analysis of the Knockout Switch Using Stochastic

Activity Networks, " Research Report 95K 02 CRHC. Submitted for publication.

. A. Kudrimoti and W. H. Sanders, “A Modular Method for Evaluating the Performance of Pic-

ture Archiving and Communication Systems,” Proc. of the Fifth IEEE Computer Based Med-
ical Systems Symp. , June 14-17, 1992, pp. 44-53.

Conference version of paper with same title.

. A. Kuratti and W. H. Sanders, “Performance Analysis of the RAID 5 Disk Array,” Int. Com-

puter Performance and Dependability Symposium, Erlangen, Germany, April 24-26, 1995.
Analytical evaluation of the response time for RAID 5 disk arrays.

. L.M.Malhis, S.C. West, L. A. Kant, and W. H. Sanders, “Modeing Recycle: A Case Study in

the Industrial Use of Measurement and Modeling,” Int. Computer Performance and Depend-
ability Symposium, Erlangen, Germany, April 24-26, 1995.

A case study of IBM’'s“ DFSMShsm,” a system for efficient utilization of magnetic tape car-
tridges.

. L.M. Malhis, W. H. Sanders, and R. D. Schlichting, “Analytic Evaluation of aGroup-Oriented

Multicast Protocol Using Stochastic Activity Networks,” Research Report 95M02 CRHC.
Submitted for publication.

Evaluation of Psync, a group-oriented multicast protocol, using stochastic activity networks.
Suggests improvements to protocol, and illustrates effectiveness of reduced base model con-
struction methods.

. R. Martinez, W. H. Sanders, Y. Alsafadi, J. Nam, T. Ozeki, and K. Komatsu, “Performance

Evauation of a Structured PACS Using Stochastic Activity Networks,” Proc. of the Medical
Imaging 1V, SPIE Conference on Medical Imaging, Newport Beach, CA, Feb 4-9, 1990, pp.
484-494.

Conference version of paper by Sanders et al. with same title.

. B.D.McLeod and W. H. Sanders, “Performance Eval uation of N-Processor Time Warp Using

Stochastic Activity Networks,” Research Report 93M04 CRHC. Submitted for publication.

Performance evaluation of distributed simulation using an analytic model.

. J.F.Meyer, K. H. Muraidhar, and W. H. Sanders, “ Performability of a Token Bus Network un-

der Transient Fault Conditions,” Proc. of the 19th Annual International Symposium on Fault-
Tolerant Computing, Chicago, IL, June 1989, pp. 75-82.

D-6

10.

11

12.

13.

14.

15.

D.4

APPENDIX D. BIBLIOGRAPHY

Performability evaluation of IEEE 802.4 protocol.

K. H. Prodromides and W. H. Sanders, “ Performability Evaluation of CSMA/CD and CSMA/-
DCR Protocols Under Transient Fault Conditions,” Proc. of the Tenth Symposium on Reliable
Distributed Systems, Pisa, Italy, Sept. 30 — Oct. 2, 1991, pp. 166-176.

Conference version of paper with same name.

K. Prodromides and W. H. Sanders, “Performability Evauation of CSMA/CD and CSMA/-
DCR Protocols under Transient Fault Conditions,” IEEE Trans. on Reliability, vol. 42, no. 1,
Mar. 1993, pp. 116-127.

Performability evaluation of CSMA/CD and CSMA/DCR protocols, considering transient
faults due to noise bursts.

M. A. Qureshi and W. H. Sanders, “The Effect of Workload on the Performance and Avail-
ability of Voting Algorithms,” Proc. of the International Workshop on Modeling, Analysis
and Smulation of Computer and Telecommunication Systems (MASCOTS 95), January 18-20,
Durham, NC 1995, pp. 217-224.

Modeling study of voting algorithms.

W. H. Sanders and L. M. Malhis, “Dependability Evaluation Using Composed SAN-Based
Reward Models,” Journal on Parallel and Distributed Computing, Special Issue on Petri Net
Models of Parallel and Distributed Computers, vol. 15, no. 3, July 1992, pp. 238-254.

Example dependability evaluations of three fault-tolerant architectures: the SNARC multipro-
cessor, a distributed database system, and a multiprocessor connected via an interconnection
network.

W. H. Sanders, L. A. Kant, and A. Kudrimoti, “A Modular Method for Evaluating the Perfor-
mance of Picture Archiving and Communication Systems,” Journal of Digital Imaging, vol.
6, no. 3, August 1993, pp. 172-193.

Performance eval uation of a PACSconsidering a network, a database, modalities, and viewing
workstations.

W. H. Sanders, R. Martinez, Y. Alsafadi, and J. Nam, “Performance Evaluation of a Picture
Archiving and Communication Network Using Stochastic Activity Networks,” 1EEE Trans-
actions on Medical Imaging, vol. 12, no. 1, Mar. 1993, pp. 19-29.

Performance evaluation of a picture archiving and communication network. Givesan example
of the use of SANs for modeling networks that carry images and text.

Theses

. Y. Alsafadi, “ Definition and Evaluating of the Data Link Layer of PACnet,” Master’s Thesis,

University of Arizona, 1990.

D.4.

10.

11.

12.

13.

14.

THESES D-7

. J.D. Diener, “Empirical Comparison of Uniformization Methodsfor Continuous-Time Markov

Chains” Master's Thesis, University of Arizona, 1994. Research Report 94D01 CRHC.

. R. S. Freire, “A Technique for Simulating Composed SAN-based Reward Models,” Master's

Thesis, University of Arizona, 1990. Research Report 90F01 CRHC.

. A. Kuratti, “Analytical Evaluation of the RAID 5 Disk Array,” Master's Thesis, University of

Arizona, 1994. Research Report 94K01 CRHC.

. C.-L. G. Lin, “Performance Evauation of Interconnection Networks for ISDN Switching Ap-

plications,” Master's Thesis, University of Arizona, 1990. Research Report 90L01 CRHC.

B. D. McLeod, “Performance Evaluation of N-Processor Time Warp using Stochastic Activity
Networks,” Master's Thesis, University of Arizona, 1993. Research Report 93M04 CRHC.

W. D. Obal I1, “Importance Sampling Simulation of SAN-Based Reward Models,” Master’s
Thesis, University of Arizona, 1993. Research Report 93002 CRHC.

K. Prodromides, “Performability Evaluation of Two Media Access Protocols under Transient
Fault Conditions,” Master’s Thesis, University of Arizona, 1991.

. M. A. Qureshi, “Reward Model Solution Methods with Impulse and Rate Rewards. An Algo-

rithm and Numerical Results,” Master’'s Thesis, University of Arizona, 1992. Research Report
92Q01 CRHC.

M. Rai, “Design and Implementation of a Reduced Base Model Construction Technique for
Stochastic Activity Networks,” Master’sthesis, University of Arizona, 1990. Research Report
90R01 CRHC.

B. P. Shah, “Analytic Solution of Stochastic Activity Networks with Exponential and Deter-
ministic Activities,” Master's Thesis, University of Arizona, 1993. Research Report 93S03
CRHC.

H. V. Shah, “Performance Evaluation of Manufacturing Systems Using Stochastic Activity
Networks,” Master's Thesis, University of Arizona, 1991. Research Report 91504 CRHC.

J. Tvedt, “ Solution of Large-Sparse Stochastic Process Representations of Stochastic Activity
Networks,” Master's Thesis, University of Arizona, 1990.

F. K. Widjanarko, “Evaluation of an Adaptive Checkpointing Scheme for Multiprocessor Sys-
tems,” Master's Thesis, University of Arizona, 1995.

APPENDIX D. BIBLIOGRAPHY

Index

| ndex

absorbing states
flagging of, in model generator, 4-6
indss, 4-11
iniss, 4-12
accuracy, 4-7, 4-9
activation, 3-20
activation predicate, see also reactivation
function, 1-3
activity, 1-2
completion, 1-2, 1-4
enabling, 1-2, 1-4
instantaneous, see instantaneous activity
specification, 3-18
timed, see timed activity
activity time distribution, 1-2
specification, 1-7
activity variables, 1-12, 1-13, 3-28, 3-29, 3-33
specification, 1-16
analytic solvers, 4-5, 4-7
applicability for different measures and
models, 4-2
basic rules, 4-1
steady-state, direct, see dss
steady-state, iterative, seeiss
steady-state, with deterministic activity, see
diss
transient, see trs
transient interval-of-time, distribution, see pdf
transient interval-of-time, mean, see ars
versus simulation, see simulation vsanalytic
solution
arc, 3-15
directed, 1-3, 1-4
ars, 4-3, 4-17
pitfalls and hints, 4-18

batch means method, 4-20
bug report, see problem report

case, 1-3
probability, 1-3
probability specification, 1-7, 3-20
ZERO specification, 1-7, 3-20
common places
injoin, 1-10
inrep, 1-10
compedit, 2-2, 3-11, 3-24

tutorial, 2-11
compilation error, 3-13
complexity
time, see system time, user time
composed model, 1-10
automatic state space reduction, 1-12
creation of, see compedit
efficient simulation execution, 1-12
running example, 1-10
confidenceintervals, 2-17, 4-23, 4-25
batch meansin SSm, see batch means method
independent replicain TSm, see independent
replica
control panel (CP), 2-2, 3-1

debug file, 4-7
demo projects, A-4
deterministic activities
analytic solution, see diss
diss, 4-3, 4-13
for interval-of-time measures, 4-15
marking dependent deterministic times, 4-15
pitfalls and hints, 4-15
distributed computation, see Machine
distribution of reward measures, 1-13
mean, 1-13
percentiles, 1-13
variance, 1-13
documenting results
by Project->Document, 3-8
with report generator, see report generator
drop tolerance
indss, 4-10
dss, 4-3, 4-9
pitfalls and hints, 4-11

Edit
Composed Model, see also compedit, 3-24
IS Governor, See also IS governor, 3-33
Performability Variables, Seealso
varedit, 3-28
Studies, see also stdedit, 3-34
Subnet, see also sanedit, 2-4, 3-12
environment setup, A-3
experiment, 1-9
Experiment
Clean, 3-10

Select, 3-10

faulty microprocessor example, 1-2, 1-6, 2-1

file format analytic models
deterministic activity (exp.det), C-2
Markov model (exp.rbm), C-1
reward variables (exp . var), C-2
fill-in
indiss, 4-15
indss, 4-11

gate
input gate, see input gate
output gate, see output gate
Gen, see reduced base model generator
General, 3-4
Bug Report, 3-4
Display File, 3-5
Report Generator, see also report
generator, 3-5
Transfer Project, 3-4
global variables, 1-7, 3-15, 3-18
in compedit, 1-10, 2-7
in 1S governor, 6-2
in sanedit, 1-9, 2-7
reported in solvers, 4-8
value assignment, see stdedit
gnuplot, see report generator
governor, see |S governor
graphs, see report generator

importance sampling, 3-33, 4-3, 6-1
biased model, 6-2
governor, see |S governor
tool, see ITSm
impulse reward, 1-12, 1-13, 3-31
and state space generation, 1-18
specification, 1-14, 1-15
independent replica, 4-20
initial marking
for transient solution, 4-17
input gate, 1-2, 1-3, 3-16, 3-20
enabling predicate, 1-3
function, 1-3
specification, 1-8, 3-20
installation, A-1
steps, A-2

instantaneous activity, 1-2, 1-6, 3-16, 3-20

interval -of-time measures, 1-13

analytic solution for transient distribution, see

pdf

Index

analytic solution for transient mean, see ars

for impulse rewards, 1-13
time-averaged, 1-13
IS governor, 3-11, 6-2
activity biasing, 6-2, 6-3
case hiasing, 6-2, 6-5
example, 6-2
pitfalls and hints, 6-7
specification, 6-3
states, 6-2
specification, 6-5
transitions, 6-2
specification, 6-5
isedit, see also IS governor, 3-11
iss, 4-3,4-11
pitfalls and hints, 4-12
tutorial, 2-23
ITSm, see also IS governor, 4-3, 4-20

jackknifing, 4-21
join, 1-10, 3-24-3-26
tutorial, 2-13

likelihood ratio

in importance sampling, 6-2
LU decomposition

indss, 4-9

Machine
Edit, 3-10
Select, 3-10
MARK, 1-9, 2-7, 3-14, 3-17

marking, see also stable marking, unstable

marking, reachable marking, 1-2
Markov model, 1-16

file format generator matrix, see file format

anaytic models
multi-processor example, 6-2

NaN, 4-11

new users, see environment setup, installation

output gate, 1-2, 1-3, 3-16, 3-20
function, 1-4
specification, 1-8, 3-20

pdf, 4-3, 4-18
pitfalls and hints, 4-20

performability variables, 1-12
definition, see varedit
running example, 1-14

place, 1-2, 3-16, 3-18, 3-25, 3-26

Index

plots, see report generator, splot, gnuplot
problem report, 3-4
project, 2-2
Project
Archive, 3-6
Clean, 3-6, 3-7, 3-10
Copy, 3-6
Create, 2-2, 3-5, 3-12
Delete, 3-6
directory structure, B-1
Document, 3-7, 3-8, 5-1
Select, 3-6, 3-8, 3-12, 3-24
Unarchive, 3-6

rare events, 6-1
example, 6-3
rate reward, 1-12, 3-29
specification, 1-14
reachable marking, 1-6
reactivation, 1-3, 1-6, 3-20
for Markov models, 1-17, 1-18
reactivation function, see also activation
predicate, reactivation predicate, 1-3
reactivation predicate, 1-3
reduced base model generator, 4-5
pitfals and hints, 4-6
tutorial, 2-22
rep, 1-10, 3-24-3-26
tutorial, 2-12
replicate, seerep
report generator, 3-5, 5-1
3-D plot, 5-1
Export, 5-8
Gnuplot, 5-2
Graph, 5-1, 5-7
Import, 5-8
Splot, 5-2
Table, 5-3,5-7
tutorial, 2-25
reward variables, see also impulse reward, rate
reward, 1-12, 2-13, 3-28, 3-29, 3-32
definition, see varedit
tutorial, 2-17
run in the background, 4-8
running example, see faulty microprocessor

SAN, 1-1
composed model, see composed model
creation of, see sanedit
execution of, 1-4
primitives, 1-2

running example, 1-6
stahilizing, see stabilizing
theory, 1-1
well-specified, see well-specified
sanedit, 2-2, 3-11, 3-12
Delete, 3-14
Font, 3-14
Grid, 3-15
Quit, 3-13, 3-14
Save, 3-13
Save All, 3-13,3-14
Select All, 3-14
tutorial, 2-2
simulation, see also simulators
applicability for different measures and
models, 4-2
basicrules, 4-1
simulation vs analytic solution, 1-18, 4-1
advantages analytic solvers, 4-3
advantages simulation, 4-4
basic rules, 4-1
disadvantages analytic solvers, 4-4
disadvantages simulation, 4-4
practical hints, 4-3
simulators, see also simulation, 4-20
importance sampling, see ITSm
pitfalls and hints, 4-24
datigtics, 1-14, 2-17
steady-state, see SSm
trace level, 4-21
transient/terminating, see TSm
variance computation, 4-21
Solve
Accumulated Reward Solver, seealso
ars, 4-17
Deterministic Iterative Steady
State Solver, seealso diss, 4-13
Direct Steady State Solver, Seealso
dss, 4-9
IS Terminating Simulator,seealso
ITSm, 4-20
Iterative Steady State Solver, See
alsoiss, 4-11
Probability Distribution Solver, see
also pdf, 4-18
Reduced Base Model Generator, Seealso
reduced base model generator, 4-5
Steady State Simulator,Seealso S9m,
4-20
Terminating Simulator, Seealso TSm,
4-20

Transient Solver, seealsotrs, 4-16
tutorial, 2-22
solvers, see also analytic solvers, smulators, 4-1
tutorial, 2-22
splot
for distributions, see also documenting
results, 4-8
in report generator, see report generator
SSm, 4-3, 4-20
confidence interval, see confidence intervals
pitfals and hints, 4-24
tutorial, 2-23
stabilizing, 1-6
stable marking, 1-4
state
in underlying stochastic process, 1-18
including impulse rewards, 1-18
state space generation, 1-16, 1-18
stdedit, 2-2, 3-11, 3-34
Add, 3-34
Delete, 3-34
Export, 3-35
Import, 3-35
Range, 3-34, 3-36
Set, 3-34
tutorial, 2-18
steady-state detection
indiss, 4-14
steady-state measures, 1-13
direct analytic solution, see dss
for modelswith deterministic activity, see diss
iterative analytic solution, seeiss
simulation, see SSm
stiff models
iniss, 4-13
intrs, 4-17
stochastic activity network, see SAN
stochastic process, 1-16
for analytic solution, 1-16
with deterministic and exponential activities,
1-17
with only exponential activities, 1-16
with only exponential activities but not
Markov, 1-17
Study
Clean, 3-9, 3-10
Select, 2-21, 3-9
study, 1-9
editor, see stedit
subnet, 2-2
Subnet

Index

Copy, 3-8
Create, 2-4, 3-8, 3-12
Delete, 3-9
Document, 3-7, 3-9
Select, 3-8, 3-9, 3-12
successive over relaxation (SOR)
indiss, 4-13
iniss, 4-11
system time, 4-9

terminating simulation, see T9Sm
timed activity, 1-2, 3-16, 3-18
tokens, 1-2
trace level
in simulators, 4-21
transient measures, 1-13
analytic solution instant-of-time, seetrs
analytic solution interval-of-time,
distribution, see pdf
analytic solution interval-of-time, mean, see
ars
simulation, see TSm
trs, 4-3,4-16
pitfallsand hints, 4-17
TSm, 4-3, 4-20
confidence interval, see confidenceintervals
pitfalls and hints, 4-24

UltraSAN organization, B-1
uniformization
inars, 4-18
indiss, 4-13
in pdf, 4-18
intrs, 4-16
steady-state detection, see steady-state
detection
unstable marking, 1-4, 1-6
user time, 4-9

varedit, 1-12, 2-2, 3-11, 3-28
running example, 1-14
tutorial, 2-13

verbosity, 4-7

well-specified, 1-6
zero on the diagonal

iniss, 4-12
ZERO specification, see case, ZERO specification

