
Course Announcement for Spring 2000

CS 483(2) / 580(1) – Software Specification and Analysis - 3 Credit Hours

Time: M, W 5:45 - 7:00pm, EME B46 (available on WHETS)

Instructor: Rick Sheldon (http://www.eecs.wsu.edu/~sheldon | Sheldon@wsu.edu | EME121 509/335-6138)

Prerequisites: Math 216, and CptS 422 or instructors permission

Textbooks:
Using Z: Specification, Refinement, and Proof, by Woodcock, J., and Davies, J. PH, 1996.
Specification Case Studies (2nd Ed), by Hayes, I., PH, 1993.

Alternate References:
Z Reference Manual, Spivey, M. (Available on the web)
Formal Methods for Real-Time Computing, Edited by Heitmeyer, C. and Mandrioli, Wiley, 1996.
Application of Formal Methods, by Hinchey, M.G., and Bowen, J.P., PH, 1995.
Software Engineering with B, by Wordsworth, J.B., Addison-Wesley, 1997.
Other reference material may be presented in class (for which the student is responsible).

Textbook Coverage and Supplemental:
Using Z:
Chapters 1 – Introduction
Chapters 2 – 3 – Propositional and Predicate logic
Chapters 4 – Equality and Definite Description
Chapters 5 – 6 Sets and Definitions
Chapters 7– 8 Relations and Functions
Chapters 9 – 10 Sequences and Free Types
Chapters 11 – 12 Schema and Schema Operators
Chapters 13 – 14 Promotion and Preconditions
Chapters 15 – 23 Examples
Specification Case Studies:
Part 1 Tutorials, and Part 2 Software Engineering
Applications of Formal Methods:
Chapter 13 Formal Methods Technology Transfer: Impediments and Innovation
Plus supplemental materials and readings as required by the instructor.

Course Objective and Description:
Introduction to formal methods used in software engineering: Formal mechanisms for specifying,
validating and verifying the correctness, reliability and efficiency of software systems. The course
will first introduce the broad area of formal methods including algebraic and model based
specification techniques. The class will then focus on developing a working knowledge for using Z.
A project will require the use of the Z language in developing a formal specification of a particular
real world requirements specification. Outside readings will be assigned that report on a range of
independent experiments devoted to broadening the link between theory and practice (i.e., in the
application of theories on an industrial scale) including case studies. Prerequisites include knowledge
of modern programming languages, data structures, algorithms and discrete mathematics.

Topical Outline (Topic : Reference (Chap) : Lectures):
1. Course introduction and objectives including an overview of important topics and project

initiation. Why are formal methods important : (1) : 9
2. Logic, sets and relations : (2 - 4) : 4
3. Sets and Relations : (5 - 10) : 6
4. Introduce the Schema Language : (11 - 14) :6
5. Woodcock: Example Systems Refinement : (16 - 19) : 6
6. Hayes: Specification Case Studies (Tutorials and Software Engineering) : (Parts I and II) : 6
7. Woodcock: Case Studies : (15, 20-23) : 6

Total (1 or probably 2 lectures will be used for in class exam) : 28

Why should I take this class? First, lets talk about the relationship between theory and practice in the
field of Software Engineering. In the past, I've taught this class under the title Formal Methods (FMs) in
Software Engineering (SE) [FMs => Theory + SE => Practice]. Remember, the field of software is
roughly only 45 years old. There is far more speculation than truth in the things that theory and practice
have come to "know." Sometimes its preferable to listen to theory for new ideas and other times its
preferable to listen to practice. The aware computer person should know when each is appropriate. This
class aims to show how theory can be used in practice (it provides the side which says its more
appropriate to listen to theory). Undoubtedly, there will be controversy. . . .

Do you think its possible that practice could ever lead theory? It happened in aerodynamics where the
invention of the airfoil preceded and motivated the science of aerodynamics. It happened in computing
only twenty-something years ago when time-sharing was developed and marketed before there was a
solid theoretical background for it.

Given this as a basis for discussion, this course seeks to demonstrate how a particular formal method,
namely Z (which by the way is probably the most widely used of all FMs) can be employed to specify
and analyze software. By specify we mean to clearly (precise and unambiguously) describe a (possible)
solution in terms of what is needed to satisfy some set of requirements (or, as some would claim, these
specifications are the requirements). By analyze, we mean to determine weather certain deemed to be
important properties (e.g., consistency, completeness, deadlock freeness, fault tolerance, reliability,
timeliness) exist and to what extent. In doing so, we are reasoning about the choices we make in a formal
(or mathematically) rigorous and systematic way.

By learning about Z (known as ‘Zed’), and using Z in the context of solving some small semester-sized
problems one can, after completing the semester, transfer the skills they acquired using Z to some other
formal method.

We will explore at least one documented case study with the goal of understanding what works well
within the context of an industrial problem and understand the advantages (benefits) and disadvantages
(costs, risks and potentially undesirable effects). In the end, you should understand how to use at least one
FM, when its appropriate to use such an approach (method), and based on your experience as a
practitioner when perhaps its not so appropriate.

More details are available on the Web: To find out more about this course, try looking at my home
page (http://www.eecs.wsu.edu/~sheldon), click courses, and follow the link "Link to Previously Taught
Courses" and look at the CS533 materials there. The only caveat is that I plan to simplify much of what I
covered before and use a couple of prime examples through out the semester to illustrate the theory.
When you see large proof trees in the lecture notes , you can virtually ignore those.... I provide them to
illustrate a point but not as a matter of torture.

