
CS 532 Software Design Project (including 28 appended slides)

Stochastic Analysis of CSP Specifications Using a CSP-to-Petri Net
Translation Tool: CSPN

Frederick T. Sheldon1

The University of Texas at Arlington

Abstract

An experimental tool and approach has been developed to explore the specification and

analysis of stochastic properties for concurrent systems expressed using CSP (communicating

sequential processes). The approach is to translate a formal system description into the

information needed to predict its behavior as a function of observable parameters. The idea uses

a theory based on proven translations between CSP and Petri nets (PNs). In particular, the tool

translates the design specification, written in a textual based CSP dialect named P-CSP, into

stochastic Petri nets for analysis based on the structural and stochastic properties of the

specification. The grammar and CSP-to-Petri net (CSPN) tool enable service and failure rate

annotations to be related back into the original CSP specification. The annotations are then

incorporated in the next round of translations and stochastic analysis. The tool therefore

automates the analysis and iterative refinement of the design and specification process. Within

this setting, the designer can investigate whether functional and non-functional requirements can

be satisfied.

Keywords: Specification modeling, dependable systems, process algebras, Petri net and software

tool.

Table of Contents

1. Introduction
1.2. Predicting the performability of formal

specifications
1.3. Survey of related work
1.4. Methodology
2. CSPN tool overview
2.1. Translation phases of the CSPN tool
2.2. Running the CSPN tool
2.3. CSPN data structures
3. The CSP-based language (P-CSP) primitives
3.1. Stochastic Petri nets
3.2. SPNP and the C-based Stochastic Petri net

Language (CSPL)

3.3. Mapping CSP to Petri nets using canonical
translation rules

4. Some CSPN mechanics
4.1. Co-matrix expansion
4.2. CSP represented as a network structure
5. Summary
5.1 Evaluation
5.2 CSPN specifications
6. References
7. Appendix

1

1All correspondence should be addressed to Frederick T. Sheldon, Dept. of Computer Science and Engineering, The
University of Texas at Arlington, Arlington, TX 76019-0015, email: sheldon@cse.uta.edu. Sheldon has been
supported since 1993 by a NASA Graduate Fellowship from Langley Research Center (#NGT-50896).

2

1. Introduction

Today's computing systems are large and complex. Therefore, informal and intuitive

specifications are too vague and imprecise to capture the complete semantics of a system's

requirements. A formal specification language is founded on mathematical principals and is used

to describe system properties and to provide a systematic approach to avoid ambiguity,

incompleteness and inconsistency [16, 19, 33]. Current systems must also have high performance

and reliability. Formal specifications provide good support for designing a functionally correct

system. They are weak at incorporating non-functional performance requirements (like

reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the

performance and reliability of a system. However, they may be too abstract or cumbersome from

the stand point of specifying and evaluating functional behavior. Therefore, one major objective

for developing the CSPN tool is to provide an integrated approach to assist the user in specifying

both functionality (qualitative: communications, controls, redundancies) and performance

(quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling

technique for performability analysis (using SPNs) can be combined with a well-defined formal

specification language. In doing so, we can come closer to providing a formal approach to

designing a functionally correct system that meets reliability and performance goals.

1.2. Predicting the performability of formal specifications

This approach is based on the notion that formal, mathematically precise methods should be

used to design complex, safety critical systems [5, 31]. Thus, given a formalized functional

specification of a system and its external constraints (e.g., failure rates, communication delays,

synchronization dependencies, deadlines), what mechanisms are available for avoiding or

tolerating faults/errors and how do they impact the performance and reliability (i.e.,

performability) of the system [23-25, 35, 36]?2 As specifications are refined into detailed

designs, the reliability and performance requirements can also be refined to reveal the trade-offs

in design alternatives such as deciding –what are the critical system elements; –what features of

the system should be changed to improve the system's reliability; –verifying and/or validating

performance and reliability goals using stochastic system models.3 Thus, in this approach, the

critical components of the requirements specification are abstracted and a system is specified

using the P-CSP language.4 Once the specification has been translated, we estimate model

parameters. At this point it is easy to introduce timing constraints among feasible markings of

2Some examples showing the approach are available in [36, 37].
3The term validating used here is in the sense of determining whether the design specification satisfies the intent of
performance and reliability requirements. Verify is not used because it connotes a correctness determination, and is
better used when matching requirements (or design specifications) to implementation.
4The CSP-based grammar does not restrict us from considering correctness properties; however, we are interested
only that the structural properties be preserved.

3

the net and to employ SPNP for stochastic Petri net analysis [8-14].5

1.3. Survey of related work

Wang presents a procedure (which could be automated) for transforming an Estelle

specification into a Stochastic Reward Net (SRN) formalism [42].6 The objective of

transforming Estelle into an SRN is to have a system designer specify a system using Estelle and

then the specification is automatically transformed into an SRN to carry out the performance and

reliability analysis [34, 41]. Donatelli et al., have developed EPOCA which is an integrated

Environment for analysis and Performance evaluation Of Concurrent Applications. The analysis

is based on stochastic Petri nets (GSPN) starting from a concurrent program written in DISC

(DIStributed C), an extension of C to include concurrent constructs of the CSP type. In EPOCA

a GSPN model is automatically generated from the DISC program [17-18, 3-4]. The EPOCA

environment including a rich graphical user interface was finalized and delivered in 1995.

Others including Davies and Schneider describe the language of real-time CSP used to

specify reactive systems in terms of their communicating behavior. Each system component is

represented as a process that shows where communication takes place. By combining processes,

a description of the system in terms of its components is produced [15]. Peleska gives a formal

method based on CSP to design fault tolerant systems combining algebraic and assertional

techniques to formally verify correctness properties. Liu and Joseph give a method for

transformation of programs constructed for a fault-free system into fault-tolerant programs

suitable for execution on a system susceptible to failures [27]. Priami gives a technique for

integrating behavioral and performance analysis with topology information using Stochastic pi-

calculus [32]. VanGlabbeek gives a structural operational semantics of PCCS as a set of

inference rules which constitute a semantic mapping from the set of process expressions to a

particular domain of probabilistic labeled transition systems [40]. Current trends have evolved in

theory and practice to enable improved methods for ascertaining a specification's dependability

and performance, their interactions and corresponding tradeoffs [1-2, 6-7, 12-14, 32-34].

1.4. Methodology

This work offers an approach to predicting system behavior (in terms of reliability and

performance) based primarily on the structural characteristics of a formal functional

specification. The CSPN tool and methodology is based on a sound formalization of CSP which

provides process constructors, including primitives for parallel and sequential composition,

nondeterministic choice, and recursion. To support top-down development, the grammar and

CSPN tool provide a notion of refinement that allows a designer to describe a system at an

5SPNP is "Stochastic Petri Net Package" and was developed at Duke University (see [8, 11]).
6Estelle is an ISO standard formal specification language and SRN is a well-developed modeling technique that is
used to carry out performance and reliability analysis.

4

Evaluate

Model 0.0 Model n.0

Best Design

Model
Development

Evaluate

Model 1.0

Validate Validate Validate

Prototyping

Refinement
 n

Refinement
 1

User
Needs

Simulation
Mathematical (closed form stochastic analysis)

Testbed

Iteratively add capabilities and
enhancements with concomitant evaluation

Requirements
Specification

Design
Specification

Evaluate

Adding details

Further analysis
of details

Figure 1. Refinement of system models.

appropriate abstract level. At this level, a designer may estimate the values of non-functional

requirements (so called budgeting). Later, the designer may add more details by showing the

internal structure of a component, explicitly presenting local communications, and modifying the

budget. It is important to facilitate systematic refinements and then re-evaluate their impacts to

optimize design parameters. Figure 1 shows how this approach advocated involves abstraction

from the requirements specification into a design specification and then further evaluations based

on stochastic analysis of the system models.7 The CSPN tool is used in the context of the 7

steps listed in Table 1.

2. CSPN tool overview

The core augmentation to existing approaches is provided by the CSP-based grammar and

canonical CSP-to-Petri net translation rules for process composition and decomposition. The

translation rules are codified in the CSPN tool. In brief, the mechanism consists of decomposing

individual CSP constructions into canonical Petri net structures. The elemental structures are

linked together in a hierarchical fashion according to their adjacency and nesting within the CSP

specification. Once CSPN has created this network of linked structures it traverses the net and

expands the process descriptions which are represented as sub-Petri nets into larger and larger

nets. Also, as CSPN decomposes the CSP constructions, it identifies and records service and

failure rate annotations which are later incorporated in the SPNP specification file. When CSPN

encounters failure annotations (and the "-f" command line option is set), it creates supplemental

7Automatic translation of the design specification into a stochastic Petri net representation enables the use of a good
number of sophisticated design and analysis tools which are based on Petri nets.

5

TABLE 1 METHODOLOGY: STEPS FOR SPECIFICATION AND ANALYSIS

Step Description of steps used in the approach.

1. Abstract the critical elements of the requirement specification and formulate a CSP specification
for the system under study.

2. Translate between CSP and Stochastic Petri nets.

3. Assign performance and reliability parameters among subsystem components.

4. Analyze the Petri nets for stochastic properties [using SPNP] (validate performance and
reliability goals using stochastic system models).

5. Decide what features of the system should be changed to improve the system's reliability (and/or
other stochastic properties, e.g., performance).

6. Augmentation: relate stochastic properties back to top level (CSP) specifications (e.g., failure
rates, service rates, error handling).

7. Understand the effect these non-functional requirements have on cost.

failure transitions. After the preliminary structure of the Petri net is complete, CSPN must

reconcile synchronization points because CSP input/output actions must rendezvous at a

particular point wh ich is translated into a transition that is named by the message that is sent/

received. CSPN finally generates the Petri net graphic specification and an SPNP Petri net

specification file named "<fn>_spnp.c" (fn is the name of the input file). All of this process

occurs at various levels of user controllable interaction as will be described. In essence the

approach provides for systematic and automatic translation and subsequent augmentation (e.g.,

failure rates, service rates, and deadlines) of the resultant Petri nets for assessing different

candidate implementations; –formally (as provided by the grammar) relating stochastic

parameters back to the specification level; –and analyzing the stochastic Petri nets using the

SPNP tool [10-13, 14, 34].

The CSP-to-Petri net (CSPN) tool is textual based. The initial specification and

parameterization work must be completed by using a text editor (see Figures 13 and 14 for

examples of P-CSP specifications). Viewing the Petri net's distribution of places and transitions

as a graph after a translation is accomplished by setting the "-d" (for dot) on the command line.8

2.1. Translation phases of the CSPN tool

There are four basic parts involved in the context of Figure 2. First, there is the specification

phase. Second, is running CSPN which will invoke any of the available options defined in Table

2. Third is interacting with CSPN (during the run) to control how the SPNP analysis is run and

to parameterize the elements of the translation (e.g., set the rates and probabilities which are

associated with the resultant transitions). The fourth and last phase is associated with structural

8Version 1.0 of CSPN does not automatically invoke the dot program to create the postscript graphic file. To do so
use the command: >> dot -Tps filename.dot > filename.ps. Dot is a available from AT&T Bell Laboratories.

6

Relate the stochastic
parameters back to the
P-CSP specification

P-CSP S pecif ication
base d on system
requirements lex

scanner
yacc
parser

Tokens

Hash table
stores
symbols and
their
attributes

(csp.y)(csp.l)

(getsym)

(net_main)

Scan/Parse
Phase

(netSearch)

Specification
Phase

Decomposition
Phase

Composition
Phase

Synchronization
Phase

SPNP input file uses the
CSPL language. This file
describes the Petri net,
including failure annotations,
and other discrete and
stochastic parameters.

Output file: fn_spnp.c

Analysis Phase

Stochastic Results

--File name is sy1
SysSimpleEx =
 PROCESS Eg1 =
 SEQ{SEQ{SEQ{
 P1(),
 P2(),
 NDC{
 P11(),
 P12()}},
 P3(),
 P4()},
 P5(),
 P6()},
 SEQ{P7(),P8()};
 PROCESS Eg2 =
 SEQ{P9(),P10()};
NDC{Eg1(),Eg2()}.

Run CSPN u si ng. ..
$> c sp -osy1 -f Sy1

SEQ1
SEQ2
P1
P2
P3
NDC1
P4

1 2 3 4 5 6 7 8

Places

+ -
+ -

+
-
+ -

+ -
+

-
+ -

(scoring)

Data
structure
hierarchy
captures
specification
structure

Relia bi lity
and MTTF

Combine
component Petri

nets into a
"system" Petri net.

Resolve
synchronization
links (messages).

Synthesis Phase

(decodeSys)

System
coincidence

matrix is decoded
to produce the
output files.

(syncLink)

(gen)

(choose)

(usage)
(cmd_main)

Resolve Recursion
Phase

(rResolve)

This phase uses reachability as
a criteria with in the context of
a recursive construction to
decide whether to break a tail
recursive link.

Output file: fn.dot
 Run dot using...
> dot -Tps fn.dot > fn.ps

Generate graphics to view
distribution of places and

transitions.

Failure Annotation
Phase

(addFailures)

This file describes the
Petri net as a net list,
including labels of each
place and transition.

A net list containing
transition labels and
draw control parameters.

Decodes the
system co-matrix

to produce the
graphical

representation.

Filter and Graphics
Phase

Tail
recursive
loop

Individual
CSP constructions

→ into atomic
canonical Petri
net structures.

Failure rate
annotations cause
failure transitions

to be created.

Process of
reconciling

recursive links
(create/break).

Run SPNP using...
> spnp fn_spnp

Manually revise specific SPNP
characterizations of the Petri

net Spec. such as reward
functions.

Directed graph used
to verify structural

characteristics (e.g.,
correctness and race

hazzards)

(filter)

(genDotFile)

(isDummy)
(checkType)

(procPosition)

(replProc)

(RegisterProcess)

(deleteProc)

T
ra
n
s
it
i
on
s

User interaction:
 -set SPNP parameters,
 -set prioities/rates/probs.

Special characters
inherited from the CSP
specification are removed
for SPNP compliance.

(solve)

(expn)

Figure 2. Context diagram and translation phases of the CSPN tool.

and stochastic analysis of the Petri net. Structural analysis involves viewing the distribution of

places and transitions of the graphical representation of the Petri net.9 The stochastic analysis

involves running SPNP to derive dependability and performance results based on the prior phase

of parameterizing the model and relating the results to the graph and back to the original

specification. The SPNP specification file may be edited to finely tune the characteristics of the

SPNP specification prior to running the stochastic analysis.10 Once SPNP is run, the results can

be considered in the process of conducting further analysis.

In viewing Figure 2, note that the following eight steps occur during the translation process:

(1) Scanning and Parsing (action rules embedded in the parser enable CSPN to capture the

9This option causes CSPN to generate a fn.dot file which is processed to provide the graphical representation of the
Petri net (embedded postscript). The dot tool is used to create the Petri net graphic without manual intervention.

10The SPNP specification file can be run for a simple analysis without manual intervention.

7

semantics of the specification), (2) Decomposition (allocating/scoring a coincidence matrix for

each CSP element and the recording of any annotated service rates and probabilities), (3)

Composition (combining elemental coincidence matrices and building their requisite process

lists), (4) Synchronization (resolution or combining of message links), (5) Failure annotations

(if active, an appropriately annotated process is augmented with a failure transition), (6)

Resolving recursion (assumes tail recursion and involves finding and linking loop-back arcs as

well as breaking tail recursive loops), (7) Synthesis phase (takes the system coincidence matrix

and creates the SPNP Petri net specification file during an interactive session with the user), and

(8) Filter (removes special characters inherited from the CSP specification that are not valid in

an SPNP specification) and graphics (creates a digraph specification net list that is later compiled

using dot to produce an embedded postscript graphic). In general, Figure 2 shows the various

translation phases and the use of SPNP as it applies to this approach. The names in parenthesis

represent the C-function name(s) that are associated with a given phase.

TABLE 2 LISTING OF THE CSPN COMMAND LINE OPTIONS.

 Option Description

 -v Used to set the verbose mode and is only valid when the "-o" option is specified. An
interactive menu is invoked which allows the user to set SPNP run parameters.

 -f Used to generate failure transitions into the filename_spnp.c file. This option enables
detection of failure annotations and causes interactive inputs with the "-o" option specified.

 -F Set to invoke the filter which will replace the 3 special characters (?,!,:) in the
filename_spnp.c with SPNP compliant characters (_i_, _o_, and _ respectively).
Otherwise, SPNP will not compile the input file. Valid only when the "-o" option is used.

 -s Use the default service rates for timed transitions. If no service rate is specified as an
annotation then CSPN will use 0.1.

 -o<name> To generate the SPNP input specification file (filename_spnp.c) this option must be
specified ("name" is optional and the default used is the tool name "cspn").

 -i<number> Number of iterations used by SPNP (default is 2000).

 -a<number> Rate for return to initial marking from absorbing markings (default is 0.0).

 -p<number> Set floating point precision used by SPNP (default is 0.000001).

 -P Set to enable selection of priorities for individual transitions (the default is none).

 -d Set to generate a "dot" graphics file. Dot uses this digraph specification file to generate the
graphical representation of the Petri net.

 -n Set to enable a network list file. This file shows how CSPN has interpreted the structural
aspects of the CSP specification.

 -t Set to generate a symbol table file. This file will contain all the data recorded for each
element (process names, constructions, variables, channels, ...) of the process specification.

8

2.2. Running the CSPN tool

Running CSPN (i.e., $> csp <options> specification-file) and using the various command

line options enables the numerous features and functionalities. For example, if the user is in the

process of correcting the syntax of the CSP specification then it would not be necessary to

specify any of these options, only the input file. Also, if the user just wants to understand how

the CSP specification looks in terms of the structural characteristics (i.e., investigating inherent

weaknesses in communications, race hazards etc.) then adding the "-d" option would enable only

the production of the graph. The "-F" option invokes a filter and is necessary only when the user

plans to run an SPNP analysis. The "-f" option is a nice feature because it enables the analyst to

assume a failure free environment by simply ignoring any embedded fail annotations that may

exist in the CSP specification (without "-f" CSPN ignore failure annotations). Omitting failure

annotations from the P-CSP specification has the same affect. The option "-s" streamlines the

process of generating the SPNP input specification by assigning default service rates to timed

transitions without querying the user to provide such. As mentioned above, the "-o" option

generates a file for SPNP analysis. Its best if a file name be given with this option (i.e., "-

ofilename"). This settles the problem of overwriting previous files generated using the default

name that is assigned by CSPN when no name is provided. The "-i", "-a" and "-p" options are

used to parameterize the SPNP run by setting the iteration number, absorbing rate (for recycling

back to the initial marking), and precision for floating point operations respectively. The "-P"

option is only valid when "-o" is used and enables the user to assign priorities to any of the

transitions. The "-d", "-n" and "-t" options are useful when something unexpected happens after

running CSPN such as a run time error. The user may wish to rerun the translation and view the

internal data structures that are generated during the translation process.

2.3. CSPN data structures

Internally, there are four basic data structures employed by CSPN: (1) Symbol table which

maintains attributes assigned to all system elements (actions, processes, communications and

constructions), (2) Process lists which consist of all the names of the associated

actions/processes involved in a particular construction, (3) A network of linked lists which

capture the structure of the specification (adjacency and nesting), and (4) Coincidence matrix

which maintains the graphical distributions of places, transitions and their connectivity.

The coincidence matrix (or co-matrix) is the Petri net. Each element and composition from

the CSP specification has a co-matrix maintained in the symbol table. The construction of the n-

by-m co-matrix is defined in terms of the transitions (i.e., CSP-process names become transition

names). Transitions are associated with rows (from top to bottom). Places are associated with

columns (numbered from left to right starting from zero). A non-zero element in the matrix A

represents an arc which links a transition to a place. Elements (aij) can have one of three values

9

(zero, +1 or -1): aij = +1 indicates an arc from the transition of row i to the place of column j; aij

= -1 indicates an arc to the transition of row i from the place of column j. The process list stores

the transition names in their proper order. The numbering of places is ordered, but their

semantics are defined in terms of the transitions.

3. The CSP-based language (P-CSP) primitives

Systems are built from processes. The simplest process is an action (an assignment, input or

output). SKIP and STOP are two special processes: they both perform no action (i.e., engage in

no event), but SKIP terminates while STOP does not terminate (engages in infinite internal

actions) causing a deadlock. Larger processes are built by combining smaller processes. PAR

(or ||), SEQ (or ;), NDC (or), DC (or), and MU.x{} (or µX• P) are the constructors that can

be used for this purpose. The complete CSP-based grammar is provided as a yacc (viz., BNF)

specification in [36, 37].11

An example declarative construction would be: PROCESS My_example = SEQ{P(), Q(),

R()}; where the process "My_example" is declared as a sequential composition of three process

calls (P, Q, R). A process call is one of the main elements used to denote processes. Processes

can have internal structures which are defined in a PROCESS declaration and used later much

like a function call in a typical programming language (e.g., My_example()). The simple rule to

remember is that when a process call is made inside a declarative construction (i.e., between

"PROCESS =" and ";") it need not be pre-declared (i.e., the process can defined on-the-fly rather

than being pre-declared).12 However, when a process is pre-declared it must subsequently be

used as a "process call." In the example below, P1() and all the other elements in similar format,

having "()" appended to their name, are process calls. Process calls in the main body of the

specification (last line of this example) must be pre-declared:

Example_System =

PROCESS My_example = SEQ{P1(), P2(), P3()};

PROCESS Your_example = PAR{Q1(), Q2(), My_example()};

PROCESS Monitor = NDC{SKIP, R1, R2()};

Mu.X{ NDC{ My_example(), Your_example()}}. --dashes are prefixed to comments

Pre-declaring a process is a way of abstracting away the internal details of the process

function. Translation of a pre-declared process call expands all of its internal structure in

11In P-CSP, process and channel names are capitalized (at least the first letter) while other elements (i.e., actions or
messages) use only lower case. These are style guidelines and are not inforced by the CSPN tool.
12In the sequence of declarations, a process call defined on the fly can be reused, but not later be declared. Another
important syntactic rule is inforced for messages during the translation. Each message variable specified in a
synchronized PAR must have a matching input and output (i.e., channel!messageX must match channel?messageX).

10

creating a "sub-Petri net." In this way, larger processes are formed from the composition of

smaller processes. A statement list is a sequential list of n ≥ 1 statement(s). A statement can be

an event (or trigger) which causes a process to engage in an action (e.g., a → P). This process is

defined as an implication. Input and output of messages require a channel. Channels provide

unbuffered, unidirectional point-to-point communication of values between two concurrent

processes (similar to Ada rendezvous). A guarded process combines one or more processes, each

of which is conditional on an input, a boolean expression or both. An expression can be integer,

boolean or relational (boolean expressions must consist of boolean variables prefixed with "@").

Operands can be integers, variables, integer expressions or relational expressions (distinct from

boolean). A partial BNF specification of the P-CSP grammar can be found in the Appendix.

3.1. Stochastic Petri nets

The Petri net in its simplest form is a directed bipartite graph, where the two types of nodes

are known as places (circles) and transitions (bars). In this approach, places represent events

while transitions represent actions.13 Other researchers have based their system models on

conditions and events (where their events are similar to P-CSP's actions or processes).14

However, in this approach, modeling is based on the notion in CSP of event-action pairings.

A Stochastic Petri net (SPN) is simply a Petri net which has been extended to permit

stochastic analysis. These extensions embed the model into a timed environment by associating

a time to each of the transitions in the net. The most general extensions allow the usage of

stochastic times (rates) and probabilities.15 The underlying stochastic process is captured by the

"extended reachability graph" (ERG), a reachability graph with additional stochastic information

on the arcs. The ERG has been shown to be reducible to a Continuous Time Markov Chain

(CTMC) provided that the exponential distribution is associated with the Petri net transitions.

Since a SPN permits a probability distribution to be associated with transitions (to express delays

or failure rates) they are very suitable for modeling system performance and reliability.16

Stochastic Petri net markings correspond to the states of an equivalent stochastic process. The

transition rate from state Mi to Mj (of the equivalent stochastic process) is given by qij = λ i1 +

λi2 + . . .+λ im where λ ik is the delay in firing a transition tk which takes the Petri net from

13CSP processes perform the systems actions, while the events that trigger such actions are characterized by the
completion of an action (i.e., process) or the occurrence of conditions that enable the actions (or processes).
14Murata, describes a slightly different abstraction that defines conditions and events. Murata uses places to
represent conditions, and transitions to represent events. A transition has a certain number of input places and
output places representing the preconditions and post-conditions of an event (see [Murata89] page 542).
15When there are multiple transitions enabled by one token, a probability is associated with each of the involved
transitions. Such a transition is an immediate and its firing is instantaneous (no time is consumed).
16Each transition is associated with a random variable that expresses the delay from the enabling to the firing of the
transition. When multiple transitions are enabled, the transition with a minimum delay fires first. When the random
variable is exponential, the markings of the SPN are isomorphic to the states of a CTMC.

11

marking Mi to Mj (when several transitions enable the firing from Mi to Mj). See [1, 14, 21-22,

26, 28, 38] for more details on Petri nets, SPNs, Markov and Markov Reward processes.

3.2. SPNP and the C-based Stochastic Petri net Language (CSPL)

The SPNP package allows the user to perform steady state, transient, cumulative transient,

and sensitivity analysis of SRNs [42]. The language used for describing stochastic Petri nets for

SPNP (Stochastic Petri Net Package) is CSPL. It is a super set of the C language and provides

the full expressive power of C. Predefined functions are available to define SPNP objects. A

single CSPL file is sufficient to describe any

legal SRN because the SPNP user can input (at

run-time) the number of places and transitions,

the arcs among them, and any other required

parameter. The numerical parameters used in

the specification of rates and probabilities are

incorporated in the same CSPL file. An

example of the CSPL file structure is shown in

Figure 3.

The function parameters allows the user

to customize how the package will perform the

analysis by setting specific call parameters in

the sub-functions iopt() and fopt(). Several

parameters establishing a specific behavior can

be selected [11]. The function net permits the

user to completely define the structure and

parameters of an SRN model. The basic

functions that can be used inside the net

include place() for naming all the places,

trans() for naming all the transitions, iarc() for

defining a transition's input arc, oarc() for the

output arcs, and init() which defines the initial

marking. Probabilistic behavior may be

specified using probval(), the timing of events

can be specified by assigning rates to the

transitions in rateval(). More advanced

functions include harc() for making inhibitor

parameters(){
 iopt(IOP_PR_MARK_ORDER, VAL_CANONIC);
 iopt(IOP_PR_MERG_MARK, VAL_YES);
 iopt(IOP_PR_FULL_MARK, VAL_NO);
 iopt(IOP_PR_RSET, VAL_NO);
 iopt(IOP_PR_RGRAPH, VAL_NO);
 iopt(IOP_PR_MC, VAL_NO);
 iopt(IOP_PR_MC_ORDER, VAL_FROMTO);
 iopt(IOP_PR_PROB, VAL_NO);
 iopt(IOP_MC, VAL_CTMC);
 iopt(IOP_OK_ABSMARK, VAL_NO);
 iopt(IOP_OK_VANLOOP, VAL_NO);
 iopt(IOP_OK_TRANS_M0, VAL_YES);
 iopt(IOP_METHOD, VAL_SSSOR);
 iopt(IOP_CUMULATIVE, VAL_YES);
 iopt(IOP_SENSITIVITY, VAL_NO);
 iopt(IOP_ITERATIONS, 2000);
 iopt(IOP_DEBUG, VAL_NO);
 iopt(IOP_USENAME, VAL_NO);
 fopt(FOP_ABS_RET_M0, 0.000000);
 fopt(FOP_PRECISION, 0.000001);
}
net(){
 /* Definition of places */
 place("p0");
 init ("p0",1);
 place("p1");
 place("p2"); ...

 /* Definition of transitions */
 trans("dt1");
 trans("InTransit");
 trans("Togate_o_arrive");
 trans("dt_arrive"); ...

 /* Definition of rates */
 probval("dt1",1.0);
 rateval("InTransit",20.00000000);
 rateval("Togate_o_arrive",19.00000000);
 probval("dt_arrive",1.0);
 rateval("AtIntersection",18.00000000); ...

 /* Definition of input arcs */
 iarc("dt1", "p0");
 iarc("InTransit", "p1");
 iarc("Togate_o_arrive", "p2"); ...

 /* Definition of output arcs */
 oarc("dt1", "p1");
 oarc("dt1", "p8");
 oarc("InTransit", "p2"); ...
}
assert() {
 return(RES_NOERR);
}
ac_init() {
 fprintf(stderr,"\n<<<Run title goes here>>>");
 fprintf(stderr,"\nGenerating SRN data ...\n\n");
 pr_net_info();
}
ac_reach() {
 fprintf(stderr,"\nThe reachability graph is being ");
 fprintf(stderr,"generated ...\n\n");
 pr_rg_info();
}
/* - reward_type definitions go here ----------------*/
ac_final(){
 int i;
 time value(0.1);
 pr_mc_info();
 pr_std_average();
 pr_std_cum_average();
}

Figure 3. SPNP input file structure.

arcs while the functions miarc(), moarc(), and mharc() define multiple cardinality input, output

12

and inhibitor arcs (these more advanced functions are not synthesized by CSPN during the

translation process).17

3.3. Mapping CSP to Petri nets using canonical translation rules

An initial set of rules for translating CSP specifications into Petri nets (Petri nets) is defined

in [19, 22, 29-30]. The translations between CSP and Petri nets are based on the fact that in CSP,

processes execute actions which in turn may enable other actions and in this way CSP processes

move from one action to another. Activities which enable a process to be activated can be

viewed as conditions (or events) which are represented by places, while the actions themselves

are viewed as transitions. Some example translations are shown in Figure 4 (under each of the

Petri net constructions is the P-CSP specification).

b

c e

a d

F. Parallel actions
synchronize on b

(a→b→c) ||{b} (d→b→e)

E. Non- and deterministic
choices run in parallel

(a b) ||{a,b} (a b)

a b

From environment

a b

From environment

D. Deterministic
choice

(a b)

cba b

µX.(b c→X)

B. Nondeterministic
choice w/ recursion

a b

A. Nondeterministic
choice to proc a or b

a b

a b

C. Parallel actions
are transitions

NDC{ a, b}

DC{
 a AND
 {ch1 ? msg1},
 b AND
 {ch2 ? msg2 }
}

PAR{
 NDC{a, b},
 DC{a AND
 {ch1 ? msg1},
 b AND
 {ch2 ? msg2 }
 }
 (a,b)
}

PAR{

 {a→b→c},

 {d→b→e}(b)
}

Mu.X{
 NDC{

 b, c→X
 }
}

PAR{ a, b}

Figure 4. Example of some representative CSP → Petri net translation rules (see next figure).

The CSP to Petri net translations were designed to facilitate the automatic decomposition of the

CSP constructs into Petri net sub-components and subsequent re-composition of the subnet

components into a complete system Petri net. The Petri net translation from a given CSP

construction (i.e., specification) need not be unique because ultimately, when we combine the

subnets, we must introduce dummy places and dummy transitions to maintain the complete Petri

net's bipartite nature.18 And, once the complete system net is obtained, the structure itself may

17Guards (logical conditioning functions associated with a transition) and priorities can be specified using guard()
and priority(). Marking dependence is specifiable using mark() and enabled().
18Intuitively, it is possible to reduce different Petri net equivalents into a canonical form. A set of canonical
translation rules are applied to derive each component's Petri net equivalent [37].

13

be reduced (e.g., by combining adjacent dummy transitions or collapsing such places and

transitions into their predecessor/successor transitions) to something that is trace equivalent to

the CSP specification. This in itself is all that is necessary to define a complete set of markings

and hence an equivalent Markov process.[38]19

Petri nets are inherently non-deterministic and asynchronous while CSP is inherently

deterministic and synchronous (though an explicit definition of non-deterministic choice exists in

CSP). Since the purpose is stochastic analysis, we depend on the non-deterministic nature of the

Petri nets to conduct the stochastic analysis. This implies that the determinism of CSP is also

translated into the non-determinism of Petri nets. However, the resolution of structure within the

translation is standardized and deterministic, while the probabilistic transitioning is only applied

to the appropriate nondeterministic choice composition operator of CSP. In any event, the goal

is to demonstrate the feasibility of translating from CSP and Petri nets by decomposing a CSP

specification into its component parts (processes, channels, constructors etc.) and this is done by

choosing one standard (canonical) translation path from among equivalents. Section 4 provides

some mechanisms and conventions which have been defined for the canonical translations.

4. Some CSPN mechanics

This section provides some of the CSPN implementation details. The canonical translation

rules are codified in CSPN. The set of details provided give the basic framework for CSPN.

4.1. Co-matrix expansion

When the P-CSP specification is parsed, each construct (e.g., PAR, SEQ, etc.) of the

specification is separated into its component elements (process names, channels, variables) and

represented as a sub-Petri net. The sequential construction shown in Figure 5 illustrates how the

co-matrix is used to represent, in this case a SEQ composition as a Petri net. Figure 6 shows the

same translation for the parallel (i.e., PAR) construct.

Combining the component co-matrices to produce a complete system Petri net is a process of

co-matrix expansion. The expansion is constrained in two dimensions to preserve the algebraic

structure associated with (1) adjacency and (2) nesting. Figures 7 and 8 give an illustration of the

expansion process.

The test shown in Figure 7 is designed to determine, based on the location of the transition to

be expanded, which method of expansion to use. In Figure 8, an expansion is performed using

method 3. The co-matrix SEQ0 (analogous to co-matrix A in Figure 7) is expanded by inserting

SEQ1. SEQ1 consists of two processes, P1 and P2 (and is analogous to co-matrix B in Figure 7).

The expansion must replace the transition SEQ1 by the two process names P1 and P2. The final

combined result retains the SEQ0 name.

19A task which is left to the Petri net tool (i.e., SPNP).

14

P

Q

R

p1

p2

p3

p4

CSP:... P;Q;R

P-CSP:... SEQ{P,Q,R};

T p1 p2 p3 p4
R P + -
A Q + -
N R + -
S

+ indicates an arc
input from place
p3 to transition R.

- indicates an arc
output to place p4
from transition R.

Figure 5. SEQ construct with co-matrix and Petri net representations.

p1

p2

p3

p4

p5

p6

p7

P

Q

R

dt1

dt2

CSP:... P;Q||R

P-CSP:... PAR{SEQ{P,Q}R};

T p1 p2 p3 p4 p5 p6 p7
R dt1 + - -
A P + -
N Q + -
S R + -
 dt2 + + -

Figure 6. PAR and SEQ construct with co-matrix and Petri net representations.

B

A

{use Method 3
 expansion}

else

B

A

{use Method 2 expansion}
else
 if

B
A

{use Method 1 expansion}if

Expand Comatrix A using B

Figure 7. Choosing a combining method 1, 2 or 3 for expansion depends on locality.

15

6x7

1 2 3 4 5 6 7

P1

P2

P3

P5

P6

P4

5x6

1 2 3 4 5 6SEQ0

P1

P2

P3

SEQ1

P4

2x3

1 2 3SEQ1

P5

P6

Using expansion method 3

Combined

- +

- +

- +

- +

- +

- +

- +

- +

- +

- +

- +

- +

- +

The expansion method provides
a means to combine two co-matricies.

SEQ{P1, P2, P3, SEQ{P5, P6}, P4}

Figure 8. Identifying the transition to expand into a larger Petri net.

Note, the term SEQ is a key word (used for sequential composition of processes), and is

considered itself to be a process. CSPN treats each occurrence of this type as a unique process

by appending a unique value to the name (e.g., 0 is appended to the first occurrence of SEQ to

give SEQ0 and the next occurrence of SEQ will have "1" appended). In this way, CSPN tracks

each occurrence of a given type of keyword (i.e., SEQ, PAR, NDC, DC, STOP and SKIP).

4.2. CSP represented as a network structure

A network of linked lists is used to capture the algebraic structure in two dimensions (1)

adjacency (among declared processes or within a process) and (2) nesting within processes. Two

examples are provided in Figure 9 and 10. The first one emphasizes adjacency and the other

emphasizes nesting.

There are two main network arrays used (1) SYS[], each SYS[i] points to a process defined

in a PROCESS declaration and (2) NET each NET[i] points to a "process" element as defined by

the P-CSP grammar (e.g., process call, constructor like PAR, NDC, etc.). Figure 11 gives some

details of the three major C data structures employed by CSPN: (1) Symbol table entry (as

described above) as well as (2) NET_NODE and (3) NODE structures which together provide

the building blocks for the network.

16

SysSimpleEx =
 PROCESS Eg1 =
 SEQ{SEQ{SEQ{P1(),P2(),PAR{P11(),P12()}},P3(),P4()},P5(),P6()},SEQ{P7(),P8()};
 PROCESS Eg2 =
 SEQ{ P9(), P10() };
 PAR{ Eg1(), Eg2() }.

Adjacency among declared processes

Process Hierarchy for SysSimpleEx

Nesting

PAR2

SysS im pl eEx

dt3

Eg 1

Eg 2

dt4

SYS [0]

NE T[0]

PAR2

NE T[1]

SEQ1

Eg 1

SEQ2

P5

P6

SEQ1

SYS [1]

NE T[0]

NE T[1]

SEQ5

Eg 2

P9

P10

SEQ5

SYS [2]

NE T[0]

NE T[1]

SEQ4

SEQ2

SEQ3

P3

P4

NE T[2]

SEQ3

P1

P2

PAR1

NE T[3]

PAR1

dt1

P11

P12

NE T[4]

SEQ4

P7

P8

P4

NE T[5] dt2

PAR1

Trai nX in g

dt1

Trai n

Gat e

Ar riv e

De pa rt

dt2

SYS [0]

NE T[0]

PAR1

NE T[1]

SEQ1

Trai n

In Tran sit

Tog at e!A rri ve

dt! Ar riv e

At In t erse ct io n

Tog at e!D ep art

dt! De pa rt

SEQ1

SYS [1]

NE T[0]

NE T[1]

SEQ2

Gat e

Clo sed

Tog at e?De pa rt

dt? Dep ar t

Op en

Tog at e?Ar riv e

dt? Arr ive

SEQ2

SYS [2]

NE T[0]

NE T[1]

Two Dimension Process Hierarchy

Nesting

Adjacency
within a
process

TrainXing =
 PROCESS Train =
 SEQ{InTransit(),{Togate!arrive},AtIntersection(),{Togate!depart}};
 PROCESS Gate =
 SEQ{{Togate?arrive},Closed(),{Togate?depart},Open()};
 PAR{
 Train(), Gate() {arrive, depart}}.

Figure 10. Process hierarchy for system "SysSimpleEx" with exaggerated nesting.

17

typedef struct nodedef {
{ char *n_name; Pointer to the node/symbol name

 char *n_fail; NULL if no fail rate/prob specified
 short israte; Boolean: legal values are (-1, 0, 1)

 short n_type; Node type consistent w/ symbols
 short uid; System level unique identifier

 struct nodedef *link; Pointer to next node, if any
 } NODE;

typedef NODE *nodeptr; Pointer to a NODE strucutre

NODE structure (pnode or lnode instance)

typedef struct entrydef { Symbol Table entry definition
 char *name; Symbol name pointer
 short type; Symbol type (values 0 through 23)
 short uid; Unique identification number (pid)
 char *frate; Failure Rate in ASCII pointer
 char *fprob; Failure Probability in ASCII pointer
 char *p_pl; Process list pointer
 short rsize; Number of rows in PR Matrix
 short csize; Number of cols in PR Matrix
 p_matrix p_prm; Process Relation (PR) Matrix pointer
 struct entrydef *next; Link to next ENTRY
} ENTRY;

typedef ENTRY *entryptr;

ENTRY structure (symbol table entry)

NET_NODE structure (pnodes declaration instance)
typedef struct netdef
{ char *net_name; Pointer to the node/symbol name

 short numNodes; Number of pnodes in this linked list
 short numSibs[NETSIZE]; Number of siblings within each pnode

 nodeptr net[NETSIZE]; Rootptr's to Process Nodes
 } NET_NODE;

typedef NET_NODE *netNodeptr; Pointer to net_node structure

netNodeptr sys[SYSSIZE]; Rootptr's to "PROCESS_DEC" net nodes

NDC

SEQ2 SEQ3 P1SEQ1

SEQ3 P3 P4SEQ2

P5 P6SEQ3

P7 P8NDC

EX1

P2

EX1 16

EX2 4

Sy1 3

EX1

P9 P10PAR1

Sys[0..2]

Net[0..1]

Net[0..4]

Net[0..1]

NDC EX1 EX2

NET_NODE NODE's

NET_NODE

...array of pointers to nodes

NET_NODE

Sy1 =
 PROCESS EX1 =
 SEQ{SEQ{SEQ{P1(),P2()},P(),P4()},P5(),P6()},
 NDC{P7(),P8()};
 PROCESS EX2 =
 PAR{P9(),P10};

NDC{EX1(),EX3()}.

Figure 11. Entry, net_node, and node data structures.

5. Summary

The objective in this work was to show that CSP specifications can be translated into SPNs

for the purpose of reliability and performance analyses. Such translations can give insight (1)

into the feasibility of meeting non-functional requirements, (2) by helping to identify the best

candidate design based on a formal description of the system, (3) by helping to identify failure

modes and fault handling mechanisms. This approach enables the stochastic properties of the

system specification to be ascertained while allowing the parameters used in the analysis to be

formally captured in the P-CSP design specification. Subsequent analyses can be run without

having to rewrite all of the pertinent values. Only those parameters that are identified as critical

in terms of their impact to the integrity of the overall system (i.e., sensitivity analysis) need be

perturbed. This approach provides feedback to the designer so that a judicious cost-benefit

analysis in terms of fault-avoidance and fault-tolerance can be made.

A textual language for CSP specifications was designed. A tool was implemented for

translating the CSP specifications into stochastic Petri nets. The Petri nets are coded in the form

of a coincidence matrix. The graphical representation of the resulting Petri net can be viewed

18

using tools such as dot.20 The coincidence matrix is then converted into the format needed for

analysis using SPNP. The tool has been tested using a diverse set of process compositions (see

Figures 13 and 14 for some example test cases). A simple communication protocol from [39,

page 253] is shown in Figure 14C. Except for dummy transitions and places which are the

artifacts of the canonical translation rules, the Petri nets generated by CSPN can be compared to

the original Petri nets from which the P-CSP was originally derived.

The tool combines the power of two other tools namely dot (for viewing the graphical PN

representation) and SPNP (Stochastic Petri Net Package for stochastic analysis). The CSPN

interface is textual. CSPN offers a rich selection of command line options. Most of CSPN's

current features are driven by the SPNP functionalities. An interactive menu is one option that is

used to control run parameters related to the type of analysis (e.g., precision, iterations,

generating a reachability graph, running continuous time versus discrete time Markov analysis,

etc.). Another menu allows the designer to parameterize and control the character of the system

under study (e.g., setting priorities, rates or probabilities among transitions, etc.). In general, the

CSPN tool provides a new level of abstraction and basis for understanding interactive concurrent

process algebraic specifications by leveraging the power of dot and SPNP.

5.1 Future enhancements

This work can be extended to incorporate a broader scope of translations and the

characterization of properties other than structural that are useful for error avoidance, fault

tolerance, detection of deadlocks, unsafe behaviors, and timeliness. Limitations include (1) ease

of use (e.g., GUI), (2) devising a mechanisms to eliminate extra and adjacent dummy transitions,

(3) expanding the language to incorporate some of the ideas of real-time CSP, (4) defining a new

extended grammar based on other formal specification languages, and (5) validating the

approach by applying the method to larger examples and/or a real system.

In the future, the critical elements of a formal requirement specification will be abstracted

into a formal P-CSP design specification. CSPN will be used to translate the model into

stochastic Petri nets. Subsequent analysis of the specification's structural characteristics will

reveal the system and component reliability (based on empirical data and/or the postulated failure

rates) of such components. The system model will then be characterized in terms of the

ascertained failure behaviors. Subsequent models will be perturbed and re-evaluated for

comparison purpose.

5.2 CSPN specifications21

CSPN version 1.0 is currently 8,500 lines of C code running on a Unix-based Sun 4.

20See Drawing graphs with dot by Eleftherios Koutsofios and Stephen C. North at AT&T Bell Laboratories.
21Acknowledgement: Thanks to Krishna Kavi for some critical comments he made on an earlier draft of this paper.

19

6. References
1. Balbo, Gianfranco, “On the Success of Stochastic Petri Nets,” IEEE Proceedings Petri Nets and Performance

Modeling 95, Durham, NC, pp. 2-9, October 3-6, 1995.

2. Balbo, Gianfranco, Donatelli, S., Granceschinis, G., Mazzeo, A., Mazzocca, N. and
Ribaudo, M., “On the Computation of Performance Characteristics of Concurrent Programs
Using GSPNs,” Performance Evaluation, Vol. 19, pp. 195-222, 1994.

3. Bernardo, Marco, Busi, Nadia and Gorrieri, Roberto, “A Distributed Semantics for EMPA Based on
Stochastic Contextual Nets,” The Computer Journal, Vol. 38, No. 3, 1995.

4. Bernardo, Marco, Donatiello, Lorenzo and Gorrieri, Roberto, “Giving a Net Semantics to Markovian Process
Algebra,” IEEE Proceedings of the 5th International Workshop on Petri Nets and Performance Modeling,
Durham, NC, pp. 169-178, October 3-6, 1995.

5. Butler, Ricky and Johnson, Sally C., “Formal Methods for Life-Critical Software,” Proceedings of the AIAA
Computing in Aerospace 9, pp. 319-329, Oct. 19-21, 1993.

6. Chiola, Giovanni, Dutheillet, Claude, Franceschinis, Giuliana and Haddad, Serge, “Stochastic Well-Formed
Colored Nets and symmetric Modeling Applications,” IEEE Transactions on Computers, Vol. 42, No. 11, pp.
1343-1360, November 1993.

7. Chiola, Giovanni, Marsan, Marco Ajmone, Balbo, Gianfranco and Conte, Gianni, “Generalized Stochastic
Petri Nets: A Definition at the Net Level and Its Implications,” IEEE Transactions on Software Engineering,
Vol. 19, No. 2, pp. 89-107, February 1993.

8. Ciardo, Gianfranco and Muppala, Jogesh K., “Manual for the SPNP Package Version 3.1,” EE Department,
Duke University, Durham, NC, 34 pages, October 18, 1992.

9. Ciardo, Gianfranco and Trivedi, Kishor S., “A Decomposition Approach for Stochastic Petri Net Models,”
Proceedings of the Fourth International Workshop of Petri Nets and Performance Models, IEEE CS Press, Los
Alamitos, CA, pp. 74-83, December 1991.

10. Ciardo, Gianfranco and Trivedi, Kishor S., “A Decomposition Approach for Stochastic Petri Net Models,”
Proceedings of the Fourth International Workshop of Petri Nets and Performance Models, IEEE CS Press, Los
Alamitos, CA, pp. 74-83, December 1991.

11. Ciardo, Gianfranco and Trivedi, Kishor S., “SPNP: The Stochastic Petri Net Package (Ver. 3.1),”
MASCOTS'93 Simulation Series, Vol. 25, No. 1, 1993, pp. 390-391, January 17-20.

12. Ciardo, Gianfranco, “Toward a Definition of Modeling Power for Stochastic Petri Net Models,” International
Workshop on Petri Nets and Performance Models, Madison, Wisconsin, pp. 54-62, August 24-26, 1987.

13. Ciardo, Gianfranco, Muppala, Jogesh and Trivedi, Kishor S., “On the Solution of GSPN Reward Models,”
Performance Evaluation, Vol. 12, pp. 237-253, December 1991.

14. Ciardo, Gianfranco, Muppala, Jogesh K. and Trivedi, Kishor, “SPNP: Stochastic Petri Net Package,”
International Workshop on Petri Nets and Performance Models, Kyoto, Japan, pp. 142-151, December 11-13,
1989.

15. Davies, Jim and Schneider, Steve, “Real-Time CSP,” Theories and Experiences for Real-Time System
Development, AMAST Series in Computing: Vol. 2, Teodor Rus and Charles Rattray Eds., World Scientific,
New Jersey, pp. 31-82, 1994.

16. Dillon, L.K., Kutty, G., Moser, L.E., Melliar-Smith, P.M. and Ramakrishna, Y.S., “Graphical Specifications
for Concurrent Software Systems,” International Conference on Software Engineering, Melbourne Australia,
11 pages, May 1992.

17. Donatelli, S., Ribaudo, M. and Hillston, J., “A Comparison of Performance Evaluation Process Algebra and
Generalized Stochastic Petri Nets,” IEEE Proceedings, Petri Net and Performance Modeling (PNPM),
Durham, NC, pp. 158-168, October 3-6, 1995.

18. Donatelli, Susanna, Franceschinis, Giuliana, Mazzocca, Nicola and Russo, Stefano, “Software Architecture of
the EPOCA Integrated Environment,” Proc. 7th Int'l Conf. on Computer Performance Evaluation Modeling
Techniques and Tools, LNCS 794, G. Goos and J. Hartmanis Eds., Springer-Verlag, Vienna, Austria, pp. 335-
352, May 1994.

19. Gerhart, Susan L., “Applications of Formal Methods: Developing Virtuoso Software,” IEEE Software, pp. 7-
10, September 1990.

20

20. Hoare, C.A.R., Communicating Sequential Processes, Prentice- Hall International Series in Computer Science,
256 pages, 1985.

21. Johnson, Barry W., Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wesley Publishing
Company, 584 pages, 1989.

22. Kavi, K.M. and Buckles, B.P., “Formal Methods for the Specification and Analysis of Concurrent Systems"
Tutorial Notes, 1993 International Conference on Parallel Processing, Lake Charles, IL., 75 pages, Aug. 20,
1993.

23. Kavi, K.M., and Sheldon, F.T., "Specification of Stochastic Properties with CSP," IEEE Proc. Int'l Conf. on
Parallel and Distributed Systems, Taiwan, pp. 288-293, Dec. 1994.

24. Kavi, K.M., Sheldon, F.T. and Reed, S.C., "Specification and Analysis of Real-Time Systems Using CSP and
Petri Nets," Int'l Journal of Software Engineering and Knowledge Engineering –Special Issue on S/E
Practices and Tools for Real-Time Systems, June 1996.

25. Kavi, Krishna M. and Sheldon, Frederick T., “Reliability Analysis of CSP Specifications Using Petri Net and
Markov Models,” HICSS-28, January 1995.

26. Laprie, J.C., Kaaniche, M., and Kanoun, K., "Modeling Computer Systems Evolutions: Non-Stationary
Processes and Stochastic Petri Nets –Application to Dependability Growth," IEEE PNPM'95, Durham, NC,
pp.221-230, October 1995.

27. Liu, Zhiming and Joseph, Mathai, “Transformation of Programs for Fault-Tolerance,” Formal Aspects of
Computing, Vol. 4, No. 5, pp. 442-469, 1992.

28. Murata, Tadao, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, Vol. 77, No. 4,
pp. 541-580, April 1989.

29. Olderog, Ernst-Rudiger, “Operational Petri Net Semantics for CCSP,” Lecture Notes in Computer Science,
Springer-Verlag, Vol. 266, pp. 196-223, 1987.

30. Olderog, Ernst-Rudiger, “TCSP: Theory of Communicating Sequential Processes,” Lecture Notes in
Computer Science, Springer-Verlag, Vol. 255, pp. 441-465, 1986.

31. Ostroff, Jonathan S., “Formal Methods for the Specification and Design of Real-Time Safety Critical
Systems,” Journal of Systems Software, Vol. 18, pp. 33-60, 1992.

32. Priami, Corrado, “Integrating Behavioral and Performance Analysis with Topology Information,” Proceedings
of the PAPM 95, (& The Computer Journal, Dec. 1995), 1995.

33. Reisig, W., “Combining Petri Nets and Other Formal Methods,” 13th International Conference on Application
and Theory of Petri Nets, pp. 24-44, June 1992.

34. Sahner, Robin A. and Trivedi, Kishor S., “A Software Tool for Learning About Stochastic Models,” IEEE
Transactions on Education, Vol. 36, No. 1, pp. 56-61, February 1993.

35. Sheldon, F.T., and Kavi, K.M., "Linking Software Failure Behavior to Specification Characteristics II," IEEE
Proc. Fourth Int'l Workshop on Evaluation Techniques for Dependable Systems, San Antonio, TX, Oct. 1995.

36. Sheldon, F.T., Kavi, K.M, and Kamangar, F.A., "Reliability Analysis of CSP Specifications: A New Method
Using Petri Nets," AIAA Proceedings Computing in Aerospace 10, pp. 317-326, March 1995.

37. Sheldon, F.T., "Specification and Analysis of Stochastic Properties for Concurrent Systems Expressed Using
CSP," Ph.D. Dissertation, Comp. Sci. and Engrng. Dept., Univ. of TX at Arlington, May 1996.

38. Sorensen, Erling Vagn, Nordahl, Jens and Hansen, Niels Herman, “From CSP Models to Markov Models,”
IEEE Trans of SE, Vol. 19, No. 6, 1, pp. 554-570, June 1993.

39. Tanenbaum, A.S., Computer Networks, 2nd Ed., Prentice Hall, Englew3ood Cliffs, 1989.

40. Van Glabbeck, Rob, Smolka, Scott A., Steffen, Bernhard and Tofts, Chris M.N., “Reactive, Generative, and
Stratified Models of Probabilistic Processes,” IEEE Proceedings Symposium on Logic in Computer Science,
pp. 130-141, 1990.

41. Wang, Chang-Yu and Trivedi, Kishor, “Integration of Specification for Modeling and Specification for
System Design,” Department of Electrical Engineering, Technical Report from Duke University, Durham,
NC, 22 refs., 21 pages, 1994.

42. Wang, Chang-Yu, “Some Problems in the Specification and Analysis of Computers and Networks, Ph.D.
Dissertation, Department of Computer Science, Duke University, 101 refs., 218 pages, 1995.

21

7. Appendix

** Rules
** 1: system production */
system: Identifier Equals
 processdeclist processlist1 Dot;
** 2: processdec (way to declare process names)
processdec: PROCESS Identifier Equals
 processlist1 Semicolon;
** 2.5: processdeclist (list multiple decl under system)
processdeclist: | processdeclist processdec;
** 3: process definition
process: STOP
 | SKIP
 | LeftBrace stmtlist RightBrace
 | PAR LeftBrace processlist2 synclist RightBrace
 | SEQ LeftBrace processlist1 RightBrace
 | NDC LeftBrace processlist2 RightBrace
 | DC LeftBrace guardedproclst RightBrace
 | MU Dot LeftBrace processlist1 RightBrace
 | processcall;
** 4: processlist1
processlist1: | processlist1 process;
** 4.5: processlist2
processlist2: | processlist2 process process;
** 4.7: synclist
synclist: | LeftParen anyvarlist RightParen;
** 4.8: anyvar
anyvar: booleanvar | variable;
** 4.9: anyvarlist
anyvarlist: anyvar | anyvarlist Comma anyvar;
** 5: statement list
stmtlist: | stmtlist stmt;
** 6: statement
stmt: implication
 | process
 | expression
 | input **looks like {channel ? variable}
 | output **looks like {channel ! variable};
** 6.3: implication (a statement event -> action)
implication: stmt Arrow process;
** 6.6: processcall (instance of a declared PROCESS).
processcall: Identifier LeftParen RightParen
**Symbol lookup ensures identifier was declared ;
** 7: assignment is covered by expression in integer
** 8: input
input: channel InSym variable;
** 9: output
output: channel OutSym expression;
** 10: guarded process
guardedprocess: guard process;
** 11: guarded process list
guardedproclst: | guardedproclst guardedprocess;

** 12: guard
guard: input
 | booleanexpr
 | booleanexpr AND input
 | booleanexpr AND SKIP;
** 13: recursive definition (defined in process)
** 14: channel
channel: Identifier;
** 15: variable
variable: Identifier;
** 16: boolean variable (AtSym to distinguish 15, 16)
booleanvar: AtSym Identifier;
** 17: expression
expression: integerexpr
 | booleanexpr
 | relationalexpr;
** 18: boolean expression
booleanexpr:
 booleanvar
 | TRUE
 | FALSE
 | booleanexpr AND booleanexpr
 | booleanexpr OR booleanexpr
 | NOT booleanexpr
 | booleanvar VarAsgn booleanexpr;
** 19: relational expression
relationalexpr:
 operand LESym operand
 | operand LTSym operand
 | operand EQSym operand
 | operand NESym operand
 | operand GESym operand
 | operand GTSym operand;
** 20: integer expression
integerexpr: Negative operand
 | operand Plus operand
 | operand Minus operand
 | operand Star operand
 | operand Slash operand
 | operand VarAsgn operand;
** 21: operand
operand: Integer
 | variable
 | integerexpr
 | relationalexpr;
** 22: monadic operand (never used)
** 23: dyadic operand (never used)
** 24: integer is defined in lexer
** 25: digits are defined in lexer
** 26: digit is defined in lexer
** 27: declaration (currently undefined)

Figure 12. P-CSP grammar.

22

dt7

sdt1

P1

P2

dt1

P11 P12 P13 p14

dt2

P3

P4

sdt2

P5

sdt3

P6

dt3

P7

P8

dt4

P9 P10

dt5

sdt4

P15

sdt5

P16

dt6

dt8

p00

p01

p02

p03

p04

p05

p06

p07

p08

p09

p10

p11

p12

p13

p14 p15

p16

p17

p18

p19

p20

p21

p22

p23

p24

p25

p26

p27

p28 p29

p30

p31

p32

A. vs3ay_p
--vs3ay_p
--Used to test the nesting of NDC
vs3ay_p =

 PROCESS P1 = { SKIP };

 PROCESS P2 = SEQ{ P1() };

 PROCESS P3 = NDC{
 NDC{
 NDC{
 P4(), P5()
 },
 P6(), P7()
 },
 P8(), P9()
 };

NDC{
 P1(),
 P2(),
 P3()
}.

--t6
--Example tests NDC, SEQ and PAR nesting and
--non-nested PAR. There are 19 process calls, 3
--process declarations, 3 SEQs, 3 PARs, and 2 NDCs.

SysEg_t6 =

 PROCESS Eg1 = NDC{
 SEQ{
 SEQ{
 P1(),
 P2(),
 PAR{
 P11(),
 P12(),
 P13(),
 p14()
 }
 },
 P3(),
 P4()
 },
 P5(),
 P6()
 },
 SEQ{
 P7(),
 P8()
 };

 PROCESS Eg2 = PAR{
 P9(),
 P10()
 };

 PROCESS Eg3 = NDC{
 P15(),
 P16()
 };

 PAR{
 Eg1(),
 Eg2(),
 Eg3()
 }.

sdt9

SKIP1

sdt10

SKIP1

sdt11

sdt1

sdt2

sdt3

P4

sdt4

P5

dt1

sdt5

P6

sdt6

P7

dt2

sdt7

P8

sdt8

P9

dt3

dt4

p00

p01

p02 p03

p04

p05

p06 p07

p08 p09

p10

p11 p12

p13

p14

p15

p16

B. t6

Figure 13. CSPN Petri net translations and their matching P-CSP Specifications (A & B).

23

dt1

dt:MuM

CreateMsg

Ch1!msg

dt:msg

Ch2?ack

dt:MuY

ConsumeMsg

Ch1?msg

Ch2!ack

dt:ack

dt2

p00

p01

p02

p03

p04

p05

p06

p07

p08

p09

p10

p11

p12

p13

p14

p15

C. Com9a

dt1

InTransit

Togate!arrive

dt:arrive

Togate?ok

AtIntersection

Togate!depart

dt:depart

Togate?arrive

Close

Togate!ok

dt:ok

Togate?depart

Open

dt2

ft:InTransit ft:Togate!arrive

ft:Togate!depart

ft:Open

p00

p01

p02

p03

p04

p05

p06

p07

p08

p09

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

D. tf2

--com9a
--A simplified model of a communcation protocol.
--Blocking send and receive.

Com9a =

 PROCESS SndMsg = {Ch1 ! msg};
 PROCESS RcvAck = {Ch2 ? ack};

 PROCESS Me = Mu.M{CreateMsg(), SndMsg(), RcvAck()};

 PROCESS RcvMsg = {Ch1 ? msg};
 PROCESS SndAck = {Ch2 ! ack};

 PROCESS You = Mu.Y{ConsumeMsg(), RcvMsg(), SndAck()};

PAR{
 Me(),
 You()
 (msg, ack)
}.

--tf2
--Train example with 3 synch points, input and output,
--2 SEQs, a Synchronized PAR and failure annotations.

TrainXing =
 --Two processes Train and Gate which consist of
 --sequential actions run concurrently (in parallel).
 --A signal is required to request the Gate open/close.

 PROCESS Train =

 SEQ{
 InTransit():FAIL (p= 0.01),
 {Togate ! arrive}:FAIL (r= 0.02),
 {Togate ? ok},
 AtIntersection(),
 {Togate ! depart}:FAIL (r= 0.03)};

 PROCESS Gate =

 SEQ{
 {Togate ? arrive},
 Close(),
 {Togate ! ok},
 {Togate ? depart},
 Open()}:FAIL (r= 0.005);

 PAR{
 Train():FAIL(p= 0.00006),
 Gate():FAIL(r= 0.005)
 (arrive, ok, depart)
 }.

Figure 14. CSPN Petri net translations and their matching P-CSP Specifications (C & D).

